首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Numerical simulations with the NCAR/PSU Mesoscale Model 5 (MM5) were performed to study a large-amplitude gravity wave event that occurred on 4 January 1994 along the East Coast of the United States. Results from the MM5 control simulation using a 12-km mesh resolution compared well with the synoptic and mesoscale observational analysis. The simulated gravity waves displayed timing, location, wavelength, and propagation speed similar to those observed in a synoptic-scale environment described by the Uccellini and Koch (1987) conceptual model. Additional features existing upstream of the wave generation region not contained within their conceptual model were a warm occlusion and tropopause fold prior to and during the gravity wave generation. Wave ducting criteria were nearly satisfied along the path of the gravity waves.Several sensitivity tests were performed. In a simulation in which the Appalachian Mountains were removed, the model still produced similar cyclone development and mesoscale gravity waves. Thus topography was not directly responsible for the gravity wave genesis. Also, three different fake dry sensitivity tests were performed with the latent heating related to changes of water substance turned off in the model at different stages of the simulation. The results from these simulations suggest that diabatic heating played an important role in both jet/cyclone development and in gravity wave amplification and maintenance, though not wave generation. The simulation with grid resolution increased to 4km, which included fully explicit microphysics produced gravity wave characteristics similar to those in the control simulation, though the higher resolution resolved much shorter waves (though unverifiable) closely associated with convection. This 4-km sensitivity experiment with no cumulus parameterization also confirmed that the dominant gravity wave was not an artifact of the particular cumulus parameterization scheme used for the control simulation. The reliability of the simulated gravity waves is further confirmed with another sensitivity experiment initialized 20 hours before the observed wave generation in which qualitatively-similar gravity waves were produced.Received August 28, 2000; revised May 2002; accepted October 8, 2002 Published online: April 10, 2003  相似文献   

2.
In the summer of 1988/89 flights were carried out in the Coorong coastal area of South Australia to investigate sea-breeze fronts. The flights yielded data sets of the structure of the fronts in the cross-frontal direction with a spatial resolution of approximately 3 m. The study is focused on the budgets of sensible and latent heat in the vicinity of the front and on frontogenesis/frontolysis processes which are closely related to budget considerations.The frontogenesis relationships and the budgets were established on a 2 km length scale by low-pass filtering of the space series. As the wind components were measured with high accuracy, all processes which determine frontogenesis could be evaluated and are displayed in x,z-cross-sections: these are the confluence, shear and diabatic effects, all of which play a role in q/x-, q/z-, /x- as well as /z-frontogenesis. A detailed analysis is given for two different states of frontal development. The presented results shed much light on the governing physical processes in the frontal region with strong emphasis on the effects of confluence-generated updrafts, on shear instabilities causing bulges and clefts in the frontal surface as well as producing the elevated frontal head, and on processes related to differential heating and moistening.  相似文献   

3.
Summary The evolving modes of the sea-surface temperature (SST) in the Tropical Atlantic on the short interannual (IA) timescale were obtained by performing the extended empirical orthogonal function (EEOF) analyses on this variable separately for the 106-year (1871–1976) and 20-year (1881–1900; 1901–1920; 1921–1940; 1941–1960) periods. The equatorial and inter-hemispheric patterns manifest in the first EEOF mode of each analysis as part of the short IA evolution of the SST anomalies in the Tropical Atlantic. Another outstanding feature of the first EEOF mode of each analysis concerns the propagations of the SST anomalies in the meridional direction within the 20°N–20°S band and in the zonal direction in the sector 40°W–20°W. For all analyses, the SST anomalies propagate northward from the equator to 15°N and southward from 20°N to 15°N, with the same sign anomalies merging approximately at 15°N. On the other hand, the SST anomalies propagate westward in the sector 40°W–20°W with a propagation rate close to that of the phase speed of the fastest baroclinic Rossby wave in the ocean. So, the observed propagations of the SST anomalies in the 20°N–20°S band might result from the combined effect of the surface oceanic currents in this band and the baroclinic Rossby waves in the ocean.  相似文献   

4.
Summary A nonhydrostatic numerical simulation of a tropical cyclone is performed with explicit representation of cumulus on a meso- scale grid and for a brief period on a meso- scale grid. Individual cumulus plumes are represented by a combination of explicit resolution and a 1.5 level closure predicting turbulent kinetic energy (TKE).The results demonstrate a number of expected and unexpected important scale interaction processes. Within the central core of the developing cyclone, meso- convective regions grow and breakdown into propagating inertiagravity waves throughout the lifecycle of the cyclone. In the early stages, the amplitude of pressure fluctuations associated with the meso- scale convection exceed the central pressure of the cyclone and strongly modulate its intensity. With each meso- scale pulsation, the cyclone core increases in strength, measured by the central pressure deficit. The increasingly strong inertial frequency of the storm core acts to increasingly trap the convection induced heating within the core by balancing the tangential wind against the low central pressure, before the meso- scale convection breaks down and sends the warmth away as a propagating wave. Eventually, the slow manifold's amplitude exceeds the amplitude of the meso- scale oscillations and a stable eye region is formed. As inertial instability increases, increasingly high thermal warmth can be protected in the core, allowing persistent subsidence to form and to clear out the cyclone eye.On the outside of the eye wall, strong inertial stability gradients in the troposphere cause convective warming to split the inflow to the eye wal! and spawn outwardly propagating inertia gravity waves. These waves carry away all of the heating forced by convection that is not inertially trapped by the eye wall and act as a moderating influence on storm intensity.Inertia gravity waves are also spawned in the stratosphere at the top of the eye wall by the revolution of asymmetric cumulus structures. In all instances, the tropospheric waves are coupled to the propagating stratospheric waves which both move at 35 ms–1, although there are many instances where the stratospheric waves seem to have no tropospheric counterpart. Hence the anvil top forcing and low level breakdown are linked.The outwardly propagating inertia gravity waves act to initiate outer bands of convection. This initiation is with the assistance of low level boundary layer variations of density related to previous convection and to virga falling from the anvil which moistens and destabilizes the mid levels of e minimum. The convection initiated by these waves does not move substantially outward with the wave, although may appear to develop outward discontinuously.With 12 Figures  相似文献   

5.
Summary Interannual modes are described in terms of three-month running mean anomaly winds (u,v), outgoing longwave radiation (OLR), and sea surface temperature (T * ). Normal atmospheric monsoon circulations are defined by long-term average winds (u n,v n) computed every month from January to December. Daily winds are grouped into three frequency bands, i.e., 30–60 day filtered winds (u L,v L); 7–20 day filtered winds (u M,v M); and 2–6 day filtered winds (u S,v S). Three-month running mean anomaly kinetic energy (signified asK L , K M , andK S , respectively) is then introduced as a measure of interannual variation of equatorial disturbance activity. Interestingly, all of theseK L , K M , andK S perturbations propagate slowly eastward with same phase speed (0.3 ms–1) as ENSO modes. Associated with this eastward propagation is a positive (negative) correlation between interannual disturbance activity (K L , K M , K S ) and interannualu (OLR) modes. Namely, (K L , K M , K S ) becomes more pronounced than usual nearly simultaneously with the arrival of westerlyu and negativeOLR (above normal convection) perturbutions. In these disturbed areas with (K L , K M , K S >0), upper ocean mixing tends to increase, resulting in decreased sea surface temperature, i.e.T * 0. Thus, groups (not individual) of equatorial disturbances appear to play an important role in determiningT * variations on interannual time scales. HighestT * occurs about 3 months prior to the lowestOLR (convection) due primarily to radiational effects. This favors the eastward propagation of ENSO modes. The interannualT * variations are also controlled by the prevailing monsoonal zonal windsu n, as well as the zonal advection of sea surface temperature on interannual time scales. Over the central Pacific, all of the above mentioned physical processes contribute to the intensification of eastward propagating ENSO modes. Over the Indian Ocean, on the other hand, some of the physical processes become insignificant, or even compensated for by other processes. This results in less pronounced ENSO modes over the Indian Ocean.With 10 FiguresContribution No. 89-6, Department of Meteorology, University of Hawaii, Honolulu, Hawaii.  相似文献   

6.
The term variangular is introduced to emphasize a significant difference between the present and certain earlier solutions to the problem of organized airmotion within the planetary boundary layer. The latter belong to the family of equiangular wind spirals and have the characteristic that the angle () formed by the vectors of shearing stress and geostrophic departure is invariant with height; it is shown that in this spiral-family, parabolic height-dependency of the effective (eddy) diffusivity (K) alone is permitted, including the asymptotic case of constant K; the famous Ekman spiral as well as the Rossby spiral are two prominent members of the family of equiangular wind spirals. The new variangular theory, as the name implies, permits variation of with height (z) and produces more versatile profiles of wind and stress due to less restraint in K (z). As an example of comparison with observed data, monthly mean wind profiles obtained at Plateau Station, Antarctica, are selected since they exhibit a noteworthy degree of variangularity, in relatively satisfactory agreement with properties of the new theoretical model for wind spirals.National Research Council Visiting Scientist Research Associate, Regional Environments Division, Earth Sciences Laboratory.  相似文献   

7.
Models of the wave boundary layer   总被引:2,自引:1,他引:1  
A general approach to model the structure of the wave boundary layer, based on the nonlinear Reynolds equations in a curvilinear system of coordinates, is described. Both spectral and numerical grid models are used. The energetic interactions between wind and wave in terms of Miles' parameter are studied. For waves outrunning or running against the wind, the range of the inverse flux of energy is found. For waves running slower than the wind, quadratic growth of is established. Vertical profiles of the wave momentum flux for different fetches are given. Following P. Janssen, a one-dimensional analytical model of the wave boundary layer is suggested. The effect of waves on the drag coefficient is analyzed.  相似文献   

8.
Grid transformation for incorporating the Arctic in a global ocean model   总被引:2,自引:0,他引:2  
A grid transformation is described which isolates the Arctic and North Atlantic, rotates the spherical grid to pass an equator up the Atlantic through the north pole and remaps the Coriolis parameter. Boundary condition information is exchanged along the equatorial Atlantic so that the Arctic-Atlantic model is dynamically coupled to a model of the rest of the global ocean (which remains on the geographic spherical grid). The transform produces a more regular grid over the Arctic and eliminates the need for filtering or special treatment at the pole. The transform has been implemented in the GFDL Modular Ocean Model. After testing with idealized geometry, a 300 y global integration is compared to an integration using the geographic spherical grid and Fourier filtering. Results are similar, with differences in the Arctic and western North Atlantic regions leading to smaller air-sea heat flux near the Gulf Stream separation latitude for the transform case. Use of the transform also leads to a reduction in computation time.  相似文献   

9.
Summary Following a few historical remarks, approximations used in formulating the dynamics of limited-area and variable resolution atmospheric forecasting models are reviewed. Particular attention is given to current efforts to relax or remove the hydrostatic approximation.Turning to numerical methods used in discretizing the equations, an attempt is made to record recent work and to clarify the motivation for the various approaches being followed by different modeling centers. Topics commented upon include: semi-Lagrangian methods, numerical formulation of nonhydrostatic models, resolution, the eta (step-mountain) vs sigma or isentropic/sigma vertical coordinate, choice of the vertical grid, numerics of the propagation of gravity waves, and the box-average vs pointsample treatment of predicted variables.It is finally pointed out that the extraordinary diversity of roads being taken shows that a lot remains to be discovered as to what possible rewards may be found in exploring one or the other of the principles underlying the methods being developed.This is a revised and updated text of an invited lecture given within the One-Day Intensive Course of the International Workshop on Limited-Area and Variable Resolution Models, Beijing, China, 23–27 October 1995.  相似文献   

10.
Summary ¶This study presents a numerical simulation of the bora wind as it occurs in form of a severe wind blowing down coastal mountains and over the Adriatic Sea. A typical cyclonic bora event, occurring during the period January 3–6, 1995, is simulated using a nested limited area model. An integration, with horizontal resolution of about 14km, and a nested one, with higher resolution, about 5.5km, are presented. The 1997 version of the Eta Model is used for both the lower resolution and the higher resolution runs. Numerous details of the simulation are found to be in good agreement with the understanding as well as the observational knowledge of the bora, thus supporting confidence in the realism of the results. In particular, features of the simulated flow are seen strongly indicative of some basic characteristics of the hydraulic model of the phenomenon, such as the mountain wave breaking and the upstream flow acceleration. Moreover, the increase in horizontal resolution, in combination with an improvement of the coastal SST information, led to a still improved realism of the low-level wind representation over the Adriatic Sea.Received December 31, 2001; revised March 25, 2002; accepted July 19, 2002 Published online: February 20, 2003  相似文献   

11.
Summary ¶In order to better understand land-atmosphere interactions and increase the predictability of climate models, it is important to investigate the role of forest representation in climate modeling. Corresponding to the big-leaf model commonly employed in land surface schemes to represent the effects of a forest, a so called big-tree model, which uses multi-layer vegetation to represent the vertical canopy heterogeneity, was introduced and incorporated into the National Center for Atmospheric Research (NCAR) regional climate model RegCM2, to make the vegetation model more physically based. Using this augmented RegCM2 and station data for China during 1991 Meiyu season, we performed 10 experiments to investigate the effects of the application of the big-tree model on the summer monsoon climate.With the big-tree model incorporated into the regional climate model, some climate characteristics, e.g. the 3-month-mean surface temperature, circulation, and precipitation, are significantly and systematically changed over the model domain, and the change of the characteristics differs depending on the area. Due to the better representation of the shading effect in the big-tree model, the temperature of the lower layer atmosphere above the plant canopy is increased, which further influences the 850hPa temperature. In addition, there are significant decreases in the mean latent heat fluxes (within 20–30W/m2) in the three areas of the model domain.The application of the big-tree model influences not only the simulated climate of the forested area, but also that of the whole model domain, and its impact is greater on the lower atmosphere than on the upper atmosphere. The simulated rainfall and surface temperature deviate from the originally simulated result and are (or seem to be) closer to the observations, which implies that an appropriate representation of the big-tree model may improve the simulation of the summer monsoon climate.We also find that the simulated climate is sensitive to some big-tree parameter values and schemes, such as the shape, height, zero-plane displacement height and mixing-length scheme. The simulated local/grid differences may be very large although the simulated areal-average differences may be much lower. The area-average differences in the monthly-mean surface temperature and heat fluxes can amount to 0.5°C and 4W/m2, respectively, which correspond to maximum local/grid differences of 3.0°C and 40W/m2 respectively. It seems that the simulated climate is most sensitive to the parameter of the zero-plane displacement among the parameters studied.  相似文献   

12.
Zusammenfassung Es werden numerische Integrationen der dreidimensionalen Fickschen Diffusionsgleichung mit höhenabhängigen Diffusionskoeffizienten und Windgeschwindigkeit für den stationären Fall und eine kontinuierlich emittierende Punktquelle durchgeführt. Für die drei typischen Ausbreitungsverhältnisse Starke Durchmischung, Bodeninversion und Inversion über der Quelle, charakterisiert durch die Diffusionskoeffizienten und die Windgeschwindigkeit, werden die Einflüsse unterschiedlicher Quellhöhe, Sinkgeschwindigkeit und Ablagerungsgeschwindigkeit studiert.
Summary Numerical integrations of the threedimensional Fickean diffusion equation with height dependent diffusion coefficients and wind velocity are performed in the stationary case with a continuous point source. For the three typical cases strong mixing, surface inversion and inversion above the source characterized by the diffusion coefficients and wind velocity, the effects of source height, sinking velocity and deposition velocity are discussed.

Résumé Les auteurs ont procédé à l'intégration numérique de l'équation à trois dimensions de la diffusion, équation établie par Fick. Ils ont, pour cela, utilisé des coefficients de diffusion variant avec l'altitude et la vitesse du vent et distingué l'état stationnaire et le cas d'une source d'émission ponctuelle et continue. Ils étudient en outre les influences de hauteurs différentes de la source, de la rapidité de subsidence et de la vitesse de sédimentation. Ils ont tenu compte pour cela des trois conditions typiques de diffusion mélange très accentué, inversion au sol et inversion au-dessus de la source.


Mit 7 Textabbildungen  相似文献   

13.
Periodicity of annual precipitation in different climate regions of Croatia   总被引:1,自引:1,他引:0  
Summary The periodicity of a 100-year series of annual precipitation over Croatia has been studied by means of power spectrum analysis at 3 stations representing the different climatic regions of Croatia. The annual precipitation variance spectra in the continental lowland (Osijek) and at the north East Adriatic coast (Crikvenica) can be fitted by Markov white noise continuum, but in the transitional region between the Dinaric Alps and the Pannonian lowland (Zagreb-Gri) a non-white noise continuum is necessary. Quasi-periodic oscillations appear in two spectra ranges: short (2.2 and 4.7 years) and medium (25.0 and 33.3 years). These results are compared with those of other authors for other parts of the Europe.With 2 Figures  相似文献   

14.
Summary Mechanisms associated with Alpine lee cyclogenesis during the early phase of their generation are investigated using a variational quasigeostrophic filter technique. It was possible to extract the quasigeostrophic signal from the available analyzed real data set.The results presented here are for the 11–12 March 1982, an example of so-called orographically induced lee cyclogenesis. Non-quasigeostrophic fields, calculated as a difference between observations and the quasigeostrophic fields, show significant magnitudes indicating the possible importance of non-quasigeostrophic processes. A dipole structure in the residual geopotential field was observed, similar to the results of numerical model experiments. Also, a strong upper-level non-quasigeostrophic divergence was found in the Alpine region 24 hours prior to lee cyclogenesis, lasting for 6–12 hours. On the other hand, quasigeostrophic results indicate only a local effect of mountain slopes, suggesting possibly a dominant role of the low-level blocking. A hypothetical scenario of Alpine lee cyclogenesis is proposed, based on results obtained here.With 14 Figures  相似文献   

15.
This study discusses the results of comprehensive time-dependent, three-dimensional numerical modelling of the circulation in the middle atmosphere obtained with the GFDL SKYHI troposphere-stratosphere-mesosphere general circulation model (GCM). The climate in a long control simulation with an intermediate resolution version (3° in horizontal) is briefly reviewed. While many aspects of the simulation are quite realistic, the focus in this study is on remaining first-order problems with the modelled middle atmospheric general circulation, notably the very cold high latitude temperatures in the Southern Hemisphere (SH) winter/spring, and the virtual absence of a quasi-biennial oscillation (QBO) in the tropical stratosphere. These problems are shared by other extant GCMs. It was noted that the SH cold pole problem is somewhat ameliorated with increasing horizontal resolution in the model. This suggests that improved resolution increases the vertical momentum fluxes from the explicitly resolved gravity waves in the model, a point confirmed by detailed analysis of the spectrum of vertical eddy momentum flux in the winter SH extratropics. This result inspired a series of experiments with the 3° SKYHI model modified by adding a prescribed zonally-symmetric zonal drag on the SH winter westerlies. The form of the imposed momentum source was based on the simple assumption that the mean flow drag produced by unresolved waves has a spatial distribution similar to that of the Eliassen-Palm flux divergence associated with explicitly resolved gravity waves. It was found that an appropriately-chosen drag confined to the top six model levels (above 0.35 mb) can lead to quite realistic simulations of the SH winter flow (including even the stationary wave fields) through August, but that problems still remain in the late-winter/springtime simulation. While the imposed momentum source was largely confined to the extratropics, it produced considerable improvement in the simulation of the equatorial semiannual oscillation, with both the easterly and westerly phases being somewhat more intense than in the control simulation. A separate experiment was conducted in which the SKYHI model was simplified so that it had no topography and so that the seasonal cycle was frozen in perpetual equinox conditions. These changes result in a model that has much reduced interhemispheric asymmetry. This model spontaneously produces a long period mean flow oscillation of considerable amplitude in the tropical upper stratopause. The implication of this result for the general issue of obtaining a QBO in comprehensive GCMs is discussed.  相似文献   

16.
Summary Most finite-difference numerical weather prediction models employ vertical discretizations that are staggered, and are low-order (usually second-order) approximations for the important terms such as the derivation of the geopotential from the hydrostatic equation, and the calculation of the vertically integrated divergence. In a sigma-coordinate model the latter is used for computing both the surface pressure change and the vertical velocity. All of the above-mentioned variables can diminish the accuracy of the forecast if they are not calculated accurately, and can have an impact on related quantities such as precipitation.In this study various discretization schemes in the vertical are compared both in theory and in practice. Four different vertical grids are tested: one unstaggered and three staggered (including the widely-used Lorenz grid). The comparison is carried out by assessing the accuracy of the grids using vertical numerics that range from second-order up to sixth-order.The theoretical part of the study examines how faithfully each vertical grid reproduces the vertical modes of the governing equations linearized with a basic state atmosphere. The performance of the grids is evaluated for 2nd, 4th and 6th-order numerical schemes based on Lagrange polynomials, and for a 6th-ordercompact scheme.Our interpretation of the results of the theoretical study is as follows. The most important result is that the order of accuracy employed in the numerics seems to be more significant than the choice of vertical grid. There are differences between the grids at second-order, but these differences effectively vanish as the order of accuracy increases. The sixth-order schemes all produce very accurate results with the grids performing equally well, and with the compact scheme significantly outperforming the Lagrange scheme. A second major result is that for the number of levels typically used in current operational forecast models, second-order schemes (which are used almost universally) all appear to be relatively poor, for other than the lowest modes.The theoretical claims were confirmed in practice using a large number (100) of forecasts with the Australian Bureau of Meteorology Research Centre's operational model. By comparing test model forecasts using the four grids and the different orders of numerics with very high resolution control model forecasts, the results of the theoretical study seem to be corroborated.With 8 Figures  相似文献   

17.
Influence of heterogeneous land surfaces on surface energy and mass fluxes   总被引:1,自引:0,他引:1  
Summary Land-surface heterogeneity affects surface energy fluxes. The magnitudes of selected land-surface influences are quantified by comparing observations with model simulations of the FIFE (First ISLSCP Field Experiment) domain. Several plausible heterogeneous and homogeneous initial and boundary conditions are examined, although soilmoisture variability is emphasized. It turns out that simple spatial averages of surface variation produced biased flux values. Simulated maximum latent-heat fluxes were approximately 30 to 40 W m–2 higher, and air temperatures 0.4 °C lower (at noon), when computations were initialized with spatially averaged soil-moisture and leaf-area-index fields. The planetary boundary layer (PBL) height and turbulent exchanges were lower as well. It additionally was observed that (largely due to the nonlinear relationship between initial soil-moisture availability and the evapotranspiration rate), real latent-heat flux can be substantially less than simulated latent-heat flux using models initialized with spatially averaged soil-moisture fields. Differences between real and simulated fluxes also vary with the resolution at which real soil-moisture heterogeneity is discretized.With 8 Figures  相似文献   

18.
A numerical study of stably stratified flow over a three-dimensional hill is presented. Large-eddy simulation is used here to examine in detail the laboratory experimental flows described in the landmark work of Hunt and Snyder about stratified flow over a hill. The flow is linearly stratified and U/Nh is varied from 0.2 to 1.0. Here N and U are the buoyancy frequency and freestream velocity respectively, and h is the height of the hill. The Reynolds number based on the hill height is varied from 365 to 2968. The characteristic flow patterns at various values of U/Nh have been obtained and they are in good agreement with earlier theoretical and experimental results. It is shown that the flow field cannot be predicted by Drazin's theory when recirculation exists at the leeside of the hill even at UNh 1. The wake structure agrees well with a two-dimensional wake assumption when U/Nh 1 but lee waves start to influence the wake structure as U/Nh increases. The dividing-streamline heights obtained in the simulation are in accordance with experimental results and Sheppard's formula. The energy loss along the dividing streamline due to friction/turbulence approximately offsets the energy gained from pressure field. When lee waves are present, linear theory always underestimates the amplitude and overestimates the wavelength of three-dimensional lee waves. The simulated variations of drag coefficients with the parameterK (=ND/ U) are qualitatively consistent with experimental data and linear theory. Here D is the depth of the tank.  相似文献   

19.
Summary Hybrid modeling entails the combination of a numerical weather prediction model and a symbolic model. The latter uses symbolic objects, their characterizing attributes and sets of behavioral constrains which prescribe changes in the states of these objects as functions of time, space, and other imposed quantitative or heuristic conditions. Integration of these two modeling components for an on-line, real-time, operational system is feasible only if both the numerical and the symbolic model can be executed in a distributed mode, i.e. at a user's location rather than in a central weather service office. This condition entails the design of a numerical model that can run on relatively inexpensive desktop workstations or high-end PCs. Given such a capability, the output from the numerical model can be used to satisfy a number of behavioral constraints of objects (such as thunderstorm, blizzard, etc.), defined in the symbolic model. These constraints can be embedded invisibly as functions of time and pixel location on the computer screen, to be called upon as soon as the respective object is activated, e.g. by placing an icon on the screen.To make such a hybrid weather prediction model responsive to details in topography, it will have to be able to interface with a geographic information system (GIS) database. Since such databases can be very voluminous, management procedures for indexing and rapid information retrieval have to be instituted. The approach discussed here involves restructuring of given GIS data into B+ trees.The hybrid prediction model whose design is described in this paper, executes very quickly on a PC (e.g. a 33 megahertz Intel 80486 chip based machine). It allows assimilation of locally generated observational data to improve forecast quality, and can respond to queries of a highly specialized nature in support of tactical decisions within the time frame between nowcasting (3 hours) and 24 hours.With 6 Figures  相似文献   

20.
Meteorological measurements taken at the Näsudden wind turbine site during slightly unstable conditions have been analyzed. The height of the convective boundary layer (CBL) was rather low, varying between 60 and 300 m. Turbulence statistics near the ground followed Monin-Obukhov similarity, whereas the remaining part of the boundary layer can be regarded as a near neutral upper layer. In 55% of the runs, horizontal roll vortices were found. Those were the most unstable runs, with -z i/L > 5. Spectra and co-spectra are used to identify the structures. Three roll indicators were identified: (i) a low frequency peak in the spectrum of the lateral component at low level; (ii) a corresponding increase in the vertical component at mid-CBL; (iii) a positive covariance {ovvw} together with positive wind shear in the lateral direction (V/z) in the CBL. By applying these indicators, it is possible to show that horizontal roll circulations are likely to be a common phenomenon over the Baltic during late summer and early winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号