首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Results of a numerical modeling study of quartz dissolution and precipitation in a sub-seafloor hydrothermal system have been used to predict where in the system quartz could be deposited and potentially trap fluid inclusions. The spatial distribution of zones of quartz dissolution and precipitation is complex, owing to the fact that quartz solubility depends on many inter-related factors, including temperature, fluid salinity and fluid immiscibility, and is further complicated by the fact that quartz exhibits both prograde and retrograde solubility behavior, depending on the fluid temperature and salinity. Using the PVTX properties of H2O-NaCl, the petrographic and microthermometric properties of fluid inclusions trapped at various locations within the hydrothermal system have been predicted. Vapor-rich inclusions are trapped as a result of the retrograde temperature-dependence of quartz solubility as the convecting fluid is heated in the vicinity of the magmatic heat source. Coexisting liquid-rich and vapor-rich inclusions are also trapped in this region when quartz precipitates as a result of fluid immiscibility that lowers the overall bulk quartz solubility in the system. Fluid inclusions trapped in the shallow subsurface near the seafloor vents and in the underlying stockwork are liquid-rich with homogenization temperatures of 200?C400°C and salinities close to that of seawater. Volcanogenic massive sulfide (VMS) deposits represent the uplifted and partially eroded remnants of fossil submarine hydrothermal systems, and the relationship between fluid-inclusion properties and location within the hydrothermal system described here can be used in exploration for VMS deposits to infer the direction towards potential massive sulfide ore.  相似文献   

2.
During an experimental investigation of the metamorphism of siliceous dolomites the equilibrium data of the heterogeneous bivariant reaction 1 $$3{\text{ dolomite + 4 quartz + 1 H}}_{\text{2}} O \rightleftharpoons + 3 calcite + 3 CO_2 $$ were determined for the total fluid pressures of 1,000, 3,000 and 5,000 bars. The equilibrium conditions were found by experiments in which dolomite, quartz and water react to form talc, calcite and CO2, as well as by experiments with reversible reaction direction. Results are shown on the temperature- \(X_{CO_2 } \) -diagram of Fig. 3. The temperature of formation of talc and calcite depends to a considerable extent on the composition of the CO2-H2O-gas phase; this can be read straight off the isobaric (P f =const.) equilibrium curves in Fig. 3. In addition a strong dependence of the equilibrium temperature on the total pressure P f was established (see Fig. 5). At a total gas pressure of 1,000 bars dolomite and quartz can react, according to the composition of the CO2-H2O-gas phase, to talc and calcite over the whole of the temperature range between about 350° and 490° C. This indicates that at low pressures the formation of talc and calcite takes place in the field of the albite-epidote-hornfels facies. At a pressure of 3,000 bars dolomite and quartz are stable up to about 550° C if the fluid phase is rich in carbon dioxide and correspondingly poor in water. Thus, this paragenesis can occur up to the stability field of staurolite [see annotation (5)] if the partial pressure of CO2 is large. At the higher total gas pressure of 5,000 bars dolomite and quartz react even at medium CO2-concentrations only at about 580° C to give talc and calcite. Therefore it is expected that in regional metamorphism at about 5,000 bars pressure or more the paragenesis dolomite plus quartz exists up to and within the stability field of staurolite and reacts only here to form talc and calcite after reaction (1) or tremolite and calcite after the following reaction (2)1: $$5 dolomite + 8 quartz + 1 H_2 O \rightleftharpoons 1 tremolite + 3 calcite + 7 CO_2 $$ . The exact physico-chemical conditions under which dolomite, quartz and water react on the one hand to form talc, calcite and CO2, and on the other hand to form tremolite, calcite and carbon dioxide, will be discussed later when our experimental investigations on the formation of tremolite are completed. First results were already published in a short note by Metz, Puhan and Winkler (1968).  相似文献   

3.
《Applied Geochemistry》1998,13(7):815-824
Various sources for hydrothermal CH4 have been proposed over the years. While C isotope studies have narrowed the possibilities, enough higher hydrocarbon gas data now exist both to supplement the isotopic data and to permit additional deductions regarding origins. Comparison of typical C1–C6 data for gases of various origins (from sedimentary and crystalline rocks, and hydrothermal systems) reveals certain characteristics. Apart from isotopic differences, hydrothermal hydrocarbons differ from sedimentary hydrocarbons mainly in possessing tendencies towards a relative excess of CH4, higher normal/iso ratios for butane and pentane, and relatively high amounts of C6 gases. Despite these differences, consideration of the evidence indicates that hydrothermal hydrocarbon gases in most cases originate like sedimentary basin gases by thermal degradation of organic matter in the relatively shallow subsurface. The principal characteristic of these hydrothermal gases, “excess” CH4, appears to have a geothermometric function. The following empirical relationship has been derived: t°C=57.8 log(CH4/C2H6)+96.8, which fits moderately well a range of geothermal fields worldwide. This gas geothermometer may be particularly applicable during geothermal exploration in areas where there is little direct knowledge of subsurface conditions.  相似文献   

4.
The influence of NaCl, CaCl2, and dissolved minerals on the oxygen isotope fractionation in mineral-water systems at high pressure and high temperature was studied experimentally. The salt effects of NaCl (up to 37 molal) and 5-molal CaCl2 on the oxygen isotope fractionation between quartz and water and between calcite and water were measured at 5 and 15 kbar at temperatures from 300 to 750°C. CaCl2 has a larger influence than NaCl on the isotopic fractionation between quartz and water. Although NaCl systematically changes the isotopic fractionation between quartz and water, it has no influence on the isotopic fractionation between calcite and water. This difference in the apparent oxygen isotope salt effects of NaCl must relate to the use of different minerals as reference phases. The term oxygen isotope salt effect is expanded here to encompass the effects of dissolved minerals on the fractionations between minerals and aqueous fluids. The oxygen isotope salt effects of dissolved quartz, calcite, and phlogopite at 15 kbar and 750°C were measured in the three-phase systems quartz-calcite-water and phlogopite-calcite-water. Under these conditions, the oxygen isotope salt effects of the three dissolved minerals range from ∼0.7 to 2.1‰. In both three-phase hydrothermal systems, the equilibrium fractionation factors between the pairs of minerals are the same as those obtained by anhydrous direct exchange between each pair of minerals, proving that the use of carbonate as exchange medium provides correct isotopic fractionations for a mineral pair.When the oxygen isotope salt effects of two minerals are different, the use of water as an indirect exchange medium will give erroneous fractionations between the two minerals. The isotope salt effect of a dissolved mineral is also the main reason for the observation that the experimentally calibrated oxygen isotope fractionations between a mineral and water are systematically 1.5 to 2‰ more positive than the results of theoretical calculations. Dissolved minerals greatly affect the isotopic fractionation in mineral-water systems at high pressure and high temperature. If the presence of a solute changes the solubility of a mineral, the real oxygen isotope salt effect of the solute at high pressure and high temperature cannot be correctly derived by using the mineral as reference phase.  相似文献   

5.
In the geothermal system of Los Humeros, hydrothermal fluids are low in sulfur (7.7 mM/kg) and are slightly alkaline (pH of ca. 8.5) at depth. Nevertheless, the aqueous sulfate-sulfide species are in isotopic and chemical equilibrium. The “freezing” of these equilibria at 290 °C is tentatively related to boiling of water at this temperature. In the LH1 borehole δ34S values for pyrite (ca. 0‰) and present aqueous SH2 (ca. ?12‰) are very different. Measured δ34S value of the bulk aqueous sulfur is close to ?11‰ These data suggest a possible magmatic origin of pyrite (ca. 0‰) and, in contrast, a sedimentary source for the present hydrothermal sulfur. The CO2/CH4 molar ratio of 58 determined in the fluid from this well is much lower than the ratio calculated for 300° and 350 °C. This divergence is eliminated when the equilibrium constant is reestimated (log KG=?7.9 at 300 °C). Based on fluid inclusion study the boiling of hydrothermal fluid before the geothermal area was opened by drilling is proven in neoformed minerals sampled at different levels of the volcanic sequence. In this way, the pervasive oxidation of the primary reduced paragenesis (pyrite + pyrrhotite + magnetite) can be explained. The boiling of the ascending water does induce a H2 loss from the liquid and creates more oxidizing conditions in the ascending liquid. Moreover, the continuous vaporization of liquid water induces its gradual cooling and increases the ascension speed. Furthermore, a persistence of chemical equilibrium between primary paragenesis and the hydrothermal fluid at different levels would require a very fast and unrealistic adjustment of the fO2-fH2 parameters to the local equilibrium conditions. This expected disequilibrium induces the afore mentioned oxidation processes under steady-state conditions.  相似文献   

6.
Hydrothermal experiments were conducted to evaluate the kinetics of H2(aq) oxidation in the homogeneous H2-O2-H2O system at conditions reflecting subsurface/near-seafloor hydrothermal environments (55-250 °C and 242-497 bar). The kinetics of the water-forming reaction that controls the fundamental equilibrium between dissolved H2(aq) and O2(aq), are expected to impose significant constraints on the redox gradients that develop when mixing occurs between oxygenated seawater and high-temperature anoxic vent fluid at near-seafloor conditions. Experimental data indicate that, indeed, the kinetics of H2(aq)-O2(aq) equilibrium become slower with decreasing temperature, allowing excess H2(aq) to remain in solution. Sluggish reaction rates of H2(aq) oxidation suggest that active microbial populations in near-seafloor and subsurface environments could potentially utilize both H2(aq) and O2(aq), even at temperatures lower than 40 °C due to H2(aq) persistence in the seawater/vent fluid mixtures. For these H2-O2 disequilibrium conditions, redox gradients along the seawater/hydrothermal fluid mixing interface are not sharp and microbially-mediated H2(aq) oxidation coupled with a lack of other electron acceptors (e.g. nitrate) could provide an important energy source available at low-temperature diffuse flow vent sites.More importantly, when H2(aq)-O2(aq) disequilibrium conditions apply, formation of metastable hydrogen peroxide is observed. The yield of H2O2(aq) synthesis appears to be enhanced under conditions of elevated H2(aq)/O2(aq) molar ratios that correspond to abundant H2(aq) concentrations. Formation of metastable H2O2 is expected to affect the distribution of dissolved organic carbon (DOC) owing to the existence of an additional strong oxidizing agent. Oxidation of magnetite and/or Fe++ by hydrogen peroxide could also induce formation of metastable hydroxyl radicals (•OH) through Fenton-type reactions, further broadening the implications of hydrogen peroxide in hydrothermal environments.  相似文献   

7.
The Pongkor gold–silver deposit is the largest low‐sulfidation epithermal precious metal deposit in Indonesia, and is of Pliocene age. The deposit consists of nine major subparallel quartz–adularia–carbonate veins with very low sulfide content. Vein infill records five paragenetic sequences, dominated by calcite in the early stage and quartz in the later stage of the hydrothermal evolution. Fluid inclusions in hydrothermal calcite and quartz of all stages indicate a temperature ranging from 180 to 220°C and a meteoric water origin (very low salinity close to 0 wt% NaCl equivalent). Carbon isotope data on calcite display a narrow range from ?6.5 to ?3.0‰δ13C. The oxygen isotope values have a wider range of +4.6 to +10.1‰δ18O. The broadly positive correlation of the δ13C versus δ18O plot suggests that the carbon species, which equilibrated during the formation of calcite, is dominated by H2CO3 not far from equilibrium with HCO3?. The abundance of rare earth and yttrium (REY) in carbonate samples is very low (>REY mostly <2 ppm). However, there is always a positive Eu anomaly, which indicates a deeper fluid reservoir at >250°C.  相似文献   

8.
An increasing number of occurrences of margarite have been reported in the last years. However, previous experimental investigations in the system CaO-Al2O3-SiO2-H2O are limited to the synthesis of margarite and to the upper stability limit according to the reaction (1) 1 margarite?1 anorthite +1 corundum +1 H2O (Chatterjee, 1971; Velde, 1971). Since margarite often occurs together with quartz, the upper stability limit of margarite in the presence of quartz is of special interest. Therefore, the reactions (5) 1 margarite +1 quartz ?1anorthite +1 kyanite/andalusite +1 H2O and (6) 4 margarite+3 quartz ? 2 zoisite+5 kyanite+3 H2O were investigated experimentally using mixtures of natural margarite (from Chester, Mass., USA), quartz, kyanite, andalusite, zoisite, and synthetic anorthite. The indicated equilibrium temperatures at water pressures equal to total pressure are: 515± 25°C at 4 kb, 545 ±15°C at 5 kb, 590±10°C at 7 kb, and 650±10°C at 9 kb for reaction (5), and 651±11°C at 10 kb, 648 ± 8°C at 12.5kb, and 643±13°C at 15kb for reaction (6), respectively. Besides this, additional brackets for equilibrium temperatures were determined for the above cited reaction (1): 520±10°C at 3 kb, 580±10°C at 5 kb, and 640± 20°C at 7 kb. On the basis of these experimentally determined reactions (1), (5), and (6) and of the reactions (3) 2 zoisite +1 kyanite? 4 anorthite +1 corundum +1 H2O (7) 2 zoisite +1 kyanite +1 quartz ? 4 anorthite +1 H2O and (10) 1 pyrophyllite ? 1 andalusite/kyanite+3 quartz+1 H2O for which experimental or, in the case of reaction (3), calculated data were already available, a pressure-temperature diagram with 3 invariant points and 11 univariant reactions was developed using the method of Schreinemakers. This diagram, summarizing both experimental and phase relation studies, allows conclusions about the conditions under which margarite has been formed in nature. Margarite is limited to low grade metamorphism at water pressures up to approximately 3.5 kb; in the presence of quartz, margarite is even limited to low grade metamorphism at water pressures up to 5.5 kb. Only at water pressures higher than the values stated before margarite, and margarite+quartz, respectively, can occur in medium grade metamorphism (as defined by Winkler, 1970 and 1973). For the combined occurrence of margarite+quartz and staurolite as reported by Harder (1956) and Frey (personal communication, 1973) it may be estimated that water pressure has been greater than approximately 5.5 kb, wheras temperature has been in the range from 550 to 650°C. Furthermore, the present study shows that the assemblage zoisite+kyanite (+ H2O) is an indicator of both pressure [P H 2 O> approximately 9kb]and temperature [T> approximately 640 to 650° Cat water Pressures up to 15 kb].  相似文献   

9.
Well ordered tridymites containing atmost 0.016% Na (0.004% Na) were prepared at 1400° C from Na2WO4-(K2WO4-) fluxes using high purity amorphous silica as starting material. No further reduction of these Na-contents was attainable by soxhlet extraction. These tridymites were treated hydrothermally at temperatures between 815 and 950° C and 200 bars H2O. The products obtained were investigated optically as well as by powder X-ray methods and were analyzed for Na-contents: the hydrothermal treatment resulted either in recrystallization of tridymite or transformation into quartz mostly depending on Na-contents. Na-contents below about 0.015% tend to favour recrystallization of tridymite within the quartz field (<870° C), Na-contents above about 0.03% tend to favour formation of quartz within the tridymite field (>870° C). This may be due to influences of Na-traces either on the kinetics or on the equilibrium temperature of tridymite-quartz transformation.  相似文献   

10.
在滇西南澜沧江构造带东侧、扬子板块西缘中元古代团梁子岩组含有大量的平行于区域面理(S2)的构造热液石英脉,利用LA-ICP-MS对3件石英脉和1件绿片岩中的锆石进行~(206)U/~(238)Pb测年,获得3组明显的组合年龄:395~461Ma、240~260Ma和222~228Ma,大部分集中于222~228Ma。对比研究表明,区域上2期变质变形(M_1D_1、M_2D_2)与获得的锆石年龄有较好的对应性,早期的变质变形(M_1D_1)形成于早古生代(395~461Ma)原特提斯洋盆向东俯冲阶段;晚期的2期变质变形(M_(2a)D_(2a),M_(2b)D_(2b))发生于晚古生代—中生代早期(240~260Ma)古特提斯洋盆向东俯冲阶段和晚三叠世早期(222~228Ma)古特提斯洋盆闭合阶段。晚三叠世早期变质变形(M_(2b)D_(2b))构造热液发生在临沧花岗岩侵位和弧陆碰撞型忙怀组火山岩(229~235Ma)之后,早于小定西组/芒汇河组拉伸期火山岩(210~222Ma),是古特提斯洋与扬子陆块碰撞后的应力松弛阶段俯冲岩片快速折返的证据,同时也反映了古特提斯洋盆在晚三叠世早期之前已经关闭。  相似文献   

11.
Hydrothermal vent fluids from Middle Valley, a sediment-covered vent field located on the northern Juan de Fuca Ridge, were sampled in July, 2000. Eight different vents with exit temperatures of 186-281 °C were sampled from two areas of venting: the Dead Dog and ODP Mound fields. Fluids from the Dead Dog field are characterized by higher concentrations of ΣNH3 and organic compounds (C1-C4 alkanes, ethene, propene, benzene and toluene) compared with fluids from the ODP Mound field. The ODP Mound fluids, however, are characterized by higher C1/(C2 + C3) and benzene:toluene ratios than those from the Dead Dog field. The aqueous organic compounds in these fluids have been derived from both bacterial processes (methanogenesis in low temperature regions during recharge) as well as from thermogenic processes in higher temperature portions of the subsurface reaction zone. As the sediments undergo hydrothermal alteration, carbon dioxide and hydrocarbons are released to solution as organic matter degrades via a stepwise oxidation process. Compositional and isotopic differences in the aqueous hydrocarbons indicate that maximum subsurface temperatures at the ODP Mound are greater than those at the Dead Dog field. Maximum subsurface temperatures were calculated assuming that thermodynamic equilibrium is attained between alkenes and alkanes, benzene and toluene, and carbon dioxide and methane. The calculated temperatures for alkene-alkane equilibrium are consistent with differences in the dissolved Cl concentrations in fluids from the two fields, and confirm that subsurface temperatures at the ODP Mound are hotter than those at the Dead Dog field. Temperatures calculated assuming benzene-toluene equilibrium and carbon dioxide-methane equilibrium are similar to observed exit temperatures, and do not record the hottest subsurface conditions. The difference in subsurface temperatures estimated using organic geochemical thermometers reflects subsurface cooling processes via mixing of a hot, low salinity vapor with a cooler, seawater salinity fluid. Because of the disparate temperature dependence of alkene-alkane and benzene-toluene equilibria, the mixed fluid records both the high and low temperature equilibrium conditions. These calculations indicate that vapor-rich fluids are presently being formed in the crust beneath the ODP Mound, yet do not reach the surface due to mixing with the lower temperature fluids.  相似文献   

12.
New experimental data are presented at stability conditions of paragenesis in the system K2O-CaO-Al2O3-SiO2-H2O. These results are used to estimate the pressure temperature conditions under which minute inclusions, mostly consisting of zoisite/clinozoisite and muscovite, have crystallized in calcic plagioclases from metatonalites and metadiorites (Hohe Tauern, Austria). In the pressure region 1.5–8 kb the following reactions were observed: zoisite+muscovite+quartz=anorthite+potash feldspar+water (1) grossularite+muscovite+quartz=anorthite+potash feldspar+water (2) zoisite+quartz=anorthite+grossularite+water (3) natural plagioclase with its inclusions (zoisite/clinozoisite and muscovite) (4) =more basic plagioclase without inclusions.In order to determine the curves of reaction (1), (2) and (3), runs were made in hydrothermal bombs using synthetic phases crystallized from gels as starting materials. The reaction curves (1), (2) and (3) intersect at an invariant point at 7.25±0.5 kb and 685±20° C. In runs to define the reaction (4), it could be demonstrated that the inclusion minerals zoisite/ clinozoisite and muscovite became instable at slightly lower temperatures than those occurring in reaction (1). These facts illustrate that the reaction curve (1), found in the pure system, gives possible information about the pressure temperature conditions during the formation of the inclusions.  相似文献   

13.
Silica occurs in abundance in a variety of hydrothermal samples from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound, 26°N Mid-Atlantic Ridge. The water content, trace element chemistry, and mineralogy of crystalline silica from 15 different samples have been examined by vibrational spectroscopy and probe microanalysis. The samples are from: shallow subsurface ferric iron oxyhydroxide silica deposits (n=4), a fragment of an active white smoker chimney (n=1), anhydrite bearing hydrothermal breccias (n=2), pyrite silica breccias (n=3), and silicified wall rock breccias (n=5). Length-fast chalcedony occurs in association with variable quantities of ferric iron oxyhydroxides in hydrothermal breccias from the mound flanks, within shallower subsurface chert samples, and within white smoker chimney walls. Samples from the anhydrite zone contain textures which are suggestive of an origin involving replacement of anhydrite. Samples taken from TAG 1 and 5 from below the anhydrite zone contain no chalcedony. Instead they contain subhedral quartz crystals which show oscillatory zoning in aluminium. Two types of crystalline silica namely, type A and type B quartz, are defined on the basis of the infrared spectra in the OH region from 3200 cm−1 to 3600 cm−1. The type A quartz occurs beneath the anhydrite zone at TAG 1 and 5. We propose a model that relates specific varieties of crystalline silica to different thermal and chemical environments within the mound interior. Length-fast chalcedony occurs in an outer low temperature envelope across the top and sides of the mound. The common association between length-fast chalcedony and ferric iron oxyhydroxides suggests that chalcedony crystallization is favoured where catalysis by ferric iron can occur. The apparent suppression of fibrous silica at the expense of single quartz crystals with increasing depth is attributed to differing growth rates and degrees of supersaturation of silica-bearing solutions with increasing temperature within the mound. The transition from type A to type B single crystal growth is interpreted to occur at temperatures approaching ˜360 °C due to decreasing solubility of aluminium in quartz, so that aluminium is rendered unavailable for type A valence compensation. Received: 10 September 1998 / Accepted: 6 July 1999  相似文献   

14.
The Iju Cu porphyry is located in the NW part of the Kerman Magmatic Copper Belt (KMCB). It is related to a ~ 9 Ma granodiorite porphyry intrusion, with three main stages of hydrothermal activity. The homogenization temperatures for the fluid inclusions are in the ranges of 200–494 °C, and their salinities vary from 4.0 to 42.8 wt% NaCl equiv., which are typical magmatic-hydrothermal fluids. The δ34S values of sulfides range from −0.4 to +3.2 ‰ (V-CDT), and the δ34S values of anhydrite samples range from +11.6 to +16.8 ‰. The δ34S values of sulfides show a narrow range, implying a homogeneous sulfur source. The oxygen isotopic composition of hydrothermal water in equilibrium with quartz samples ranges from +3.4 to +6.0 ‰ (V-SMOW) consistent with the hydrothermal fluids having a magmatic signature, but diluted with meteoric waters in the main mineralizing stage. The most important factors responsible for metal precipitation in the Iju porphyry deposit are fluid boiling, oxygen fugacity decrease and cooling followed by dilution with meteoric water. The primary fluids of the Iju Cu deposit are characterized by relatively high temperature and moderate salinity, and are CO2-rich, indicating a typical post-collisional porphyry system.  相似文献   

15.
The Na Son deposit is a small‐scale Pb–ZnPb–Zn–Ag deposit in northeast Vietnam and consists of biotite–chlorite schist, reddish altered rocks, quartz veins and syenite. The biotite–chlorite schist is intruded by syenite. Reddish altered rocks occur as an alteration halo between the biotite–allanite‐bearing quartz veins and the biotite–chlorite schist. Allanite occurs in the biotite–allanite‐bearing quartz veins and in the proximal reddish altered rocks. Rare earth element (REE) fluorocarbonate minerals occur along fractures or at rim of allanite crystals. The later horizontal aggregates of sulfide veins and veinlets cut the earlier reddish altered rocks. The earlier Pb–Zn veins consist of a large amount of galena and lesser amounts of sphalerite, pyrite and molybdenite. The later Cu veins cutting the Pb–Zn veins include chalcopyrite and lesser amounts of tetrahedrite and pyrite. The occurrences of two‐phase H2O–CO2 fluid inclusions in quartz from biotite–allanite‐bearing quartz veins and REE‐bearing fluorocarbonate minerals in allanite suggest the presence of CO2 and F in the hydrothermal fluid. The oxygen isotopic ratios of the reddish altered rocks, biotite–chlorite schist, and syenite range from +13.9 to +14.9 ‰, +11.5 to +13.3 ‰, and +10.1 to +11.6 ‰, respectively. Assuming an isotopic equilibrium between quartz (+14.6 to +15.8 ‰) and biotite (+8.6 ‰) in the biotite–allanite‐bearing quartz vein, formation temperature was estimated to be 400°C. At 400°C, δ18O values of the hydrothermal fluid in equilibrium with quartz and biotite range from +10.5 to +11.7 ‰. These δ18O values are consistent with fluid that is derived from metamorphism. Assuming an isotopic equilibrium between galena (+1.5 to +1.7 ‰) and chalcopyrite (+3.4 ‰), the formation temperature was estimated to be approximately 300°C. The formation temperature of the Na Son deposit decreased with the progress of mineralization. Based on the geological data, occurrence of REE‐bearing minerals and oxygen isotopic ratios, the REE mineralization is thought to result from interaction between biotite–chlorite schist and REE‐, CO2‐ and F‐bearing metamorphic fluid at 400°C under a rock‐dominant condition.  相似文献   

16.
At very low fluid/rock mass ratios the hydrothermal alteration process corresponds to isochemical recrystallisation of the primary rock. The resulting full equilibrium assemblage with the composition of an average crustal rock contains the phases albite, K-feldspar, K-mica, biotite, quartz and (depending on temperature) epidote, prehnite or one of the Ca-zeolites. Relative Na+, K+, Mg2+ and Ca2+—solution activities in such a rock-dominated alteration system are uniquely fixed and provide useful reference points with regard to the degree of attainment of full fluid/rock equilibrium. With increasing fluid/rock mass ratios the composition of now increasingly fluid-dominated alteration assemblages is determined by the interplay of three major processes: hydrogen metasomatism as a function of CO2 reactivity increasing with the horizontal distance from major fluid upflow zones and leading to the formation of Al-enriched alteration assemblages; potassium metasomatism accompanied by silicification in or close to major fluid upflow zones leading to potassic and phyllic alteration; sodium, magnesium, calcium metasomatism associated with descending and heating solutions leading to propylytic alteration of recharge zones. Two new parameters, reactivity and exchangeability, determining the effectiveness of fluid components with respect to hydrothermal alteration are introduced.  相似文献   

17.
The Sawayaerdun gold deposit, located in Wuqia County, Southwest Tianshan, China, occurs in Upper Silurian and Lower Devonian low‐grade metamorphic carbonaceous turbidites. The orebodies are controlled by a series of NE‐NNE‐trending, brittle–ductile shear zones. Twenty‐four gold mineralized zones have been recognized in the Sawayaerdun ore deposit. Among these, the up to 4‐km‐long and 200‐m wide No. IV mineralized zone is economically the most important. The average gold grade is 1–6 g/t. Gold reserves of the Sawayaerdun deposit have been identified at approximately 37 tonnes and an inferred resource of 123 tonnes. Hydrothermal alteration is characterized by silicification, pyritization, arsenopyritization, sericitization, carbonatization and chloritization. On the basis of field evidence and petrographic analysis, five stages of vein emplacement and hydrothermal mineralization can be distinguished: stage 1, early quartz stage, characterized by the occurrence of quartz veins; stage 2, arsenopyrite–pyrite–quartz stage, characterized by the formation of auriferous quartz veinlets and stockworks; stage 3, polymetallic sulfide quartz stage, characterized by the presence of auriferous polymetallic sulfide quartz veinlets and stockworks; stage 4, antimony–quartz stage, characterized by the formation of stibnite–jamesonite quartz veins; and stage 5, quartz–carbonate vein stage. Stages 2 and 3 represent the main gold mineralization, with stage 4 representing a major antimony mineralization episode in the Sawayaerdun deposit. Two types of fluid inclusion, namely H2O–NaCl and H2O–CO2–NaCl types, have been recognized in quartz and calcite. Aqueous inclusions show a wide range of homogenization temperatures from 125 to 340°C, and can be correlated with the mineralization stage during which the inclusions formed. Similarly, salinities and densities of these fluids range for each stage of mineralization from 2.57 to 22 equivalent wt% NaCl and 0.76 to 1.05 g/cm3, respectively. The ore‐forming fluids thus are representative of a medium‐ to low‐temperature, low‐ to medium‐salinity H2O–NaCl–CO2–CH4–N2 system. The δ34SCDT values of sulfides associated with mineralization fall into a narrow range of ?3.0 to +2.6‰ with a mean of +0.1‰. The δ13CPDB values of dolomite and siderite from the Sawayaerdun gold deposit range from ?5.4 to ?0.6‰, possibly reflecting derivation of the carbonate carbon from a mixed magmatic/sedimentary source. Changes in physico‐chemical conditions and composition of the hydrothermal fluids, water–rock exchange and immiscibility of hydrothermal fluids are inferred to have played important roles in the ore‐forming process of the Sawayaerdun gold–antimony deposit.  相似文献   

18.
Quartz–sillimanite segregations, quartz–albite lithologies (Ab95–98), and Kiruna‐type low‐Ti iron‐oxide deposits are associated with late‐ to post‐tectonic (c. 1055 Ma) leucogranites of Lyon Mountain Gneiss (LMG) in the Adirondack Mountains, New York State. Most recent interpretations of these controversial features, which are global in occurrence, favour hydrothermal origins in agreement with results presented here. Field relations document that quartz–sillimanite veins and nodules cut, and therefore post‐date, emplacement of host LMG leucogranites. Veins occur in oriented fracture networks, and aligned trains of nodules are interpreted as disrupted early veins. Late dykes of leucogranite cut veins and nodules demonstrating formation prior to terminal magmatism. Veins and nodules consist of sillimanite surrounded by quartz that commonly embays wall‐rock feldspar indicating leaching of Na and K from LMG feldspar by acidic hydrothermal fluids. Subsequent, and repeated, ductile flow disrupted earlier veins into nodular fragments but produced little grain shape fabric. Geochemical and petrographic studies of quartz–albite rock indicate that it formed through metasomatic replacement (albitization) of LMG microperthite by sodic hydrothermal fluids that resulted in diagnostic checkerboard albite. Low‐Ti iron‐oxide ores are commonly associated with the quartz–albite sub‐unit, and it is proposed that hydrothermal fluids related to albitization transported Fe as well. The regional extent of sodic alteration suggests large quantities of surface‐derived hydrothermal fluids. Fluid inclusion and oxygen isotope data are consistent with high temperature, regionally extensive fluids consisting primarily of evolved surface‐derived brines enriched in Na and Cl. Quartz–sillimanite veins and nodules, which are significantly more localised phenomena and require acidic fluids, were most likely formed from local magmatic fluids in the crystallizing carapaces of LMG plutons.  相似文献   

19.
The Bujinhei Pb–Zn deposit is located in the southern Great Xing'an Range metallogenic belt. It is a representative medium‐ to high‐temperature hydrothermal vein type deposit controlled by fractures, and orebodies hosted in the Permian Shoushangou Formation. The hydrothermal mineralization is classified into three stages: pyrite ± arsenopyrite–quartz (Stage 1), polymetallic sulfide–quartz (Stage 2), and polymetallic sulfide–calcite (Stage 3). Fluid inclusion petrography, laser Raman analyses and microthermometry indicate that the liquid‐rich aqueous inclusions (L) and vapor‐rich CO2 ± CH4–H2O inclusions (C) occur in the Stage 1 and as medium‐ to high‐ temperature and low‐ to medium‐salinity NaCl–H2O–CO2–CH4 hydrothermal fluids. The liquid‐rich (L) and rare vapor‐rich CO2 ± CH4–H2O inclusions (C) occur in the Stage 2 with medium‐temperature and low‐salinity NaCl–H2O ± CO2 ± CH4 hydrothermal fluids. The exclusively liquid‐rich (L) fluid inclusions are observed in the Stage 3, and the hydrothermal fluid belongs to medium‐temperature and low‐salinity NaCl–H2O hydrothermal fluids. The results of hydrogen and oxygen isotope analyses indicate that ore‐forming fluids were initially derived from the magmatic water and mixed with local meteoric water in the late stage (δ18OH2O‐SMOW = 6.0 to 2.2‰, δDSMOW = ?103 to ?134‰). The carbon isotope compositions (?18.4‰ to ?26.5‰) indicate that the carbon in the fluid was derived from the surrounding strata. The sulfur isotope compositions (5.7 to 15.2‰) indicate that the ore sulfur was also primarily derived from the strata. The ore vein No. 1 occurs in fractures and approximately parallel to the rhyolite porphyry; orebodies have a close spatial and temporal relationship with the rhyolite porphyry. The rhyolite porphyry yielded a crystallization age of 122.9  ± 2.4 Ma, indicating that the Bujinhei deposit may be related to the Early Cretaceous magmatic event. Geochemical analyses reveal that the Bujinhei rhyolite porphyry is high in K2O and peraluminous, and derived from an acidic liquid as a result of strong interaction with hydrothermal fluid during the late magmatic stage; it is similar to A2‐type granites, and formed in a backarc extensional environment. These results indicate that the Bujinhei Pb–Zn deposit was a vein type system that formed in Early Cretaceous and influenced by the Paleo‐Pacific tectonic system. Bujinhei deposit is a representative hydrothermal vein type deposit on the genetic types, and occurs on the western slope of the southern Great Xing'an Range. The ore‐forming fluids were medium‐ to high‐temperature and low‐to medium‐salinity NaCl–H2O–CO2–CH4 hydrothermal fluids, which became medium‐temperature and low‐salinity NaCl–H2O hydrothermal fluids in later stages, and came from magmatic water and mixed with meteoric water, whereas the ore‐forming materials were mainly derived from the surrounding strata. The LA–ICP–MS zircon U–Pb dating indicates that the Bujinhei deposit formed at the period of late Early Cretaceous, potentially in a backarc extensional environment influenced by the Paleo‐Pacific tectonic system.  相似文献   

20.
The phase K2Mg5Si12O30 was synthesized both hydrothermally and dry under a variety of pressures and temperatures, and its stability relations were determined. Under hydrothermal conditions it exhibits a lower stability limit lying at 595°C, 1 kb, and 650°C, 2 kb, due to its breakdown into the hydrous assemblage quartz+KMg2.5Si4O10(OH)2 (a mica phase). Its upper temperature stability under hydrothermal conditions is given by its incongruent melting to MgSiO3+liquid. Near 820° C at a fluid pressure of approximately 6.5 kb the two univariant curves for these breakdown reactions intersect thus limiting the stability field to lower fluid pressures. — Under anhydrous conditions K2Mg5Si12O30 becomes unstable at pressures between approximately 7 and 32.5 kb due to its incongruent melting to the assemblage MgSiO3+quartz (or coesite)+liquid; this melting curve has a pronounced negative slope. No subsolidus breakdown assemblage was encountered at 32.5 kb down to temperatures as low as 750°C. This behavior is probably due to the instability of other ternary compounds in the system K2O-MgO-SiO2 at high pressures and thus to the existence of very low-temperature eutectics involving only binary and unary solid phases plus liquid.It is likely that these stability relations provide a model for those of the natural minerals merrihueite and roedderite which contain Na and Fe+2 partly substituting for K and Mg and which were encountered in several meteorites. Therefore, the cosmic events leading to the formation of these minerals must have taken place at relatively low pressures and high temperatures, especially when water was present. The bulk compositions of these minerals appear to be incompatible with average chondritic matter under equilibrium conditions. Hence merrihueite and roedderite are not likely to be found in equilibrated chondrites which contain feldspars instead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号