首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO2 and – under certain circumstances – to spontaneous combustion. Coal fires occur in many countries world wide – however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N2O). They additionally contribute to the emission of green house relevant gasses such as CO2 and CH4 to the atmosphere.In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered.Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime. Thus, night-time analysis is the most suitable for thermal anomaly mapping of underground coal fires, although this is not always feasible. The heat of underground coal fires only progresses very slowly through conduction in the rock material. Anomalies of coal fires completely covered by solid unfractured bedrock are very weak and were only measured during the night. The thermal pattern of underground coal fires manifested on the surface during the daytime is thus the pattern of cracks and vents, which occur due to the volume loss underground and which support radiation and convective energy transport of hot gasses. Inside coal fire temperatures can hardly be measured and can only be recorded if the glowing coal is exposed through a wider crack in the overlaying bedrock. Direct coal fire temperatures measured ranged between 233 °C and 854 °C. The results presented can substantially support the planning of thermal mapping campaigns, analyses of coal fire thermal anomalies in remotely sensed data, and can provide initial and boundary conditions for coal fire related numerical modeling.In a second paper named “Thermal Characteristics of Coal Fires 2: results of measurements on simulated coal fires” [Zhang J., Kuenzer C., Tetzlaff A., Oettl D., Zhukov B., Wagner W., 2007. Thermal Characteristics of Coal Fires 2: Result of measurements on simulated coal fires. Accepted for publication at Journal of Applied Geophysics. doi:10.1016/j.jappgeo.2007.08.003] we report about thermal characteristics of simulated coal fires simulated under simplified conditions. The simulated set up allowed us to measure even more parameters under undisturbed conditions — especially inside fire temperatures. Furthermore we could demonstrate the differences between open surface coal fires and covered underground coal fires. Thermal signals of coal fires in near range thermal remotely sensed imagery from an observing tower and from an airplane are presented and discussed.  相似文献   

2.

本文利用红外热成像手段,对微小煤样内的甲烷吸附区进行了观察,并评估其吸附特征与在煤中的分布规律.研究表明煤中存在不同尺度与甲烷吸附能力的甲烷富集区,吸附/解吸甲烷时,甲烷富集区比邻近区域具有更明显的升温/降温现象.通过图像处理的方法对不同吸附压力条件下的红外热像图中的甲烷富集区进行提取,采用盒维数进行统计发现甲烷富集区符合分形规律.试验表明随着吸附压力升高,甲烷富集区的分形维数增大,分布初值减小.对两个不同煤田的煤层气富集区进行统计表明:从微米级到千米级尺度范围内,甲烷富集区分布具有分形特征,且分形维数均在1.5~2.00之间.

  相似文献   

3.
The way in which rocks and engineering materials heat‐up and dry‐out in the intertidal zone is of relevance to both weathering and ecology. These behaviours can be measured in the laboratory under controlled conditions designed to replicate those occurring in the field. Previous studies have demonstrated differences in thermal behaviours between rock types and through time as a result of soiling in terrestrial environments, but the influence of weathering and colonization on rock behaviours in the intertidal zone has not been previously assessed. We measured the warming and drying of blocks of rock (limestone and granite) and marine concrete during ‘low‐tide’ events simulated in the laboratory, before and after a period of exposure (eight months) on rock platforms in Cornwall, UK. As well as differences between the material types, temperatures of control (unexposed) and field‐exposed blocks differed in the order of 1 to 2 °C. Drying behaviours were also different after field exposure. Differences during the first few hours of exposure to air and heat were attributed to discolouration and albedo effects. Over longer periods of time, changes in the availability of near‐surface pore water as a result of micro‐scale bioerosion of limestone and the development of bio‐chemical crusts on marine concrete [observed using scanning electron microscopy (SEM)] are suggested as mechanisms enhancing and reducing, respectively, the efficiency of evaporative cooling. The retention of moisture by epilithic biofilms may also influence thermal and drying behaviours of granite. These observations represent one of the first examples of cross‐scalar biogeomorphic linkages in the intertidal zone. The significance of the results for the subsequent efficiency of weathering, and near‐surface micro‐climatic conditions experienced by colonizing organisms is discussed. The involvement of microorganisms in the creation of more (or less) ecologically stressful conditions through the alteration of substratum geomorphic properties and behaviours is suggested as an example of ‘biogeomorphic ecosystem engineering’. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号