首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Surface lake sediment was recovered from 57 lakes along an elevation gradient in the central, eastern Sierra Nevada of California. The surface sediment was analysed for subfossil chironomid remains in order to assess the modern distribution of chironomids in the region. The lakes sampled for the calibration dataset were between 2.0 and 40.0 m in depth, spanned an altitudinal gradient of 1360 m and a surface water temperature gradient of approximately 14 °C. Redundancy analysis (RDA) identified that five of the measured environmental variables – surface water temperature, elevation, depth, strontium, particulate organic carbon – accounted for a statistically significant amount of the variance in chironomid community composition. Quantitative transfer functions, based on weighted-averaging (WA), partial least squares (PLS) and weighted-averaging partial least squares (WA-PLS), were developed to estimate surface water temperature from the chironomid assemblages. The best model was a WA model with classical deshrinking, which had a relatively high coefficient of determination (r2 = 0.73), low root mean square error of prediction (RMSEP = 1.2 °C) and a low maximum bias (0.90 °C). The results from this study suggest that robust quantitative estimates of past surface water temperature can be derived from the application of these models to fossil chironomid assemblages preserved in late-Quaternary lake sediment in this region.  相似文献   

2.
The altitudinal distribution of Chironomidae (Diptera) in the southern Canadian Cordillera was analyzed by means of head capsules preserved in surficial sediments of 30 lakes. Taxa characteristic of late-glacial deposits of southern, coastal British Columbia are extant at high elevations, particularly in the Rocky Mountains, and in large, deep, low-elevation lakes. Many chironomid taxa common at low elevations in the southern Canadian Cordillera were not found in alpine and upper subalpine lakes. These faunal differences are probably climatically related. The differences in fauna between high and low-elevation lakes parallel differences between arctic and temperate lakes.  相似文献   

3.
Several techniques are available to examine the isotopic composition of historic lake waters, providing data that can subsequently be used to examine environmental changes. A recently-developed technique is the stable oxygen isotope analysis of subfossil chironomid (Diptera: Chironomidae) head capsules (mostly chitin) preserved in lake sediments. This technique involves a high Temperature Conversion Elemental Analyzer (TC/EA), which has been a relatively recent addition to the suite of online peripherals for analyzing the stable isotopic composition of organic samples. The highly precise and accurate 18O/16O and D/H measurements obtainable using the TC/EA with samples in the microgram range make this instrumentation suitable for studying geochemical and biological processes. Preparation of organic samples for isotopic analysis typically requires first weighing each sample into silver/tin capsules. These capsules can introduce oxygen and hydrogen contamination (a “blank effect”), which is especially problematic for analysis of small organic samples (e.g. less than 100 μg). Here we tested tin and silver capsules from two manufacturers and a range of sizes to assess contamination to small organic samples on the TC/EA. We also assessed how a method for cleaning silver capsules affected our analysis of commercial chitin. In general, capsules made of silver have less detectible oxygen than those made of tin, and capsules from the two manufacturers varied in their detectible oxygen. There was no detectable H contamination from silver capsules. In addition to our empirical findings, we present a model demonstrating the influence that contaminant oxygen can have on the δ18O of small organic samples. Sample mass becomes an important issue for such analyses. In light of our findings, we recommend a minimum sample mass ≥50 μg (approximately 120 whole chironomid head capsules) on a TC/EA-IRMS (Deltaplus XP system). Finally, we present a detailed protocol for preparing and transferring chironomid head capsules into silver capsules that minimizes the influence of contaminant oxygen. This protocol provides the paleo-community with another potential method for reconstructing paleoenvironments.  相似文献   

4.
This study investigated the distribution of subfossil diatom assemblages in surficial sediments of 100 lakes along steep ecological and climatic gradients in northernmost Sweden (Abisko region, 67.07° N to 68.48° N latitude, 17.67° E to 23.52° E longitude) to develop and cross-validate transfer functions for paleoenvironmental reconstruction. Of 19 environmental variables determined for each site, 15 were included in the statistical analysis. Lake-water pH (8.0%), sedimentary loss-on-ignition (LOI, 5.9% and estimated mean July air temperature (July T, 4.8%) explained the greatest amounts of variation in the distribution of diatom taxa among the 100 lakes. Temperature and pH optima and tolerances were calculated for abundant taxa. Transfer functions, based on WA-PLS (weighted averaging partial least squares), were developed for pH (r2 = 0.77, root-mean-square-error of prediction (RMSEP) = 0.19 pH units, maximum bias = 0.31, as assessed by leave-one-out cross-validation) based on 99 lakes and for July T (r2 = 0.75, RMSEP = 0.96 °C, max. bias = 1.37 °C) based on the full 100 lake set. We subsequently assessed the ability of the diatom transfer functions to estimate lake-water pH and July T using a form of independent cross-validation. To do this, the 100-lake set was divided in two subsets. An 85-lake training-set (based on single limnological measurements) was used to develop transfer functions with similar performance as those based on the full 100 lakes, and a 15-lake test-set (with 2 years of monthly limnological measurements throughout the ice-free seasons) was used to test the transfer functions developed from the 85-lake training-set. Results from the intra-set cross-validation exercise demonstrated that lake-specific prediction errors (RMSEP) for the 15-lake test-set corresponded closely with the median measured values (pH) and the estimations based on spatial interpolations of data from weather stations (July T). The prediction errors associated with diatom inferences were usually within the range of seasonal and interannual variability. Overall, our results confirm that diatoms can provide reliable and robust estimates of lake-water pH and July T, that WA-PLS is a robust calibration method and that long-term environmental data are needed for further improvement of paleolimnological transfer functions.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号