首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sediment cores spanning the postglacial period were recovered from two coastal freshwater basins located 300 km apart in northernmost Ungava (Nunavik, Canada). A basal date from the sequence recovered near Wakeham Bay suggests that the region was ice‐free by as early as 9600 cal. a BP. The initial development of both investigated lacustrine ecosystems was characterised by chironomid assemblages strongly dominated by the Subtribe Tanytarsina. These early postglacial assemblages showed greatly reduced diversity but much greater abundance than during subsequent periods of lake evolution. An abrupt and distinct turnover in sedimentary chironomid assemblage composition and productivity, marked by a switch to a dominance of Orthocladiinae, occurred around 6 ka BP. This turnover likely corresponds with a significant disturbance in the regional environment, which could be linked to the final disappearance of the last remnants of the Laurentide Ice Sheet. These findings, based on the first palaeolimnological investigations undertaken in northernmost Ungava, provide new insights into lateglacial and postglacial faunal recolonisation patterns in aquatic ecosystems of the eastern Canadian Arctic. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Unexpectedly high pollen concentrations characterize the basal, silty part of the postglacial sediments accumulated in two lakes from the Cratère du Nouveau-Quebéc area, Ungava. These lacustrine silts and their pollen content result from early postglacial washing of a pollen bearing till. The till must therefore ahve incorporated pollen that relates to events prior to the last glacial event. The matrix of the till deposits surrounding the lakes shows outstandingly high pollen concentrations. It is hypothesized that because of the proximity of the ice divide during the last (and earlier) ice advance(s) in Ungava, the previously depoisited till and the pollen that haad accumulated in its matrix during the interglacial interval(s) were preserved in relict till plains or recycled into the till of teh last glaciation. The crater's age has been established at 1.4 Ma and holds a minimum thickness of 95 m of sediments. It is very likely filled with successive tills or related glacigenic deposits perhaps representing the whole length of time since the crater was formed. Alike the most recent till, these deposits should pollen. there is thus the prospect ofr a 1.4 Ma old pollen record for Ungava.  相似文献   

4.
The Cambro-Ordovician Cap Enragé Formation is interpreted as a deep submarine channel complex of conglomerates, pebbly sandstones and massive sandstones. The formation is up to 270 m thick, and crops out in a coastal belt 50 km long. In general terms, it has previously been interpreted as a deep sea channel deposit, with the channel about 300 m deep, at least 10 km wide and trending south-westward, parallel to the coastal outcrops. Eight facies have been defined in this study and they have been grouped into three major facies associations. In the Coarse Channelled Association, conglomerates with carbonate boulders up to about 4 m are associated with graded-stratified finer grained conglomerates. Facies of this association make up about 25% of all the beds in the formation. The association is also characterized by abundant major channels 1–10 m deep and up to 250 m wide. Excellent outcrop allows the reconstruction of topographic highs (bars) within the channels and the association is interpreted as a braided channel and bar system. The second association, Multiple-Scoured Coarse Sandstones, contains some graded-stratified fine conglomerates, along with massive to structureless coarse and pebbly sandstones, and rare cross-bedded pebbly sandstones. Deep channels are absent, but multiple channelling on the scale of 0.5–1 m is characteristic. In the absence of the very coarse conglomerates and deeper channelling, this association is interpreted as being deposited on topographically higher terrace areas adjacent to the main braid plain. The third facies association, Unchannelled Sandstones, is characterized by massive sandstones with abundant fluid-escape structures, classical turbidites and thin shales. In the absence of any scouring deeper than a few tens of centimetres, this association is interpreted as being deposited on an even higher and smoother terrace, farther from the braid plain. Palaeoflow directions for conglomerate facies indicate fairly consistent south-westward transport, apparently parallel to the base of the Cambro-Ordovician continental slope. Flow directions in the finer-grained facies are rather variable, suggesting complex bar development and overbank spills. Thinning-and fining-upward sequences are present on two scales. The smaller, 1–10 m sequence, is related to channel filling and abandonment. Thicker sequences (10–100 m), with facies of the Multiple Scoured, and Unchannelled Sandstone Associations, may indicate switching of a main channel away from the area and its subsequent burial by marginal terrace and higher terrace deposits.  相似文献   

5.
The prominent Ungava Bay landform swarm (UBLS), covering an area of ˜260000 km2 south of Ungava Bay, Canada, is defined by drumlins, crag-and-tails, horned crag-and-tails and flutes indicating convergent ice flow towards Ungava Bay. The UBLS has been difficult to interpret in terms of ice-sheet configuration, dynamics and age. Aerial photograph and satellite image interpretations of the Labrador-Ungava region reveal a previously unrecognized level of complexity within the UBLS consisting of several well-defined segments, most interpreted as representing discrete stream-flow events. Each of the segments is characterized by one or more of the criteria (convergent flow patterns at their heads, attenuated till lineations and abrupt lateral margins) previously suggested as diagnostic for formation by fast-flowing ice (ice streams). The UBLS reflects the most direct and probably fastest contact (in terms of sediment transport) between the Laurentide Ice Sheet interior and the ocean. It is therefore a prime candidate for abrupt changes in glacial-age northwest Atlantic seafloor sedimentation.  相似文献   

6.
The Ungava orogen of northern Québec is one of the best preserved Proterozoic mobile belts of the world, recording > 200 Ma of plate divergence and convergence. Voluminous magmatism associated with rifting of the Superior Province basement ≈2.04 Ga resulted in the development of a volcanic rift margin sequence and an ocean basin. Four distinct mafic magma suites were erupted: (1) continental basalts (Eskimo Formation, western and central Povungnituk Group) with moderate to high Zr/Nb and negative Nb anomalies which have interacted with the continental crust (εNd(2.0 Ga)) from −7.4); (2) mafic lavas from the Flaherty Formation, eastern Povungnituk Group and some Watts Group lavas associated with passive margin rifting, having slightly enriched isotopic signatures (εNd(2.0 Ga) = +2.7 to +4.4) compared to the contemporaneous depleted mantle, high (Nb/Y)n and low Zr/Nb ratios (≈4.4 and ≈8.9, respectively); (3) a highly alkaline OIB-like suite (εNd(2.0 Ga) = +2.3 to +3.2, (Nb/Y)n> 12) within the Povungnituk Group composed of nephelinites, basanites and phonolites; and (4) depleted Mg-rich basalts and komatiitic basalts (εNd(2.0 Ga) ≈ + 4.5 to + 5.5) with trace-element characteristics of N-MORB, but with higher Fe and lower Al than primitive MORB (Chukotat Group, Ottawa Islands and some Watts Group samples). The ocean basin into which these lavas were erupted was subsequently destroyed during subduction between ≈1.90 and ≈1.83 Ga, resulting in the development a magmatic arc (Narsajuaq terrane and Parent Group).

The Ungava magmas provide a unique window into the mantle at 2.0 Ga. The chemical and isotopic similarity of these Proterozoic magmas to modern-day magmas provides strong evidence that the interplay between depleted mantle, OIB mantle and sub-continental mantle during the Proterozoic was comparable to that of the modern Earth.  相似文献   


7.
The Pingualuit Crater was formed by a meteoritic impact ca. 1.4 million years ago in northernmost Ungava (Canada). Due to its geographical position near the center of successive North American ice sheets and its favorable morphometry, the Pingualuit Crater Lake (water depth = 246 m) promises to yield a unique continuous sedimentary sequence covering several glacial/interglacial cycles in the terrestrial Canadian Arctic. In this paper, we suggest the existence of a subglacial lake at least during the Last Glacial Maximum (LGM) by hydraulic potential modeling using LGM ice-surface elevation and bed topography derived from a digital elevation model. These results support the hypothesis that the bottom sediments of the Crater Lake escaped glacial erosion and may contain a long-term continental sedimentary sequence. We also present the stratigraphy of a 9 m-long core retrieved from the deep basin of the lake as well as a multiproxy reconstruction of its deglacial and postglacial history. The base of the core is formed by very dense diamicton reflecting basal melt-out environments marking the end of subglacial conditions at the coring site. The overlying finely laminated silt are related to the onset of proglacial conditions characterized by extremely low lacustrine productivity. Infra Red Stimulated Luminescence and AMS 14C dating, as well as biostratigraphic data indicate sediment mixing between recent (e.g. Holocene) and much older (pre- to mid-Wisconsinan) material reworked by glacier activity. This process prevents the precise dating of these sediments that we interpret as being deposited just before the final deglaciation of the lake. Two finer grained and organic-rich intervals reflect the inception of lacustrine productivity resulting from the cessation of glacial meltwater inputs and ice-free periods. The lower organic interval corresponds to the early postglacial period (6850–5750 cal BP) and marks the transition between proglacial and postglacial conditions during the Holocene Thermal Maximum, while the uppermost organic-rich core section represents late Holocene sediments (~4200–600 cal BP). The organic intervals are separated by a basin-scale erosive slide occurring around 4200 cal BP and likely related to 1) a seismic event due to the glacio-isostatic rebound following the last deglaciation or 2) slope instabilities associated with rapid discharge events of the lake.  相似文献   

8.
There is little concensus on the relative importance of crystal fractionation and differential partial melting to the chemical diversity observed within most types of volcanic suites. A resolution to this controversy is best sought in suites containing high MgO lavas such as the Chukotat volcanics of the Proterozoic Cape Smith foldbelt, Ungava, Quebec. The succession of this volcanic suite consists of repetitive sequences, each beginning with olivine-phyric basalt (19-12 wt% MgO), grading upwards to pyroxene-phyric basalt (12-8 wt% MgO) and then, in later sequences, to plagioclase-phyric basalt (7-4 wt% MgO). Only the olivine-phyric basalts have compositions capable of equilibrating with the upper mantle and are believed to represent parental magmas for the suite. The pyroxene-phyric and plagioclase-phyric basalts represent magmas derived from these parents by the crystal fractionation of olivine, with minor chromite, clinopyroxene and plagioclase. The order of extrusion in each volcanic sequence is interpreted to reflect a density effect in which successively lighter, more evolved magmas are erupted as hydrostatic pressure wanes. The pyroxene-phyric basalts appear to have evolved at high levels in the active part of the conduit system as the eruption of their parents was in progress. The plagioclase-phyric basalts may represent residual liquids expelled from isolated reservoirs along the crust-mantle interface during the late stages of volcanic activity.A positive correlation between FeO and MgO in the early, most basic olivine-phyric basalts is interpreted to reflect progressive adiabatic partial melting in the upper mantle. Although this complicates the chemistry, it is not a significant factor in the compositional diversification of the volcanic suite. The preservation of such compositional melting effects, however, suggests that the most basic olivine-phyric basalts represent primitive magmas. The trace element characteristics of these magmas, and their derivatives, indicate that the mantle source for the Chukotat volcanics had experienced a previous melting event.  相似文献   

9.
Crystalline basement exposed in tectonic windows within theUngava Orogen records a polycyclic Archean granulite-faciesto Paleoproterozoic amphibolite-facies history. Amphibolite-faciesassemblages comprise garnet coronas around plagioclase, clinopyroxeneor cummingtonite coronas on orthopyroxene, hornblende coronason clinopyroxeneorthopyroxene, sodic rims on calcic plagioclase,and/or titanite coronas on ilmenite. Petrographic observationsand model reactions suggest that growth of coronitic garnetis closely associated with amphibolitization of twopyroxenegneisses. Calcic plagioclase constitutes a key reactant in allgarnet-producing reactions and possibly acted as a rate-controllingphase. Multi-equilibrium thermobarometric calculations showgood convergence of possible equilibria in the amphibolite-faciesrocks, indicating that coronitic textures need not imply completechemical disequilibrium. P—T determinations for the amphibolite-faciesgneisses beneath the thrust belt of Ungava Orogen are in therange 7.7–9.8 kbar and 585–723C. These values areconsistent with prograde determinations from pelitic schistswithin the thrust belt. Estimates of water activity clusterinto two populations. High aH2O values are obtained for highlystrained basement rocks adjacent to the thrust belt whereaslow aH2O values are derived for orthogneiss samples which showno thrust-related fabrics and are distal to the thrust belt. KEY WORDS: corona; high-P retrogression; multi-equilibrium thermo-barometry *Corresponding author. Telephone: (613) 995-4935. Fax: (613) 995-9273. Internet: mstonge{at}cc2smtp.emr.ca  相似文献   

10.
This study combines different methods, including grain size, macrofossil, and pollen analyses, to reconstruct paleogeographical and paleoclimatological conditions for periods before, during, and after the isolation of a small lake (Lake Kachishayoot) in northern Québec. After the retreat of the Laurentide Ice Sheet around 8000 14C yr B.P., the area was submerged by the Tyrrell Sea. The transition from marine to lacustrine environment occurred about 5400 yr B.P. Two major periods of water-level fluctuations were inferred from organic and mineral sediments: a high water level that occurred after 3200 yr B.P. and a low water level that started before 2200 yr B.P. Our chronological data for the first period are consistent with those from nearby Lac des Pluviers and from other lakes in east central Canada and in the northeastern United States. During the low-water-level period, however, there is no evidence for minor fluctuations, whereas other lakes in northern Québec and east-central Canada underwent several brief lowerings. Long-term changes in atmospheric circulation caused by changing global boundary conditions likely explained long-term water-level fluctuations of Lake Kachishayoot.  相似文献   

11.

Renard 65, a diamondiferous pipe in the Neoproterozoic Renard kimberlite cluster (Québec, Canada), is a steeply-dipping and downward-tapering diatreme comprised of three pipe-filling units: kimb65a, kimb65b, and kimb65d. The pipe is surrounded by a marginal and variably-brecciated country rock aureole and is crosscut by numerous hypabyssal dykes: kimb65c. Extensive petrographic and mineralogical characterization of over 700 m of drill core from four separate drill holes, suggests that Renard 65 is a Group I kimberlite, mineralogically classified as phlogopite kimberlite and serpentine-phlogopite kimberlite. Kimb65a is a massive volcaniclastic kimberlite dominated by lithic clasts, magmaclasts, and discrete olivine macrocrysts, hosted within a fine-grained diopside and serpentine-rich matrix. Kimb65b is massive, macrocrystic, coherent kimberlite with a groundmass assemblage of phlogopite, spinel, perovskite, apatite, calcite, serpentine and rare monticellite. Kimb65c is a massive, macrocrystic, hypabyssal kimberlite with a groundmass assemblage of phlogopite, serpentine, calcite, perovskite, spinel, and apatite. Kimb65d is massive volcaniclastic kimberlite with localized textures that are intermediate between volcaniclastic and coherent, with tightly packed magmaclasts separated by a diopside- and serpentine-rich matrix. Lithic clasts of granite-gneiss in kimb65a are weakly reacted, with partial melting of feldspars and crystallization of richterite and actinolite. Lithic clasts in kimb65b and kimb65d are entirely recrystallized to calcite + serpentine/chlorite + pectolite and display inner coronas of diopside-aegirine and an outer corona of phlogopite. Compositions are reported for all minerals in the groundmass of coherent kimberlites, magmaclasts, interclast matrices, and reacted lithic clasts. The Renard 65 rocks are texturally classified as Kimberley-type pyroclastic kimberlites and display transitional textures. The kimberlite units are interpreted to have formed in three melt batches based on their distinct spinel chemistry: kimb65a, kimb65b and kimb65d. We note a strong correlation between the modal abundances of lithic clasts and the textures of the kimberlites, where increasing modal abundances of granite/gneiss are observed in kimberlites with increasingly fragmental textures.

  相似文献   

12.
The Charlevoix region, in southeastern Québec, is characterized by a dramatic landscape formed by the junction of the Laurentian Highlands, the Charlevoix Astrobleme and the St Lawrence Estuary. At the Last Glacial Maximum (LGM), the region was completely covered by the Laurentide Ice Sheet (LIS). The complex topography of the region was the stage of many of the major deglacial events of southern Quebec (e.g. Goldthwait Sea Invasion, St Lawrence Ice‐Stream, Saint‐Narcisse Episode). We present a detailed reconstruction of the pattern of retreat of the LIS in the Charlevoix region based on the interpretation of ice‐marginal features (e.g. moraines, fans) and glaciolacustrine landforms and deposits, two extensive field campaigns, and the interpretation of high‐resolution 3D digital aerial photographs and LiDAR data. Our results indicate five moraine complexes in the region: the Rochette, the Brûlée, the Sainte‐Anne, the Saint‐Narcisse and the Mars‐Batiscan complexes. Deltas, fans, fine‐grained sediments, littoral deposits, drainage breaches and deposits were used to identify 91 palaeo‐proglacial lakes. The identification of these lakes and their relation to moraine complexes enabled the reconstruction of six stages of lake development during the Charlevoix deglaciation. The development of proglacial lakes occurred in all types of terrain (highlands, lowlands, transitory levels above marine limit). We conclude that local topography had a decisive effect on promoting both moraine deposition and lake development. We suggest that similar topographical regions (hilly‐mountainous) that were affected by major ice‐margin stabilizations during glacial retreat should have experience small lakes dominating valleys and topographical lows.  相似文献   

13.
Aeolian sand transport during winter and the snow-free season was assessed quantitatively by direct year-round field measurements along transects on the lee side of parabolic dunes in subarctic Québec. In 1987–1988, niveo-aeolian deposition was more important than aeolian sedimentation in three of the four study sites, and contributed > 75% of the total annual accumulation in exposed sites and < 25% in protected forest sites. The maximum depth of interstratified snow and sand deposits (3.5 m) was recorded in March. Semi-permanent snow lenses may persist longer than 2 years in the aeolian sediments. After dissipation of snow, 22 cm of sand (as a maximum) accumulated on the slipface of the most active dunes, whereas only minor sand accumulation occurred in distant areas from active sand erosion. Wind-driven sand was dispersed over 7.4 km2 in the Whapmagoostui-Kuujjuarapik area. The acumulation of snow and sand during the snow season, together with spring thaw and collapse of the niveo-aeolian deposit, caused different types of injuries to trees, especially in 1985 and 1987 when a maximum of torn branches was recorded over the last 10 year period.  相似文献   

14.
An extensive stratigraphic section at Cape Alfred Ernest on the Wootton Peninsula, northwest Ellesmere Island contains six lithofacies which appear to record two glacial phases separated by an organic layer. (1) A lower massive gravel records a pre-ice advance outwash phase; (2) massive fine-grained sediments record a period of non-glacial marine deposition when sea-level was higher than present; (3) a massive diamicton records the advance of ice across the site; (4) intermediate stratified beds record supraglacial and proglacial outwash, and include an organic layer; (5) massive diamicton grading down-valley to stratified diamicton and then massive, sheared diamicton, overlain by laminated fine-grained sediments with dropstones, recording the last (late Wisconsinan) glaciation; (6) upward-coarsening sands and gravels record proglacial outwash and grade to raised marine deltas. Radiocarbon dates of 39270 ± 640 and > 51000 yr BP were obtained on samples from the organic layer by accelerator mass spectrometry and conventional radiocarbon dating, respectively. Palaeoecological data suggest that the organics accumulated in a wet sedge meadow environment when the climate was warmer than present. Stratigraphic considerations suggest that the organic layer represents an interglacial interval which, if valid, indicates that the site constitutes the northernmost interglacial stratigraphy in the Canadian Arctic. Alternatively, the organic layer may date to Plio-Pleistocene times.  相似文献   

15.
Glaciofluvial De Geer moraines have rarely been described in detail in the literature. This study presents a model for the genesis of moraines of this type in the Chapais area, Québec. The model is based mainly on facies and deformatin structures analysis, and geomorphological data. Well-stratified glaciofluvial material is commonly found in the core of the moraines, whereas till or glacial diamicton may be present as surficial cover on their proximal side or as injected lenses in the sorted sediments. The paleocurrents are systematically directd downglacier. The moraines were built up in subglacial crevasses in areas where meltwater was channelized. Water flowed under pressure from small upglacier cavities, carrying a load of coars-grained material When flowing water entered crevasses already occupied by water, flow sparation occurred, reducing the capacity of the flow to carry the particles, and avalanching glaciofluvial material on the leeside of the piled sediments. The occurrence, in these sediments, of glaciotectonic deformation structures such as overturned to recumbent folds and thrust faults is evidence that the glacier was still active to some degree during and after the sedimentation phase.  相似文献   

16.
Charles Maurice  Don Francis 《Lithos》2010,114(1-2):95-108
Paleoproterozoic mafic dyke swarms (2.5–2.0 Ga) of the Ungava Peninsula can be divided in three chemical groups. The main group has a wide range of Fe (10–18 wt.% Fe2O3) and Ti (0.8–2.0 wt.% TiO2) contents, and the most magnesian samples have compositions consistent with melting of a fertile lherzolitic mantle at ~ 1.5 GPa. Dykes of a low-LREE (light rare earth element) subgroup (La/Yb ≤ 4) display decreasing Zr/Nb with increasing La/Yb ratios and positive εNd2.0 Ga values (+ 3.9 to + 0.2) that trend from primitive mantle towards the composition of Paleoproterozoic alkaline rocks. In contrast, dykes of a high-LREE subgroup (La/Yb ≥4) display increasing Zr/Nb ratios and negative εNd2.0 Ga values (? 2.3 to ? 6.4) that trend towards the composition of Archean crust. A low Fe–Ti group has low Fe (< 11 wt.% Fe2O3), Ti (< 0.8 wt.% TiO2), high field strength elements (HFSE; < 6 ppm Nb) and heavy rare earth elements (HREE; < 2 ppm Yb) contents, but are enriched in large ion lithophile elements (LILE; K/Ti = 0.7–3) and LREE (La/Yb > 4). These dykes are interpreted as melts of a depleted harzburgitic mantle that has experienced metasomatic enrichment. A positive correlation of Zr/Nb ratio and La/Yb ratio, negative εNd2.0 Ga values (? 14 to ? 6), and the presence of inherited Archean zircons further suggest the incorporation of a crustal component. A high Fe–Ti group has high Fe (> 14 wt.% Fe2O3) and Ti (> 1.4 wt.% TiO2) contents, along with higher Na contents relative to the main group dykes. Dykes of a high-Al subgroup (> 12 wt.% Al2O3) share Fe contents, εNd2.0 Ga values (? 2.3 to ? 3.4), La/Yb and Th/Nb ratios with Archean ferropicrites, and may represent evolved ferropicrite melts. A low-Al subgroup (< 12 wt.% Al2O3) has relatively lower Yb contents (< 2 ppm) and fractionated HREE patterns that indicate the presence of garnet in their melting residue. A comparison with ~ 5 GPa experimentally-derived melts suggests that these dykes may be derived from garnet-bearing pyroxenite or peridotite. The εNd2.0 Ga values (? 0.3 to ? 2.0) of these dykes lie between the compositions of Archean granitoids and Paleoproterozoic alkaline rocks, signifying their petrogenesis involved both crustal and mantle components.Paleoproterozoic dykes containing a crustal component occur within, or close to, an isotopically enriched Archean terrane (TDM 4.3–3.1 Ga), whereas dykes without this component occur in an isotopically juvenile terrane (TDM < 3.1 Ga). The lack of a crustal component and the positive εNd2.0 Ga values of dykes intruding the latter suggest that the crust they intruded was either too cold to be assimilated, or that its lower crust and/or lithosphere were Paleoproterozoic in age. In contrast, the ubiquitous presence of a crustal component and the diversity of mantle sources for dykes intruding the enriched terrane (lherzolite, harzburgite, pyroxenite) suggest a warmer crust with underlying heterogeneous lithospheric mantle.  相似文献   

17.
Brines in Cambrian sandstones and Ordovician dolostones of the St-Lawrence Lowlands at Bécancour, Québec, Canada were sampled for analysis of all stable noble gases in order to trace their origin and migration path, in addition to quantifying their residence time. Major ion chemistry indicates that the brines are of Na-Ca-Cl type, possibly derived from halite dissolution. 87Sr/86Sr ratios and Ca excess indicate prolonged interactions with silicate rocks of the Proterozoic Grenville basement or the Cambrian Potsdam sandstone. The brines constrain a 2-3% contribution of mantle 3He and large amounts of nucleogenic 21Ne and 38Ar and radiogenic 4He and 40Ar. 4He/40Ar and 21Ne/40Ar ratios, corrected for mass fractionation during incomplete brine degassing, are identical to their production ratios in rocks. The source of salinity (halite dissolution), plus the occurrence of large amounts of 40Ar in brines constrain the residence time of Bécancour brines as being older than the Cretaceous. Evaporites in the St-Lawrence Lowlands likely existed only during Devonian-Silurian time. Brines might result from infiltration of Devonian water leaching halite, penetrating into or below the deeper Cambrian-Ordovician aquifers. During the Devonian, the basin reached temperatures higher than 250 °C, allowing for thermal maturation of local gas-prone source rocks (Utica shales) and possibly facilitating the release of radiogenic 40Ar into the brines. The last thermal event that could have facilitated the liberation of 40Ar into fluids and contributed to mantle 3He is the Cretaceous Monteregian Hills magmatic episode. For residence times younger than the Cretaceous, it is difficult to find an appropriate source of salinity and of nucleogenic/radiogenic gases to the Bécancour brines.  相似文献   

18.
The concentrations and the isotopic compositions of S, N and C were studied in soils and in the dominant plant species of three forested watersheds (Québec, Canada) located along a latitudinal and atmospheric deposition gradient. Large increases in S, N and C isotope ratios (up to 3.9‰, 10‰, 2.6‰, respectively) were observed with increasing soil depth at the three watersheds. These increases were accompanied by a strong decrease in elemental concentrations resulting in a strong negative relationship between these two variables. Both S and N concentrations throughout the soil profile and δ34S and δ15N in the mineral soil appeared to increase with increasing S and N deposition rates and decreasing latitude. A strong positive linear relationship was found between δ34S and δ15N (R2 = 0.72) values and between organic S and N concentrations (R2 = 0.96) in soils. The slope of the linear relationship between δ34S and δ15N (δ34S = f(δ15N)) indicated that isotopic fractionation was almost 4 times higher for S than for N during transformations that occurred in soil. However, this difference might reflect a higher degree of openness of the S cycle compared to the N cycle rather than an isotope effect per se. Overall, the results suggest that N and S inputs significantly impact the isotope ratios and the concentrations of N and S in the soils, and that S and N were closely associated and subject to similar processes with the same isotopic effects throughout the soil profile. Contrary to most studies, δ34S-SO4 in stream water of the most northerly site with the lowest S deposition rate was significantly higher than δ34S-SO4 in atmospheric depositions but similar to the δ34S of the bulk mineral soil. It suggests that the mineral soil actually contributes a large portion of the stream S-SO4 for this site.  相似文献   

19.
Abstract The metamorphic history of the Archaean Superior Province crystalline basement in the Palaeoproterozoic Ungava Orogen attests to the importance of structural and geohydrological controls on a retrograde amphibolite-granulite transition. Two distinct metamorphic suites, separated in age by nearly one billion years, are recognized in extensively exposed tonalitic to dioritic metaplutonic gneisses. The older suite comprises c. 2.7-Ga granulite facies assemblages (orthopyroxene-clinopyroxene-hornblende-plagioclase-ilmenite ± biotite ± quartz) that record moderate pressures (±5 kbar) and high temperatures (±800° C). A younger, c. 1.8-Ga suite resulted from amphibolitization of the granulites and is characterized by regionally extensive amphibolite facies mineral zones that broadly parallel the basal décollement of the overlying Proterozoic Cape Smith Thrust Belt. Deformation/mineral growth relationships in the amphibolitized basement indicate that extensive hydration and re-equilibration of the Archaean granulites occurred during thrust belt deformation. The transition from granulite facies to amphibolite facies assemblages is characterized by the growth of garnet-hornblende-quartz ° Cummingtonite coronas between plagioclase and orthopyroxene-clinopyroxene, as well as titanite coronas on ilmenite. Multi-equilibrium thermobarometry on the coronitic assemblages documents re-equilibration of the granulitic gneiss to 7.7 kbar at 644° C in the south and 9.8 kbar at 700° C in the north. The variably deformed, amphibolite facies domain sandwiched between the coronitic garnet zone and the basal décollement is marked by significant metasomatic changes in major element concentrations within tonalite. These changes are compatible with equilibrium flow of an aqueous-chloride fluid down a temperature gradient. The source of fluids for basement hydration/metasomatism is interpreted to be dehydrating clastic rocks in the overlying thrust belt, with fluid flow probably focused along the basal décollement.  相似文献   

20.
The Mont-de-l’Aigle deposit is located in the northern part of Dome Lemieux, in the Connecticut Valley-Gaspé Synclinorium, Gaspé Peninsula, Québec. The Dome Lemieux is a subcircular antiform of Siluro–Devonian sedimentary rocks that is cut by numerous mafic and felsic sills and dikes of Silurian to Late Devonian age. Plutonism occurred in a continental within-plate extensional setting typical of orogenic collapse. The Cu−Fe (± Au) mineralization of Mont-de-l’Aigle occurs in veins, stockworks, and breccias. Mineralization is located near or within N−S and NW−SE faults cutting sedimentary rocks. IOCG mineralization postdates intrusions, skarns, hornfels, and epithermal mineralization typical of the southern part of the Dome Lemieux. The paragenetic sequence comprises: (1) pervasive sodic, potassic, chlorite, and silica alteration, (2) hematite, quartz, pyrite, magnetite, and chalcopyrite veins, stockworks and breccias and, (3) dolomite ± hematite veins and veinlets cutting the earlier mineralization. Intrusions display proximal sodic and potassic alteration, whereas sedimentary rocks have proximal decalcification, silicification, and potassic alteration. Both intrusive and sedimentary rocks are affected by a pervasive distal chlorite (± silica) alteration. The sulfur isotope composition of pyrite and chalcopyrite (δ34S=−1.5 to 4.8‰) suggests that sulfur was derived mainly from igneous rocks. Fluid δ18O (−0.4 to 2.65‰) indicates meteoric or seawater that reacted with the country rocks. Mixing of hot magmatic fluids with a cooler fluid, perhaps meteoric or seawater is suggested for mineral deposition and alteration of the Mont-de-l’Aigle deposit. The mineralogy, alteration, and sulfur isotope composition of the Mont-de-l’Aigle deposit compare well with IOCG deposits worldwide, making the Mont-de-l’Aigle deposit a rare example of Paleozoic IOCG mineralization, formed at shallow depth, within a low metamorphic grade sedimentary rock sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号