共查询到16条相似文献,搜索用时 78 毫秒
1.
随着制造业不断向自动化、智能化方向发展,研究PDC钻头钎焊自动化是钻头生产技术的重点发展方向之一。为分析焊接强度对PDC自动化钎焊的影响及适应情况,利用特制的工装及试验条件,以PDC片和合金支柱为基体材料,开展了PDC高频感应焊接试验;并结合剪切强度和断面形态,分析了钎料钎剂、表面预处理、焊接方式、保温方式及感应加热对焊接强度的影响,并提出了适应PDC自动化钎焊的钎焊工艺方法。结果表明:应根据实际情况选取合适的银基钎料及专用焊膏;母材表面氧化层对焊接强度的影响较大;采用旋转式辅助焊接方式有助于钎料的铺展及排气排渣,能有效提高感应钎焊的强度;保温方式对PDC感应焊接强度的影响不大;应减小感应加热的集肤效应造成的边缘钎料熔蚀和中心温度低钎料未完全熔融对工件焊接强度的影响。研究结果为实现PDC自动化感应焊接提供了可行性方案,并对实现PDC钻头自动化钎焊提供了基础依据。 相似文献
2.
随着聚晶金刚石复合片(PDC)钻头在复杂地层的应用范围不断扩大,对PDC复合片与钻头体材料的焊接强度要求越来越高,为了探究PDC复合片和不同钻头体材料的钎焊工艺,选用2种基体材料(胎体式和钢体式PDC钻头试样,以下简称胎体试样和碳钢试样)、2种钎料,采用火焰钎焊和高频感应钎焊,研究了钎焊温度、钎料、钎焊方式对PDC复合片和不同基体材料焊接性能的影响,得出了剪切强度随温度的变化曲线。同时,采用光学显微镜对PDC的焊缝断面进行了观测。结果表明,PDC复合片与胎体试样钎焊时,为硬质合金间的钎焊,钎料与母材润湿效果好,剪切强度值较高;PDC复合片与碳钢试样钎焊时,为硬质合金和异种材料间的钎焊,为了提高剪切强度,可适当提高钎焊温度或采用Ni含量高的钎料。 相似文献
3.
《岩土力学》2017,(8):2395-2401
从理论和数值两个方面进行分析,发现受径向集中力和围压作用的中心裂纹圆盘(CCBD)试件裂纹面接触会对II型应力强度因子产生较大的影响。通过理论研究,分析CCBD受集中力和围压作用裂纹面接触时圆盘内部的应力场,采用断裂力学权函数理论,推导得出在集中力和围压共同作用下,考虑裂纹面闭合时应力强度因子的解析解。然后,使用ANSYS软件建立了相应的数值模型计算应力强度因子,并与理论解和相关文献进行对比验证,证明了理论公式的正确性。无论裂纹张合与否,所提出的解析公式都能计算出不同裂纹长度、加载角、围压和摩擦系数的应力强度因子。最后,利用公式分析摩擦系数对应力强度因子的影响,结果表明:随着摩擦系数的增大,I型裂纹的应力强度因子不变,II型裂纹的应力强度因子随之显著减小;当加载角较大时,裂纹面产生更为复杂的二次裂纹,故压剪断裂测试的推荐加载角范围为30°~50°。 相似文献
4.
通过有限元分析软件ANSYS数值模拟手段,分析了爆破荷载作用下,裂纹长度与类型、不同的装药量对裂纹尖端动态应力强度因子的影响以及预裂与光面爆破动态应力强度因子比较分析,计算得出:预裂爆破预裂缝的产生主要是从炮孔处产生的开口裂纹在冲击波以及爆生气体的作用下扩展形成的;随着药径与孔径比的增大,动态应力强度因子也逐渐增大,动态应力强度因子曲线形态不变;由于自由面的存在,光面爆破裂纹应力强度动态因子后续峰值较预裂爆破的大。 相似文献
5.
基于扩展裂纹尖端附近应变场分析,采用冲击载荷作用的三点弯曲梁进行试验,开展了应变片法确定Ⅰ型裂纹动态应力强度因子的研究。明确了应变片与裂纹扩展方向之间朝向角为特定锐角和钝角条件下,动态裂纹尖端附近的归一化应变采用与裂纹扩展速度、应变片黏贴位置相关的二项式来表示,给出了二项式的相关系数确定过程和动态应力强度因子计算式。结果表明,二项式的理论计算的应变与时间关系变化曲线与试验实测相吻合;选取曲线最大值两侧3/4峰值处的时间差为特征时间?t时,理论计算结果与实测的应变与时间关系一致性较高;选用理论计算和试验实测的应变与时间关系变化曲线最大值,结合计算式,确定Ⅰ型裂纹动态应力强度因子,同时,与采用动焦散线法计算的结果进行对比,验证了应变片法确定Ⅰ型裂纹动态应力强度因子的可行性。研究过程为应变片法在岩石断裂力学特征量的测定提供了理论基础。 相似文献
6.
7.
为了研究围压对巴西裂纹圆盘应力强度因子的影响,使用权函数方法得到了围压作用下巴西裂纹圆盘的应力强度因子,进而得到径向集中荷载与围压共同作用下的应力强度因子的计算公式。在此基础上,从理论上分析了围压对巴西裂纹圆盘应力强度因子的影响,分析结果表明:围压对II型应力强度因子无影响,纯围压作用下裂纹趋于闭合;围压和集中力共同作用下,I型应力强度因子随着围压的增大而减小。对比分析了数值分析与理论结果,分析表明,理论与数值结果吻合良好,从而表明了理论分析的正确性。此外,还研究了围压对纯II型裂纹加载条件的影响,结果表明,纯II型裂纹的临界加载角随着围压增大而减小,直至为0。因此,当围压较大时,加载角为0°左右所发生的断裂不一定全是纯I型断裂。 相似文献
8.
由总应力强度指标计算的 ,并不是试样破坏时的真实破裂角,而仅是一个假想的破裂角,与之对应的平面是一个假想的剪切破坏面。试验结果表明,试样破坏时的真实破裂角,是用有效应力强度指标 计算的 。分析论证了在关于土的抗剪强度计算的相关公式中,有效应力强度指标与总应力强度指标不可混用,且公式中有效应力强度指标应与有效应力相对应、总应力强度指标应与总应力相对应。 相似文献
9.
接触裂纹问题在工程结构中较为常见。结合数值流形法在裂纹处理上的优势,分析了压剪荷载作用下的接触裂纹问题,模拟了压剪裂纹渐进扩展过程。为了减少由于裂纹尖端位置不同而产生的误差,对裂纹尖端附近一定范围内的每一个物理覆盖附加奇异覆盖函数项,并根据裂纹尖端位置和单元含奇异物理覆盖的数目进行分区积分。选取一个压剪破坏算例,分析了法向接触力对应力强度因子计算结果的影响,并模拟了其渐进破坏过程。计算结果表明,所提方法在压剪裂纹问题方面的可行性,与未细化和覆盖细化方法得到的结果相比,更能准确地描述裂纹扩展路径。法向接触力对II型应力强度因子的贡献为0,对I型应力强度因子的影响较大,相对误差随网格密度变化明显,且法向接触力对I型应力强度因子的影响要比直接施加内压时的影响大。 相似文献
10.
爆炸应力波作用下缺陷介质裂纹扩展的动态分析 总被引:2,自引:0,他引:2
采用透射式焦散线测试系统,进行爆炸应力波作用下缺陷介质裂纹扩展试验,研究了含与炮孔共线的预制裂隙介质裂纹扩展速度、加速度、裂纹尖端动态应力强度因子和动态能量释放率的变化规律以及它们之间的变化关系。试验结果表明,在爆炸应力波作用下裂隙两端产生了两条翼裂纹A、B,翼裂纹A的长度较翼裂纹B长,两条翼裂纹向相反的方向扩展;在翼裂纹扩展过程中,存在着加速与减速的过程,扩展速度瞬间达到峰值,其后逐渐振荡下降;动态应力强度因子也呈现瞬间达最大值到逐渐减小连续振荡变化的趋势,动态应力强度因子 > ;翼裂纹尖端的动态能量释放率对裂纹扩展具有驱动作用。 相似文献
11.
大量的细观试验研究发现,岩石破坏主要是裂纹沿着岩石晶体颗粒边界的扩展造成的(沿晶断裂),裂纹沿弯折晶界的扩展则构成了不同材料边界上翼裂纹的扩展。基于以上细观试验结果,建立奇异单元的有限元模型,通过对节点位移的数值外插法,得到了岩石材料沿晶断裂翼裂纹应力强度因子,并研究了晶粒几何特征和材料非均质性(Dundurs参数)对裂纹扩展的影响。研究表明:在均质情况下,晶粒的几何形状在接近正六边形的情况下最适合裂纹扩展。随着非均质性的增强,各主翼裂纹比和晶粒几何角度所对应的KI值都要较均质模型的结果更高,最大的KI 所对应的晶粒的内角角度也有所增加。综合所有计算结果可以看出,岩石中晶粒的非均质程度越高,越利于岩石破裂。 相似文献
12.
13.
基于Pro/E的PDC钻头参数化设计 总被引:1,自引:0,他引:1
基于Pro/E (Pro/ENGINEER)的二次开发平台,以煤炭系统常用的胎体式内凹型PDC钻头为例,在系统分析钻头结构特点和主要参数相关性的基础上,建立了钻头结构设计各参数相关性技术体系实体参数化设计模型。通过设计Φ65 mm胎体式内凹PDC钻头,验证了该模型能够快速、准确地利用参数变化完成钻头体的三维及二维结构图设计,从而大大提高了设计效率和质量,为钻头参数化设计提供了参考。 相似文献
14.
为了巴彦河套新区油气资源高效开发,(1)通过测井数据、岩心实验以及实钻数据,开展了该区地层岩性可钻性分析,表明白垩系埋深较深地层以及太古界片麻岩地层可钻性差;(2)调研了该区以及外部区块难钻地层异形齿钻头实钻情况,白垩系5000 m以深地层以及太古界地层单只钻头进尺少,机械钻速低,调研的外部区块塔里木塔河南难钻地层通过使用异形齿钻头,提速效果显著;(3)对比分析了平面齿、斧形齿、多棱齿以及锥形齿破岩机理,为后续钻头优化设计提供了理论支撑;(4)开展了异形齿PDC钻头现场实验,较常规PDC钻头单只进尺以及机械钻速均取得了显著的提升,其中有21口井实现二开“一趟钻”,总进尺30000余米。总之根据地层可钻性变化,优配平面齿、斧形齿、多棱齿以及锥形齿,提高钻头与地层的配伍性,可显著提高钻井效率。 相似文献
15.
16.
国际岩石力学学会(ISRM)在1995年提出一种新型的岩石断裂韧度试样--人字形切槽巴西圆盘试样(cracked chevron notched Brazilian disc--CCNBD),对该试样的一个重要力学参数即最小无量纲应力强度因子的标定,以前的分析和计算都没有考虑切槽宽度的影响。然而试样切槽的宽度受切割刀具厚度所限,不能为零。当试样较小时,切槽宽度则相对较大。通过三维边界元计算分析表明,切槽宽度越大,无量纲应力强度因子的标定值就越大;对于ISRM推荐的CCNBD标准试样,得出其最小无量纲因子值为0.954,这比ISRM给出对应值0.84要大13.6 %。同时,小裂纹应力强度因子曲线的变化趋势也发生了质的变化,这可能会导致实验的失败。推荐最小无量纲应力强度因子的标定采用考虑切槽的三维分析。 相似文献