首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recrystallised plagioclase in volcanic metasediments of the Foreshore Group (hornblende-hornfels facies) has a strong preferred orientation with crystal a-axes [100] lying parallel to bedding and with a maximum parallel to a lineation (= maximum principal strain axis or axis of greatest elongation); composition varies widely from bed to bed from oligoclase to anorthite. The preferred orientation is interpreted to result from the mechanical rotation of elongate plagioclase ejecta in the original unconsolidated tuff during strain caused by intrusion of the adjacent Bluff igneous complex. Evidence for such an orienting mechanism is found in the preferred orientation of large unrecrystallised plagioclase ejecta. Matrix plagioclase is generally recrystallised to form granoblastic mosaics; this texture represents a mimetic recrystallisation which reduced grainboundary energy in the fine-grained matrix during the thermal event immediately succeeding deformation.  相似文献   

2.
The Pikikiruna Schist of Nelson, New Zealand, displays a fabric in which the patterns of quartz c-axes, the poles to planes of inequidimensional quartz grains, and the statistical maxima of poles to sheet-silicate cleavages are oblique to each other. The quartz c-axes patterns consist of type-1 and type-2 crossed-girdles. The triclinic fabric can be explained in terms of one complex rotational deformation of an essentially plane strain nature. Rotation of approximately 90° about the intermediate strain-axis was combined at a late stage with subsidiary rotations about the extension axis. The quartz c-axes patterns can be related to the kinematic framework rather than the finite strain-axes. On the other hand, the dimensional quartz preferred orientation may be closely related to the finite strain-axes, though the quantity of strain can not be measured because of recrystallisation.  相似文献   

3.
The Canisp Shear Zone transects layered Lewisian gneisses near Lochinver, NW Scotland. It is a vertical ductile shear zone with a dextral shear sense, formed during Laxfordian amphibolite facies metamorphism, transposing the layering to new foliation and linear structures. Minerals in the layered gneisses show little or no shape fabric, while a strong shape fabric defines the foliation. For quartz, this shape fabric is accompanied by development of a preferred crystal orientation with fabric patterns reflecting the geometry of the shear deformation. The quartz fabric shows a pole-free area around the lineation with the c-axes concentrated in an asymmetric cross-girdle or a point maximum perpendicular to the shear plane, and a monoclinic symmetry consistent with the shear sense.  相似文献   

4.
The 3D shape, size and orientation data for white mica grains sampled along two transects of increasing metamorphic grade in the Otago Schist, New Zealand, reveal that metamorphic foliation, as defined by mica shape‐preferred orientation (SPO), developed rapidly at sub‐greenschist facies conditions early in the deformation history. The onset of penetrative strain metamorphism is marked by the rapid elimination of poorly oriented large clastic mica in favour of numerous new smaller grains of contrasting composition, higher aspect ratios and a strong preferred orientation. The metamorphic mica is blade shaped with long axes defining the linear aspect of the foliation and intermediate axes a partial girdle about the lineation. Once initiated, foliation progressively intensified by an increase in the aspect ratio, size and alignment of grains, although highest grade samples within the chlorite zone record a decrease in aspect ratio and reduction in SPO strength despite continued increase in grain size. These trends are interpreted in terms of progressive competitive anisotropic growth of blade‐shaped grains so that the fastest growth directions and blade lengths tend to parallel the extension direction during deformation. The competitive nature of mica growth is indicated by the progressive increase in size and resultant decrease in number of metamorphic mica with increasing grade, from c. 1000 relatively small mica grains per square millimetre of thin section at lower grades, to c. 100 relatively large grains per square millimetre in higher grade samples. Reversal of SPO intensity and grain aspect ratio trends in higher grade samples may reflect a reduction in the strain rate or reduction in the deviatoric component of the stress field.  相似文献   

5.
The behaviour of quartz during metamorphism is studied based on two case studies from the Barrovian terrains of Sulitjelma in arctic Scandinavia and Loch Tay in the Central Highlands Dalradian of Scotland. Both terrains preserve evidence for metamorphism in pelites involving nucleation and growth of garnet at different times in the deformation history. Data are presented on the size, shape and crystallographic orientation of quartz preserved as inclusions in garnet and as grains in the surrounding matrix. While quartz-grains remain small and dispersed between mica grains, deformation appears to be dominated by grain-boundary sliding accommodated by dissolution–precipitation. At amphibolite facies, textural coarsening occurs by dissolution of small quartz grains and growth of larger quartz grains, coupled with segregation of quartz from mica. As a result, quartz deforms by dislocation creep, developing crystallographic preferred orientations (CPO) consistent with both coaxial and non-coaxial strain. Quartz CPOs with <0001> axes lying parallel to foliation and stretching direction are commonly developed, and best explained by mechanical rotation of inequant (detrital?) quartz grains. There is no evidence for selective entrapment of quartz inclusions in garnet on the basis of quartz crystallographic orientation.  相似文献   

6.
Staurolite porphyroblasts, 1.5–8cm in length and 0.3–2cm in width, in the Littleton Schist at Bolton, Connecticut, contain curved quartz inclusion trails which document synkinematic rotations of at least 135°. The orientations of long axes of these staurolite crystals define a weak preferred orientation in a plane approximately parallel to the external foliation. Serial sections of four differently orientated crystals and U-stage measurements of the orientations of their inclusion trails demonstrate that the inflection hinge line and the statistical 'symmetry axis' characterizing the foliation within a porphyroblast are unrelated to the orientations of external crenulations and are, in all cases, parallel to the long axis of the porphyroblast. The cumulative rotation reflected in the curvature of the inclusion trails is a maximum in a c -axis section through the initial core of a crystal. The amount of rotation about the c -axis decreases linearly along the length of the crystal away from the nucleation site.
The sense and amount of rotation recorded by a porphyroblast is related to its orientation. A tightly constrained transition from clockwise to anticlockwise rotation defines a slip direction that coincides with the preferred orientation of the staurolite c -axes. The total rotation reflected by the inclusion trails increases as a function of the angle between the c -axes of the staurolite crystals and the slip direction.
Initially random staurolite porphyroblasts rotated during growth, as a consequence of laminar shear in the surrounding viscous matrix. This interpretation is quantitatively consistent with: the staurolite preferred orientation; its coincidence with the apparent slip direction; the correlation between both the sense and the amount of rotation and the orientation of the long axis of the porphyroblast; and the twisted conical shape of the family of surfaces defined by the inclusion trails.  相似文献   

7.
Microstructure-based finite element simulations were used to study the influence of grain shape fabric and crystal texture on thermoelastic responses related to marble degradation phenomena. Calcite was used as an illustrative example for studying extremes of shape preferred orientation (SPO) in shape fabric and lattice preferred orientation (LPO) in crystal texture. Three SPOs were analyzed: equiaxed grains, elongated grains, and a mixture of equiaxed and elongated grains. Three LPOs were considered: a random orientation distribution function and two degrees of strong directional crystal texture. Finally, the correlation between the direction of the LPO with respect to that of the SPO was examined. Results show that certain combinations of SPO, LPO, and their directional relationship have significant influence on the thermomechanical behavior of marble. For instance, while there is no major dependence of the elastic strain energy density and the maximum principal stress on SPO for randomly textured microstructures, there is a strong synergy between LPO and its directional relationship with respect to the SPO direction. Microcracking precursors, elastic strain energy density, and maximum principal stress, decrease when the crystalline c-axes have fiber texture perpendicular to the SPO direction, but increase significantly when the c-axes have fiber texture parallel to the SPO direction. Moreover, the microstructural variability increases dramatically for these latter configurations. In general, the influence of LPO was as expected, namely, the strain energy density and the maximum principal stress decreased with more crystal texture, apart from for the exception noted above. Spatial variations of these precursors indicated regions in the microstructure with a propensity for microcracking. Unexpectedly, important variables were the microstructural standard deviations of the spatial distributions of the microcracking indicators. These microstructural standard deviations were as large as or larger than the variables themselves. The elastic misfit-strain contributions to the coefficients of thermal expansion were also calculated, but their dependence was as expected.  相似文献   

8.
We ask the question whether petrofabric data from anisotropy of magnetic susceptibility (AMS) analysis of deformed quartzites gives information about shape preferred orientation (SPO) or crystallographic preferred orientation (CPO) of quartz. Since quartz is diamagnetic and has a negative magnetic susceptibility, 11 samples of nearly pure quartzites with a negative magnetic susceptibility were chosen for this study. After performing AMS analysis, electron backscatter diffraction (EBSD) analysis was done in thin sections prepared parallel to the K1K3 plane of the AMS ellipsoid. Results show that in all the samples quartz SPO is sub-parallel to the orientation of the magnetic foliation. However, in most samples no clear correspondance is observed between quartz CPO and K1 (magnetic lineation) direction. This is contrary to the parallelism observed between K1 direction and orientation of quartz c-axis in the case of undeformed single quartz crystal. Pole figures of quartz indicate that quartz c-axis tends to be parallel to K1 direction only in the case where intracrystalline deformation of quartz is accommodated by prism <c> slip. It is therefore established that AMS investigation of quartz from deformed rocks gives information of SPO. Thus, it is concluded that petrofabric information of quartzite obtained from AMS is a manifestation of its shape anisotropy and not crystallographic preferred orientation.  相似文献   

9.
Shape, size and orientation measurements of quartz grains sampled along two transects that cross zones of increasing metamorphic grade in the Otago Schist, New Zealand, reveal the role of quartz in the progressive development of metamorphic foliation. Sedimentary compaction and diagenesis contributed little to the formation of a shape‐preferred orientation (SPO) within the analysed samples. Metamorphic foliation was initiated at sub‐greenschist facies conditions as part of a composite S1‐bedding structure parallel to the axial planes of tight to isoclinal F1 folds. An important component of this foliation is a pronounced quartz SPO that formed dominantly by the effect of dissolution–precipitation creep on detrital grains in association with F1 strain. With increasing grade, the following trends are evident from the SPO data: (i) a progressive increase in the aspect ratio of grains in sections parallel to lineation, and the development of blade‐shaped grains; (ii) the early development of a strong shape preferred orientation so that blade lengths define the linear aspect of the foliation (lineation) and the intermediate axes of the blades define a partial girdle about the lineation; (iii) a slight thinning and reduction in volume of grains in the one transect; and (iv) an actual increase in thickness and volume in the survivor grains of the second transect. The highest‐grade samples, within the chlorite zone of the greenschist facies, record segregation into quartz‐ and mica‐rich layers. This segregation resulted largely from F2 crenulation and marks a key change in the distribution, deformation and SPO of the quartz grains. The contribution of quartz SPO to defining the foliation lessens as the previously discrete and aligned detrital quartz grains are replaced by aggregates and layers of dynamically recrystallized quartz grains of reduced aspect ratio and reduced alignment. Pressure solution now affects the margins of quartz‐rich layers rather than individual grains. In higher‐grade samples, therefore, the rock structure is characterized increasingly by segregation layering parallel to a foliation defined predominantly by mica SPO.  相似文献   

10.
The regional development of distinct patterns of preferred orientation of quartz c-axes in the Saxony Granulites has been well documented in the literature. A suite of specimens representative of these fabrics has been examined both by optical universal stage, to determine quartz c-axis orientation, and by X-ray diffraction, to obtain orientation data from r, z, m and a. The data are combined to yield inverse pole figures of schistosity and lineation.The finite strain of the Saxony Granulites is thought to be essentially a flattening and there is no evidence that the deformation path is other than one of continuous flattening. Elongation in the plane of the schistosity is local and not extreme. Because of this apparently simple deformation picture, and because preliminary transmission electron microscopy reveals the presence of dislocation structures similar to those found in deformed metals, an attempt is made to interpret the quartz orientation in terms of dislocation slip mechanisms. There is some evidence that the activation of different mechanisms is perhaps primarily controlled by temperature. At least some of the patterns of preferred orientation of quartz were probably produced by deformation in the field of stability of α-quartz.  相似文献   

11.
The relationship between quartz c-axis microfabric and strain is examined in six specimens of recrystallized quartzite conglomerate in which strain was measured using pebble shapes. Four rocks subjected to plane strain display a direct relationship between the strength of preferred orientation and the strain intensity. The c-axis distributions in these rocks, as well as a rock subjected to moderate extensional strain, are crossed-girdles with maxima near the intermediate principal strain axis and connecting girdles at acute angles to the direction of maximum shortening. A rock subjected to moderate flattening strain has several maxima clustered near the direction of maximum shortening and a weak connecting girdle through the intermediate principal strain axis.These results are generally similar to those of other studies comparing strain and tectonite fabrics and also with experimental and computer simulation studies of fabrics. The degree of preferred orientation is related to total strain, and therefore microfabrics in quartzites may be cautiously interpreted as qualitative indicators of strain intensity. Uncertainties are greater, however, for correlations of fabric patterns with shapes of the strain ellipsoid. An observed increase in recrystallized grain sizes with increasing strain suggests that flow stress was lower in the more strained rocks.  相似文献   

12.
Quartz c axis fabrics and microstructures have been investigated within a suite of quartzites collected from the Loch Eriboll area of the Moine Thrust zone and are used to interpret the detailed processes involved in fabric evolution. The intensity of quartz c axis fabrics is directly proportional to the calculated strain magnitude. A correlation is also established between the pattern of c axis fabrics and the calculated strain symmetry.Two kinematic domains are recognized within one of the studied thrust sheets which outcrops immediately beneath the Moine Thrust. Within the upper and central levels of the thrust sheet coaxial deformation is indicated by conjugate, mutually interfering shear bands, globular low strain detrital quartz grains whose c axes are aligned sub-parallel to the principal finite shortening direction (Z) and quartz c axis fabrics which are symmetric (both in terms of skeletal outline and intensity distribution) with respect to mylonitic foliation and lineation. Non-coaxial deformation is indicated within the more intensely deformed and recrystallized quartzites located near the base of the thrust sheet by single sets of shear bands and c axis fabrics which are asymmetric with respect to foliation and lineation.Tectonic models offering possible explanations for the presence of kinematic (strain path) domains within thrust sheets are considered.  相似文献   

13.
In the Ormiston Nappe Complex, west of Alice Springs, central Australia, a deformed zone up to 0.7 km thick is developed in the sedimentary Heavitree Quartzite. The deformed zone is adjacent to a major thrust fault and is defined by mylonitic foliation, which is parallel to the thrust plane and by isoclinal folds. Recognition of original detrital quartz grains allows strain ellipsoids to be measured across the zone. The strain generally plots in the flattening field and many specimens show pure flattening strain. The mylonitic foliation is an axial-plane structure to the folds and is parallel to the XY-plane of the strain ellipsoid. A quartz elongation lineation may be present within the foliation and is parallel to the principal extension direction (the X-axis) of the strain ellipsoid.Strain is accommodated principally by intracrystalline plastic deformation of the quartz grains. In detail the strain is not homogeneous and may vary even between adjacent grains of the same specimen. Quartz optic axis fabrics reflect this strain inhomogeneity. If the strain ellipsoid is an oblate spheroid, c-axes lie in small-circle girdles about the principal shortening axis (the Z-axis). With general triaxial strain, the c-axes lie in a great-circle girdle or girdles which intersect the foliation parallel to the intermediate strain axis (the Y-axis) and lie symmetrically about the Z-axis. A random population of grains from a specimen often shows a composite c-axis pattern between these two types.With approach to the thrust there is an increase in the amount of strain within the specimens. The increasing strain correlates with an increase in the degree of c-axis preferred orientation of the deformed detrital grains and in the amount of new strain-free grains present in the deformed quartzite. Adjacent to the thrust the quartzite is completely composed of polygonal new grains. The new grains probably formed under syntectonic conditions caused by movement along the thrust. The bulk of the new grains developed by increasing misorientation between the subareas of an initially polygonized old grain. There is no evidence of any marked host control on new-grain orientation, but new grain c-axis plots are generally similar to the corresponding old-grain plots from the same specimen.  相似文献   

14.
Deformation experiments have been carried out to investigate the effect of dynamic recrystallisation on crystallographic preferred orientation (CPO) development. Cylindrical samples of natural single crystals of quartz were axially deformed together with 1 vol.% of added water and 20 mg of Mn2O3 powder in a Griggs solid medium deformation apparatus in different crystallographic orientations with compression direction: (i) parallel to <c>, (ii) at 45° to <c> and 45° to <a> and (iii) parallel to <a>. The experiments were performed at a temperature of 800 °C, a confining pressure of 1.2 GPa, a strain rate of  10− 6 s− 1, to bulk finite strains of  14–36%. The deformed samples were analysed in detail using optical microscopy, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Two different microstructural domains were distinguished in the deformed samples: (i) domains with undulatory extinction and deformation lamellae, and (ii) domains with new recrystallised grains. Within the domains of undulatory extinction, crystal-plastic deformation caused gradual rotations of the crystal lattice up to  30° away from the host orientation. New recrystallised grains show a strong CPO with c-axis maxima at  45° to the compression direction. This is the case in all experiments, irrespective of the initial crystallographic orientation. The results show that c-axes are not continuously rotated towards the new maxima. The new grains thus developed through a mechanism different from subgrain rotation recrystallisation. New grains have a subeuhedral shape and numerous microcavities, voids, fluid channels and fluid inclusions at their grain boundaries. No host control is recorded in misorientation axes across their large angle grain boundaries. New grains might have been created by nucleation from solution in the μm-scale voids and microfractures. The CPO most likely developed due to preferred growth of the freshly precipitated grains with orientations suitable for intracrystalline deformation at the imposed experimental conditions.  相似文献   

15.
Samples of monomineralic quartz veins from the Simplon Fault Zone in southwest Switzerland and north Italy generally have asymmetric, single girdle c-axis patterns similar to textures measured from many other regions. Several samples have characteristically different textures, however, with a strong single c-axis maximum near the intermediate specimen axis Y (the direction within the foliation perpendicular to the lineation X) and a tendency for the other crystal directions to be weakly constrained in their orientation about this dominant c-axis maximum. This results in ‘streaked’ pole figure patterns, with an axis of rotation parallel to the c-axis maximum. These atypical samples also have a distinctive optical microstructure, with advanced recrystallization and grain growth resulting in a strong shape fabric (SB) oblique to the dominant regional foliation (SA), whereas typical samples have a strong SA fabric outlined by very elongate, only partially recrystallized, ribbon grains. The recrystallized grains of the atypical samples are themselves deformed and show strong undulose extinction and a core-mantle recrystallization structure. The streaked texture is likely to be a direct consequence of lattice bending and kinking during heterogeneous slip on the favoured first-order prism (10 0) (a) system, the heterogeneity itself being due to problems in maintaining coherence across grain boundaries when insufficient independent easy-slip systems are available for homogeneous strain by dislocation glide. Such bending would be particularly prevalent in very elongate, thin ribbon grains, resulting in high internal strain energy and promoting recrystallization. Thus both the texture and the microstructure could be significantly modified by later strain increments affecting quartz grains with an already developed, nearly single-crystal texture.  相似文献   

16.
Commonly, basal glide is the predominant deformation mechanism of quartz in tectonites. Therefore, local deformation is probably mostly progressive simple shear rotating the sheared domains as well as deforming them. If a tectonite body is constrained to be deformed irrotationally and approximately homogeneously throughout, it is necessarily traversed by closely spaced material surfaces that are approximately plane and orthogonal originally, and stay so through time. These surfaces act as internal boundaries and enforce cancellation of the rigid-body rotations of, in the general case, four distinct families of domains, with slip planes and directions mutually mirror-symmetric. The overall symmetry of the fabric is orthorhombic, with the mirror planes coinciding with the principal planes of strain. Certain grains with basal planes in favorable orientation for one of the four ideal simple shears could initiate the deformation, and because of the need for compatibility, entrain neighboring grains into a similar strain, making the surroundings of an initiating grain a shear zone. Compatibility also requires thec-axes of grains in a domain to be rotated progressively toward the direction of maximum shortening. If the original orientation of crystallographic axes was random, domains of one family thus acquire a fabric with a single maximum, and the four resulting fabrics with single maxima combine to form crossed-girdle patterns. Depending on the orientation of the average shear planes and slip directions in the four families, the crossed girdles can be of different types; most fabric types that have been observed in quartz tectonites can be obtained by superposition. Crossed-girdle fabrics with low symmetry result from non-coaxial strain histories.  相似文献   

17.
Automated electron backscattered diffraction (EBSD) was applied using a scanning electron microscope to obtain lattice preferred orientation (LPO) data for olivine in garnet peridotites of the Central Alps. As a reference frame, the LPOs of enstatite were also investigated. In the garnet peridotite at Cima di Gagnone (CDG), a weak foliation carrying a distinct lineation is present. The lineation is characterized by elongated enstatite, olivine and poikiloblastic garnet. Olivine shows a very unusual LPO with [100] normal to foliation and [001] parallel to lineation. Achsenverteilungsanalyse (AVA) maps demonstrate that [001] of olivine grains corresponds quite well to their maximum length axes which are preferentially parallel to the lineation. Numerous planar hydrous defects within (001) planes of olivine are marked by palisades of ilmenite rods and show a preferred orientation normal to lineation. Calculated P-wave velocities for CDG are fastest (8.32 km sу) normal to foliation with a relatively low anisotropy (2.9%). Compared to mantle peridotites with the usual (010)[100] LPO where the fastest Vp direction is towards the lineation, the relationship between flow geometry and seismic anisotropy is significantly different at CDG. Several mechanisms for the formation of the LPO type at CDG are considered, with glide possible on (100)[001] of olivine. On the basis of field data as well as petrographic and petrologic evidence, it has been demonstrated that the CDG garnet peridotite formed by prograde metamorphism from a hydrous protolith at pressures and temperatures of about 3.0 GPa and 750 °C, respectively. The CDG LPO is interpreted to have formed during hydrous subduction zone metamorphism. The same interpretation may hold for the previously investigated olivine LPO at Alpe Arami, which is similar to that at the nearby CDG. The observed anomalous LPO is no proof for ultradeep (>3.0 GPa) conditions.  相似文献   

18.
This quantitative microstructural study deals with textures of quartz domains within a mylonitized metapelite collected near a thrust surface corresponding to the tectonic contact between two metamorphic units, which crop out in the Aspromonte Massif, southern Calabria (Italy). The sample investigated lacks a mesoscopic stretching lineation. Therefore, quartz c-axis fabrics were investigated in two mutually orthogonal thin sections (a) parallel to the quartz rod lineation and perpendicular to the foliation (YZ plane) and (b) perpendicular to the quartz rods and perpendicular to the foliation (XZ plane); the data were generated using classical (manual measurements of quartz c-axis using U-stage) and modern methods (Computer Integrated Polarization microscopy). Both these sections show oblique foliations at ca. 40° from the main shear plane, implying that the actual X direction (stretching lineation that is absent on the mesoscopic scale) must lie between these two sections. Quartz c-axis data from the YZ section when rotated by 90° are similar with those from the XZ section. Hence, the data from the two sections are merged. These data when rotated by an angle of 50° from the direction of quartz rod lineation, gives an asymmetrical pattern indicating top-to-the-North sense of shear. This was confirmed by investigating quartz c-axis patterns in a section striking NS and perpendicular to the foliation. Based on the study it is thus concluded that this method can be used to do kinematic analysis in rocks that are devoid of stretching lineations. Apart from the above, the advantages and disadvantages of the classical and modern methods of quartz c-axis analysis are discussed.  相似文献   

19.
边千韬  林传勇 《地质科学》1996,31(2):170-175
在可可西里北缘发现的糜棱岩化带,经显微构造研究确定为韧性剪切带。此带发育流劈理及拉伸线理。糜棱岩化花岗岩和糜棱岩化石英脉中的石英发育亚晶粒构造、位错构造和动态重结晶,长石主要发育机械双晶。石英c轴组构属韧性剪切带中的典型形式,石英变形以位错蠕变机制和位错滑移机制共存为特征,石英的动态重结晶作用是由亚晶粒旋转机制形成。长石的变形主要是通过机械双晶实现的。此韧性剪切带形成时的温度约400℃,差异应力约30MPa,应变速率约1.9×10-13s-1.  相似文献   

20.
Caledonian eclogite facies shear zones developed from Grenvillian garnet granulite facies anorthosites and gabbros in the Bergen Arcs of western Norway allow direct investigation of the relations between macroscopic structures and crystallographic preferred orientation (CPO) in lower continental crust. Field relations on the island of Holsnøy show that the eclogites formed locally from granulite facies rocks by progressive development of: (1) eclogite adjacent to fractures; (2) eclogite in discrete shear zones (> 2 m thick); (3) eclogite breccia consisting of >80% well-foliated eclogite that wraps around rotated granulite blocks; and (4) anastomosing, subparallel, eclogite facies shear zones 30–100 m thick continuous over distances > 1 km within the granulite terrane. These shear zones deformed under eclogite facies conditions at an estimated temperature of 670 ± 50°C and a minimum pressure of 1460 MPa, which corresponds to depths of >55 km in the continental crust. Detailed investigation of the major shear zones shows the development of a strong foliation defined by the shape preferred orientation of omphacite and by alternating segregations of omphacite/garnet-rich and kyanite/zoisite-rich layers. A consistent lineation throughout the shear zones is defined by elongate aggregates of garnet and omphacite. The CPO of omphacite, determined from five-axis universal stage measurements, shows a strong b-axis maximum normal to foliation, and a c-axis girdle within the foliation plane with weak maxima parallel to the lineation direction. These patterns are consistent with deformation of omphacite by slip parallel to [001] and suggest glide along (010). The lineation and CPO data reveal a consistent sense of shear zone movement, although the displacement was small. Localized faulting of high-grade rocks accompanied by fluid infiltration can be an important mode of failure in the lower continental crust. Field relations show that granulite facies rocks can exist in a metastable state under eclogite facies conditions and imply that the lower crust can host differing metamorphic facies at the same depth. Deformation of granulite and partial conversion to eclogite, such as is exposed on Holsnøy Island, may be an orogenic-scale process in the lowermost crust of collisional orogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号