首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
The fatigue life of top tensioned risers under vortex-induced vibrations (VIVs) with consideration of the effect of internal flowing fluid on the riser is analyzed in the time domain. The long-term stress histories of the riser under VIVs are calculated and the mean stresses, the number of stress cycles and amplitudes are determined by the rainflow counting method. The Palmgren-Miner rule for cumulative damage theory with a specified S-N curve is used to estimate the fatigue life of the riser. The corresponding numerical programs numerical simulation of vortex-induced vibrations (NSVIV) which can be used to calculate the VIV response and fatigue life of the riser are compiled. Finally the influences of the riser’s parameters such as flexural rigidity, top tension and internal flow velocity on the fatigue life of the riser are analyzed in detail and some conclusions are drawn.  相似文献   

2.
Marine risers play a key role in the deep and ultra-deep water oil and gas production. The vortex-induced vibration (VIV) of marine risers constitutes an important problem in deep water oil exploration and production. VIV will result in high rates of structural failure of marine riser due to fatigue damage accumulation and diminishes the riser fatigue life. In-service monitoring or full scale testing is essential to improve our understanding of VIV response and enhance our ability to predict fatigue damage. One marine riser fatigue acoustic telemetry scheme is proposed and an engineering prototype machine has been developed to monitor deep and ultra-deep water risers’ fatigue and failure that can diminish the riser fatigue life and lead to economic losses and eco-catastrophe. Many breakthroughs and innovation have been achieved in the process of developing an engineering prototype machine. Sea trials were done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea. The inclination monitoring results show that the marine riser fatigue acoustic telemetry scheme is feasible and reliable and the engineering prototype machine meets the design criterion and can match the requirements of deep and ultra-deep water riser fatigue monitoring. The rich experience and field data gained in the sea trial which provide much technical support for optimization in the engineering prototype machine in the future.  相似文献   

3.
With the exploitation of oil and gas in deep water, the traditional vortex induced vibration (VIV) theory is challenged by the unprecedented flexibility of risers. A nonlinear time-dependent VIV model is developed in this paper based on a VIV lift force model and the Morison equation. Both the inline vibration induced by the flow due to vortex shedding and the fluid-structure interaction in the transverse direction are included in the model. One of the characteristics of the model is the response-dependent lift force with nonlinear damping, which is different from other VIV models. The calculations show that the model can well describe the VIV of deepwater risers with the results agreeing with those calculated by other models.  相似文献   

4.
Vortex-induced vibration is quite common during the operation of offshore risers or umbilical cables,commonly leading to serious damage to risers and reduced service life.Vortex-induced vibration of the offshore risers could be effectively suppressed by fairing devices.In this paper,a newly developed vortex-induced vibration fairing and large eddy simulation model of the FLUENT software were used for numerical analysis,experimental research and stimulating vortex-induced vibration at 0.1–2 ms^-1.The data of the numerical model with fairing was compared and analyzed to study the vortex shedding frequency at different Reynolds numbers and changes in drag and lift coefficients.The displacement state of 12 in risers with and without fairing was experimentally tested using a five degree-of-freedom balance.The vortex-induced vibration effect of the fairing was tested at different velocities.The result shows the drag reduction effect of the fairing is more obvious when the flow velocity is 0.4–1.2 ms^-1 and the maximum drag reduction reaches 55.6%when the flow velocity is 0.6 ms^-1.Additionally,the drag reduction effect was obvious when the flow velocity was greater than 1.3 ms^-1 and less than 0.3.The result indicates that the developed 12 in fairing,with good potential in engineering applications,has good vortex-induced vibration-suppression effects.  相似文献   

5.
This work aimed to demonstrate possibilities for both active and passive control of the vortex-induced vibration and fatigue life of steel catenary risers via an analysis of the self-organization and evolution of the structural vibration based on synergetic theory. An analysis of the complex interrelated and synergistic relationship between the order parameter and the fast variable was performed, and the master equation of the nodal displacements was established as the order parameter for the evolution of the riser’s structural vibration. Passive control methods include modifying the structure’s elastic modulus, the internal fluid velocity, the top tension and the structural damping ratio, while an active control involves adjusting the external flow rate. Optimized parameters were obtained by analyzing the non-steady state solution of the master equation. The results show that the fatigue life greatly increases as the riser’s elastic modulus decreases. In contrast, the fatigue life decreases with an increase of the internal fluid velocity. With an increase of the top tension, the vibration amplitudes and the number of modes may decrease, resulting in fewer bending stress cycles and a longer fatigue life. Furthermore, the structural damping ratio should be as large as possible. Finally, an active and passive control of the riser structure’s response to vortex-induced vibration and its fatigue life can be achieved by carefully modifying the parameters mentioned above. The results may provide a theoretical framework for engineering practice concerning the design and control of steel catenary riser structures which are affected by vortex-induced vibration.  相似文献   

6.
The objective of the present investigation is to study the vortex-induced vibrations (VIV) for flow past a circular cylinder. The turbulent flow is simulated by using a 2-D standard k-ε model incorporating the finite volume method (FVM) and the Semi-Implicit Method for the Pressure Linked Equations (SIMPLE) algorithm on non-orthogonal boundary-fitted collocated grids. The wall boundaries are approximated with wall functions. In the numerical cases, the turbulent wake patterns are studied by plotting the streamlines and the turbulent kinetic energy contours. The pressure distributions are investigated. Analyses of the vortex-induced force coefficients and the structural vibrations are carried out. The variations of the Strouhal number with the Reynolds number and of the vortex-induced force coefficients with the reduced velocity are obtained. The results show that this numerical approach is feasible and efficient in investigating the VIV problem for a circular cylinder.  相似文献   

7.
A numerical study of flow around two tandem cylinders with unequal diameters was carried out. The upstream larger cylinder was fixed and the downstream smaller cylinder was allowed to oscillate in the transverse direction only. Comparisons of the experimental and numerical results were made to investigate the effects of the gap ratio on the maximum vibration amplitude and vortex shedding frequency. The results showed that the vibration response of the smaller cylinder was significantly affected by the presence of the upstream larger cylinder, and resulted in greatly reduced vibration amplitudes. With an increasing gap ratio, the vibration amplitude increased. However, the magnitude was lower than that corresponding to a single cylinder (with the same diameter as that of the downstream smaller cylinder) under the same flow conditions.  相似文献   

8.
With the development of deepwater oil and gas exploration, Steel Catenary Risers(SCRs) become preferred risers for resource production, import and export. Vortex induced vibration(VIV) is the key problem encountered in the design of SCRs. In this study, a new model, the rigid swing model, is proposed based on the consideration of large curvature of SCRs. The sag bend of SCRs is assumed as a rigid swing system around the axis from the hanging point to the touch down point(TDP) in the model. The torque, produced by the lift force and the swing vector, provides the driving torque for the swing system, and the weight of SCRs provides the restoring torque. The simulated response of rigid swing is coupled with bending vibration, and then the coupling VIV model of SCRs is studied in consideration of bending vibration and rigid motion. The calculated results indicate that the rigid swing has a magnitude equal to that of bending vibration, and the rigid motion affects the dynamic response of SCRs and can not be neglected in the VIV analysis.  相似文献   

9.
This study investigates the effects of multiphase internal flows that consider hydrate phase transitions on the parametric stability of marine risers.A numerical model of the multiphase internal flow that considers a hydrate phase transition is established.The model first solves the flow parameters and subsequently obtains the natural frequencies of risers with different gas intake ratios.The stability charts of marine risers with different gas intake ratios are plotted by applying Floquet theory,and the effects of the gas intake ratio on the instability and vibration response of the risers are identified.The natural frequency increases with an increase in the gas intake ratio;thus,instability zones move to higher frequency ranges in the stability charts.As the increasing gas intake ratio reduces the damping effect of the Coriolis force,the critical amplitude of the heave in the unstable region decreases,especially when hydrodynamic damping is not considered.As a result,higher-order unstable regions are excited.When in an unstable region,the vibration response curve of a riser with a high gas intake ratio excited by parametric resonance diverges quickly due to parametric resonance.  相似文献   

10.
【目的】研究均匀流多管束干涉流动下圆柱受迫振动的水动力特性。【方法】基于SSTκ-ω模型,在亚临界雷诺数下(Re=1×105)对多管束共振强迫的涡激振动问题进行二维数值模拟,比较与分析三种典型附属管排布方式对主管路流体动力学特征的影响。【结果与结论】采用模型3下的附属管排布方式可在较大范围的振幅比下(Ay/D=0.1~0.8)有效改善主管路水动力特性:1)有效降低主管路上平均升力系数的幅值;2)抑制在单管路系统中出现的脉动升力系数突变衰减。同时,由于多管束对流动产生干涉效应,主管路上表现的尾迹涡度随着振动幅度的增大而呈现出不同的模式。此外,功率谱密度分析发现,多管束系统相较于单圆柱系统,在频率比为1时,模型2与模型3的共振“锁定”状态得到改善。  相似文献   

11.
Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average (ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive (AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.  相似文献   

12.
The bending stresses of top tensioned riser(TTR)under combined excitations of currents, random waves and vessel motions are presented in this paper, and the effect of the internal flowing fluid on the riser stresses is also considered. The computation programs which are used to solve the differential equations in the time domain are compiled and the principal factors of concern including the angular movements at the upper and lower ends of the riser, lateral displacements and bending stresses are presented. Then the effects of current velocity, random wave, top tension, vessel mean offset, low frequency motion and internal flow velocity on the bending stresses of the riser are analyzed in detail.  相似文献   

13.
An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a tensioned slender beam with dynamic boundary conditions. The KdV-mKdV equation is chosen to simulate the internal solitary wave, and the vessel motion is analysed by using the method proposed by Sexton. Using finite element method, the governing equation is solved in time domain with Newmark-β method. The computation programs for solving the differential equations in time domain are compiled and numerical results are obtained, including dimensionless displacement and stress. The action of internal solitary wave on the riser is like a slow powerful impact, and is much larger than those of surface wave and vessel motion. When the riser is under combined excitation, it vibrates at frequencies of both surface wave and vessel motion, and the vibration is dominated by internal solitary wave. As the internal solitary wave crest passes by the centre of the riser, the maximum displacement and stress along the riser occur. Compared to the lower part, the displacement and stress of the riser in the upper part are much larger.  相似文献   

14.
The vortex-induced vibration of two identical rigidly mounted risers in a parallel arrangement was studied using Ansys-CFX and model tests.The vortex shedding and force were recorded to determine the effect of spacing on the two-degree-of-freedom oscillation of the risers.CFX was used to study the single riser and two parallel risers in 2–8D spacing considering the coupling effect.Because of the limited width of water channel,only three different riser spacings,2D,3D,and 4D,were tested to validate the characteristics of the two parallel risers by comparing to the numerical simulation.The results indicate that the lift force changes significantly with the increase in spacing,and in the case of 3D spacing,the lift force of the two parallel risers reaches the maximum.The vortex shedding of the risers in 3D spacing shows that a variable velocity field with the same frequency as the vortex shedding is generated in the overlapped area,thus equalizing the period of drag force to that of lift force.It can be concluded that the interaction between the two parallel risers is significant when the risers are brought to a small distance between them because the trajectory of riser changes from oval to curve 8 as the spacing is increased.The phase difference of lift force between the two risers is also different as the spacing changes.  相似文献   

15.
搭建了一套振动台系统,模拟不同频率振动信号对加速度计进行测试,并从信号功率谱密度和积分位移2个方面对其低频测量特性进行分析。实验表明,当振动信号频率高于0.05 Hz时,对加速度计信号进行高通滤波并积分能够恢复出较准确的振动位移;反之,随着信号频率的降低,积分位移误差增大。因此,为解决加速度计低频测量能力不足的问题,利用高采样GNSS与加速度计数据融合的方法,成功恢复了极低频振动信号。研究表明,振动台系统能够为地震监测研究提供良好的基础平台;加速度计准确恢复位移信号的低频下限在003~0.05 Hz左右,研究方法及结果可为加速度计频带的合理选择提供参考;同时,利用高采样GNSS与加速度计融合方法能够有效弥补加速度计低频测量能力不足的缺点,使地震低频位移更加准确可靠。  相似文献   

16.
The compliant vertical access riser(CVAR) is a new riser concept with good compliance; it can significantly reduce operating costs by eliminating the need for additional machines to operate wells directly on the platform. In this study, we determined the optimal riser parameters in terms of the stress and riser weight by optimizing the CVAR, and we compared the optimization results. A two-dimensional nonlinear static CVAR model was deduced according to the principles of virtual work and variation, and the model was verified using MATLAB. Design of experiments and Kriging method were used to reduce the number of sample calculations and improve the modeling accuracy. An appropriate selection of the multi-objective optimization problem(MOP) and the non-dominated sorting genetic algorithm helped to optimize the CVAR design. The non-dominated sorting genetic algorithm II was used to solve the Pareto frontier of the optimization model in order to provide decision makers with more choices for the optimization results. After optimizing the riser parameters, the geometry of the riser was smoother, and the stress and stress differences were greatly reduced; the maximum equivalent stresses at the top and bottom were reduced by 36.6% and 44%, respectively. In addition, the stress difference in the buoyancy block area was reduced by 20.9%, and the weight of the riser was increased significantly by 28.1%.  相似文献   

17.
选取2009年姚安MS6.0、2014年鲁甸MS6.5地震的水平结构强震记录进行谱分析,结果均显示17 Hz、2.1 Hz为该结构第一、二振型的自振频率,且第二振型出现扭转现象。对比两次强震记录发现,鲁甸MS6.5地震作用下结构的扭转振动远超姚安MS6.0地震。利用SAP2000建立该结构的有限元模型,分别以实际入射角度输入场地强震记录并进行时程分析,其结果与强震记录谱分析结论一致。由于输入地震动的强度、频谱相近,因此判断其输入方向是影响结构平面扭转振动的主要原因。  相似文献   

18.
Assessing the fatigue life of mooring systems is important for deep water structures. In this paper, a comprehensive fatigue analysis is conducted on the mooring lines applied in a semi-submersible platform with special focus on the low frequency (LF) fatigue damage. Several influential factors, including water depth, wave spectral parameters, and riser system, are considered. Numerical simulation of a semi-submersible platform with the mooring/riser system is executed under different conditions, and the fatigue damage of mooring lines is assessed by using the time domain analysis method as a benchmark. The effects of these factors on the mooring line tension and the fatigue damage are investigated and discussed in detail. Research results indicate that the LF fatigue damage only accounts for a very small portion of the total damage, although the LF components dominate the global motion response and the mooring line tension of the semi-submersible platform. However, it is demonstrated that the LF fatigue damage is clearly affected by the influential factors. The increase in water depth and spectral peak periods, and the existence of risers can weaken the contribution of the LF components to the mooring line fatigue damage, while the fatigue damage due to the LF components increases with the increase of significant wave height.  相似文献   

19.
Environmental load is the primary factor in the design of offshore engineering structures and ocean current is the principal environmental load that causes underwater structural failure. In computational analysis, the calculation of current load is mainly based on the current profile. The current profile model, which is based on a structural failure criterion, is conducive to decreasing the uncertainty of the current load. In this study, we used prototype monitoring data and the empirical orthogonal function(EOF) method to investigate the current profile in the South China Sea and its correlation with the design of underwater structural strength and the dynamic design of fatigue. The underwater structural strength design takes into account the size of the structure and the service water depth. We propose profiles for the overall and local designs using the inverse first-order reliability method(IFORM). We extracted the characteristic profile current(CPC) of the monitored sea area to solve dynamic design problems such as vortex-induced vibration(VIV). We used random sampling to verify the feasibility of using the EOF method to calculate the CPC from the current data and identified the main problems associated with using the CPC, which deserve close attention in VIV design. Our research conclusions provide direct references for determining current load in this sea area. This analysis method can also be used in the analysis of other sea areas or field variables.  相似文献   

20.
Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration (VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation (LES) is conducted for studying the fluid-structure interaction. The vortex shedding in the wake, the motion trajectories of a cylinder, the variation of drag and lift forces on the cylinder are analyzed. The results show that the vortices of variable cross-section cylinder are chaotic and are varying along the cylinder. In places where cross-sections are changing significantly, the vortices are more irregular. The motion trail of the cylinder is almost the same but irregular. The drag and lift coefficients of the cylinder are varying with the changes of diameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号