首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is variability in the Mg isotopic composition that is a reflection of the widespread heterogeneity in the isotopic composition of the elements in the solar system at approximately 100 ppm. Measurements on a single calcium‐aluminum‐rich inclusion (CAI) gave a good correlation of 26Mg/24Mg with 27Al/24Mg, yielding an isochron corresponding to an initial (26Al/27Al)o = (5.27 ± 0.18) × 10?5 and an initial (26Mg/24Mg)o = ?0.127 ± 0.032‰ relative to the standard. This isochron is parallel to that obtained by Jacobsen et al. (2008) , but is distinctively offset. This demonstrates that there are different initial Mg isotopic compositions in different samples with the same 26Al/27Al. No inference about uniformity/heterogeneity of 26Al/27Al on a macro scale can be based on the initial (26Mg/24Mg)o values. Different values of 26Al/27Al for samples representing the same point in time would prove heterogeneity of 26Al/27Al. The important issue is whether the bulk solar inventory of 26Al/27Al was approximately 5 × 10?5 at some point in the early solar system. We discuss ultra refractory phases of solar type oxygen isotope composition with 26Al/27Al from approximately 5 × 10?5 to below 0.2 × 10?5. We argue that the real issues are: intrinsic heterogeneity in the parent cloud; mechanism and timing for the later production of 16O‐poor material; and the relationship to earlier formed 16O‐rich material in the disk. 26Al‐free refractories can be produced at a later time by late infall, if there is an adequate heat source, or from original heterogeneities in the placental molecular cloud from which the solar system formed.  相似文献   

2.
Robert L. Huguenin 《Icarus》1976,28(2):203-212
Photostimulated oxidation weathering irreversibly removes both oxygen and hydrogen from the atmosphere at a rate of 108 to 1011 cm?2sec?1. This corresponds to a net loss of 1025 to 1028 molecules cm?2 (102 to 105 g cm?2 of H2O, assuming a uniform rate over geologic time. Additional H2O is removed through hydration of Fe2O3 and clay minerals, but the loss is reversible and the extent of regolith storage is uncertain. CO2 is irreversibly removed from the atmosphere through the formation of CaCO3 at a rate of 107?1010cm?2sec?1. Over geologic time this corresponds to a net loss of 1024?1027 molecules cm?2 (101?104g cm?2) of CO2. Previously, it was proposed that exospheric escape was the principal irreversible volatile sink, amounting to only 102g cm?2 of H2O and 100g cm?2 of CO2 over geologic time. A recent tentative identification of abundant argon on Mars suggests that the planet may have degassed up to 105g cm?2 of H2O and 104g cm?2 of CO2. If the amounts of H2O and CO2 removed by photostimulated oxidation are close to the upper limits proposed here, it is possible that chemical weathering may have had a major effect on limiting the supply of H2O and CO2 trapped in the regolith and polar caps.  相似文献   

3.
Quantitative calculations of the escape rate of nitrogen by photodissociation and photoionization, by photoelectron impact processes, by chemical reactions and by dissociative recombination are reported. It is shown that the predicted present escape rate of 2.0 × 105 atoms cm?2 S?1 is consistent with the measured 15N/14N isotope ratio. A minimum of 4.0 × 1022 cm?2 S?1 is obtained for the initial reservoir of N2. The production rates of N(4S) and N(2D) atoms in the atmosphere are obtained and the altitude profile of N(2D) is calculated.  相似文献   

4.
In an updating of energy characteristics of lightnings on Venus obtained from Venera-9 and -10 optical observations, the flash energy is given as 8 × 108 J and the mean energy release of lightnings is 1 erg cm?2 s which is 25 times as high as that on the Earth. Lightnings were observed in the cloud layer. The stroke rate in the near-surface atmosphere is less than 5 s?1 over the entire planet if the light energy of the stroke exceeds 4 × 105 J and less than 15 s?1 for (1–4) × 105 J.The average NO production due to lightnings equals 5 × 108 cm?2 s?1, the atomic nitrogen production is equal to 7 × 109 cm?2s?1,the N flux toward the nightside is 3.2 × 109 cm?2s?1, the number densities [N] = 3 × 107cm?3 and [NO] = 1.8 × 106cm?3 at 135 km. Almost all NO molecules in the upper atmosphere vanish interacting with N and the resulting NO flux at 90-80 km equals 5 × 105cm?2s?1, which is negligibly small as compared with lightning production. If the predissociation at 80–90 km is regarded as the single sink of NO, its mixing ratio, fNO, is 4 × 10?8, for the case of a surface sink fNO = 0.8 × 10?9 at 50 km. Excess amounts, fNO ? 4 × 10?8, may exist in the thunderstorm region.  相似文献   

5.
Abstract The radioactivities Be10, Al26, Cl36, Mn53, Ni59, and Co60 and the rare gas isotopes were measured in a sample taken from the surface of the Hoba meteorite. The spallation-produced radioactivities indicate that the sample was at a depth of 35 to 40 cm when the body was in space. The Ni59 activity indicates that the terrestrial age of Hoba is less than 80,000 years. Its Cl36-Ar36 exposure age is 263±40 million years. The Cl36 and rare-gas isotopes were also measured in the Deelfontein meteorite; its Cl36-Ar36 exposure age is 400±40 million years. The Cl36 and the Ni59 were also measured in a sample of Sikhote-Alin. In both Hoba and Sikhote-Alin the Ni59, which is a neutron-produced isotope, is higher than would be expected from the Cl36 content. This indicates that solar flares contributed to the neutron-produced isotopes in these iron meteorites.  相似文献   

6.
The problem of the ionospheric formation in the Jovian upper atmosphere is examined. By adopting two plausible atmospheric models, we solve coupled time-dependent continuity equations for ions H2+, H5+, H+, H3+ and HeH+ simultaneously. It is shown that both radiative and three body association of H+ to H2 are important for the determination of the structure of the Jovian ionosphere. The maximum electron density in the daytime is found to be about 105 cm?3. It is also shown that diurnal variation with large-amplitude can exist in the Jovian ionosphere.  相似文献   

7.
In an axially symmetric three-dimensional Riemann-spaceg ik(u 1,u 2)?u 3 represents the cyclic parameter-, a gravitational potential ?(u 1,u 2) is given. For all masspoints with equal total energy and equal angular momentum there exists a function Ψ(u 1,u 2) by means of which the equations of motion can be reduced to a simple ordinary second-order differential equation. The function ? can be interpreted as the velocity with which the masspoint moves in the two-dimensional spaceu 1,u 2. Of particular interest is the case where the spaceu 1,u 2,u 3 is Euclidean. Ifu 1,u 2 are Cartesian coordinates in a planeu 3=const., and if the tangent vector of the trajectoryu 1(t)u 2(t) has the components cosω, sinω it is shown that the triple integral $$\smallint \smallint \smallint \psi du^1 du^2 d\omega $$ is an invariant integral in Cartan's sense, in other words, if the integral is extended over a domain in a meridian plane at timet=0, it keeps its value at any time.  相似文献   

8.
The occultation of the Pioneer 10 spacecraft by Io (JI) provided an opportunity to obtain two S-band radio occultation measurements of its atmosphere. The dayside entry measurements revealed an ionosphere having a peak density of about 6 × 104 elcm?3 at an altitude of about 100 km. The topside scale height indicates a plasma temperature of about 406 K if it is composed of Na+ and 495 K if N2+ is principal ion. A thinner and less dense ionosphere was observed on the exit (night side), having a peak density of 9 × 103 elcm?3 at an altitude of 50 km. The topside plasma temperature is 160 K for N2? and 131 K for Na+. If the ionosphere is produced by photoionization in a manner analogous to the ionospheres of the terrestrial planets, the density of neutral particles at the surface of Io is less than 1011?1012 cm3, corresponding to a surface pressure of less than 10?8 to 10?9 bars. Two measurements of its radius were also obtained yielding a value of 1830 km for the entry and 192 km for the exit. The discrepancy between these values may indicate an ephemeris uncertainty of about 45 km. The two measurements yield an average radius of 1875 km, which is not in agreement with the results of the Beta Scorpii stellar occultation.  相似文献   

9.
It is proposed that the existence and nature of a planetary dynamo can be characterized by a dimensionless number Φ ≡ FeR/ϱλ2ω, called the energy flux number, where Fe is the energy flux available for dynamo generation, R is the core radius (or thickness of the dynamo generating region), ϱ is the fluid density, λ is the magnetic diffusivity and ω is the angular velocity. For Φ ≲ 1, there is no dynamo. For 1 ≲ Φ ≲ 102.5 there is an “energy-limited dynamo”, in which Fe is insufficient to enable the dynamo to reach the dynamically desirable state AB2/8πϱλω ∼ 1, where B is a typical field amplitude (in Gauss). For 102.5 ≲ Φ ≲ 105, there is a dynamically determined dynamo (Λ ∼ 1) in which the magnetic Reynolds number of turbulent eddies is small. For Φ ≳ 105, there is a turbulent dynamo. Probable planetary examples of these three dynamo states are Mercury (Φ ∼ 102-103), Earth (Φ ∼ 104) and Jupiter (Φ ∼ 1011), respectively.  相似文献   

10.
Noble gas 40Ar may be used as a tracer of the past evolution of volatiles in Mars’ crust, mantle and atmosphere. 40Ar is formed by the radioactive decay of 40K in the mantle and in the crust and is released from the mantle to the atmosphere due to volcanism and from the crust by erosion such as eolian and hydrothermal erosion. Furthermore, 40Ar can escape from the atmosphere into space via atmospheric escape mechanisms. The evolution of the atmospheric abundance of 40Ar thus depends on these three processes whose efficiencies vary with time.In the present study we reconsider atmospheric escape mechanism efficiencies and describe various possible scenarios of the evolution of 40Ar with a model describing the three main reservoirs of 40Ar, the mantle, crust and atmosphere. First, we show that atmospheric escape, which is stronger in the early evolution, does not significantly influence the present abundance of the atmospheric 40Ar. In the early evolution the atmospheric concentration of 40Ar is very low as the outgassing of 40Ar from the mantle occurs relatively late in the martian evolution. Thus, the atmospheric 40Ar concentration is essentially a tracer of Mars’ outgassing history and not of the escape processes. Second, using the results of the most recent published crustal formation models, the calculated present 40Ar atmospheric abundance is smaller than its observed value. This discrepancy may be explained by a significant 40Ar supply from the crust by erosion (16–30% of the 40Ar content of the upper first 10 km of crust). The knowledge of the fraction of crustal 40Ar outgassed to the atmosphere is an important constraint for any future global modelling of past Mars’ hydrothermal activity aiming at better characterizing the role of subsurface aqueous alteration processes in Mars climate evolution. One of the main sources of the uncertainty of these results is the present uncertainty in the measured atmospheric 40Ar value (±20%). More precise measurements of 40Ar and 36Ar in the martian atmosphere are therefore required to better constrain the model.  相似文献   

11.
The continuity, momentum and energy hydrodynamic equations for an O+-H+ ionosphere have been solved self-consistently for steady state conditions when a perpendicular (convection) electric field is present. Comparison of the H+ temperature profiles obtained with and without the electric field show that the effect of the electric field is to enhance the H+ temperature at high altitudes from about 3600 to 6400 K. Due to ion heating by the electric field, there is a net reduction of O+ in the F2-region as compared with the case of a non-convecting ionosphere. When the reduction of O+ is neglected, the electric field acts to increase the H+ outward flux from 8.3 × 107 to 2.7 × 108 cm?2 sec?1 for average ionospheric conditions. However, when the reduction of O+ is included, there is a net reduction in the outward H+ flux. Nevertheless, the convection electric field still results in an increase in the rate of depletion of the F-re m?1 electric field.  相似文献   

12.
By the mapping observations simultaneously at the 12CO (J=1-0), 13CO (J=1-0), and C18O (J=1-0) lines on the area of 24’×24’ (12 pc×12 pc) of the star forming region AFGL 5157, we have obtained the distribution and averaged physical parameters for the respective 13CO and C18O cores of this molecu- lar cloud. At the edge of the molecular cloud, the isotopic abundance ratio is X [(13CO)/(C18O)] 10, close to the ratio of a giant molecular cloud. The viral masses of the 13CO and C18O cores are less than the masses of the molecu-lar cloud cores, so the molecular cloud cores are gravitationally unstable, and the C18O molecular cloud core is more easy to collapse. The column density distributions of the C18O molecular cloud core in the northeast and southwest directions are, respectively, 1.1 × 1023× z−0.43 and 4.6 × 1025× z−0.58, where z is the distance from the center of the molecular cloud core. The high velocity molecular out?ow has been con?rmed from our 12CO spectra, the mass loss rate of the out?ow has been estimated, and the mass-velocity relation of the out?ow is ?tted by a power-law function of mv−1.8. The star formation rate of the 13CO molecular cloud core is as high as 23%, probably, under the in?uence of  相似文献   

13.
The composition of neutron star atmospheres is calculated as a function of time including effects of diffusion, cooling and thermonuclear reactions. A seven-component nuclear reaction network with includes He4, C12, O16, Ne20, Mg24, Si28 and Fe56 is utilized. Neutron star models with different initial nuclear abundances are compared as to subsequent nucleosynthesis. It is found that the final abundances are independent of original composition assuming He4 as the major initial constituent. The final composition of the atmosphere is predominantly Fe56. Mass loss from an evolving neutron star is examined as a possible source of cosmic rays. It is found that a neutron star contributes only Fe56 significantly to the cosmic-ray spectrum.  相似文献   

14.
Wenzhe Fa 《Icarus》2007,190(1):15-23
3He (helium-3) in the lunar regolith implanted by the solar wind is one of the most valuable resources because of its potential as a fusion fuel. The abundance of 3He in the lunar regolith is related to solar wind flux, lunar surface maturity and TiO2 content, etc. A model of solar wind flux, which takes account of variations due to shielding of the nearside when the Moon is in the Earth's magnetotail, is used to present a global distribution of relative solar wind flux over the lunar surface. Using Clementine UV/VIS multispectral data, the global distribution of lunar surface optical maturity (OMAT) and the TiO2 content in the lunar regolith are calculated. Based on Apollo regolith samples, a linear relation between 3He abundance and normalized solar wind flux, optical maturity, and TiO2 content is presented. To simulate the brightness temperature of the lunar surface, which is the mission of the Chinese Chang-E project's multichannel radiometers, a global distribution of regolith layer thickness is first empirically constructed from lunar digital elevation mapping (DEM). Then an inversion approach is presented to retrieve the global regolith layer thickness. It finally yields the total amount of 3He per unit area in the lunar regolith layer, which is related to the regolith layer thickness, solar wind flux, optical maturity and TiO2 content, etc. The global inventory of 3He is estimated as 6.50×108 kg, where 3.72×108 kg is for the lunar nearside and 2.78×108 kg is for the lunar farside.  相似文献   

15.
We calibrated the 81Kr‐Kr dating system for ordinary chondrites of different sizes using independent shielding‐corrected 36Cl‐36Ar ages. Krypton concentrations and isotopic compositions were measured in bulk samples from 14 ordinary chondrites of high petrologic type and the cosmogenic Kr component was obtained by subtracting trapped Kr from phase Q. The thus‐determined average cosmogenic 78Kr/83Kr, 80Kr/83Kr, 82Kr/83Kr, and 84Kr/83Kr ratiC(Lavielle and Marti 1988; Wieler 2002). The cosmogenic 78Kr/83Kr ratio is correlated with the cosmogenic 22Ne/21Ne ratio, confirming that 78Kr/83Kr is a reliable shielding indicator. Previously, 81Kr‐Kr ages have been determined by assuming the cosmogenic production rate of 81Kr, P(81Kr)c, to be 0.95 times the average of the cosmogenic production rates of 80Kr and 82Kr; the factor = 0.95 therefore accounts for the unequal production of the various Kr isotopes (Marti 1967a). However, Y should be regarded as an empirical adjustment. For samples whose 80Kr and 82Kr concentrations may be affected by neutron‐capture reactions, the shielding‐dependent cosmogenic (78Kr/83Kr)c ratio has been used instead to calculate P(81Kr)/P(83Kr), as for some lunar samples, this ratio has been shown to linearly increase with (78Kr/83Kr)c (Marti and Lugmair 1971). However, the 81Kr‐Kr ages of our samples calculated with these methods are on average ~30% higher than their 36Cl‐36Ar ages, indicating that most if not all the 81Kr‐Kr ages determined so far are significantly too high. We therefore re‐evaluated both methods to determine P(81Kr)c/P(83Kr)c. Our new Y value of 0.70 ± 0.04 is more than 25% lower than the value of 0.95 used so far. Furthermore, together with literature data, our data indicate that for chondrites, P(81Kr)c/P(83Kr)c is rather constant at 0.43 ± 0.02, at least for the shielding range covered by our samples ([78Kr/83Kr]c = 0.119–0.185; [22Ne/21Ne]c = 1.083–1.144), in contrast to the observations on lunar samples. As expected considering the method used, 81Kr‐Kr ages calculated either directly with this new P(81Kr)c/P(83Kr)c value or with our new Y value both agree with the corresponding 36Cl‐36Ar ages. However, the average deviation of 2% indicates the accuracy of both new 81Kr‐Kr dating methods and the precision of the new dating systems of ~10% is demonstrated by the low scatter in the data. Consequently, this study indicates that the 81Kr‐Kr ages published so far are up to 30% too high.  相似文献   

16.
The combination of the O-shell theory of Heymann and Dziczkaniec and the supernova theory of Woosley and Howard clearly identifies the astrophysical sites for the formation of the anomalous light Xe component in carbonaceous chondrites. These sites are the O- and Ne-shells, and possibly C-shell of a massive star. Most of the 124Xe and 126Xe are formed in the O-shell during hydrostatic core silicon-burning, when a seed of heavy nuclei is exposed to an effective temperature near T9 = 2.0. 128Xe is formed via 128Ba in the O-shell, but the amounts appear too small to satisfy the deduced 128Xe/124Xe and 128Xe/126Xe yield ratios from the chondrites. However, substantial amounts of 128Xe can be formed in the adjacent Ne- and C-shells during the explosion. The formation of 128Ba in the O-shell would increase if the (γ, α) photodisintegration rate in 128Ba is actually smaller than calculated by Woosley and Howard. Lewis et al. have proposed that the anomalous light Xe component is mass-fractionated normal Xe. It is in this sense that the process of stellar nucleosynthesis of the present paper mimicks mass-fractionation.  相似文献   

17.
The Wethersfield (1982) chondrite was assayed for a suite of cosmogenic radionuclides shortly after fall. Data are reported for 7Be, 22Na, 26Al, 46Sc, 48V, 51Cr, 54Mn, 56Co, 57Co, and 60Co. A comparison is made with predicted results based on a scaling to the Deep River Neutron Monitor. Noble gases were also assayed in a sub-sample. The cosmic ray exposure age is estimated to be 45 million years.  相似文献   

18.
Measured rates are presented for the reaction of He+ ions with H2 (and D2) molecules to form H+, H2+, and HeH+ ions, as well as for the subsequent reactions of H+ and HeH+ ions with H2 to form H3+. The neutralization of H3+ (and H5+) ions by dissociative recombination with electrons is shown to be fast. The reaction He+ + H2 is slow (k = 1.1 × 10?13 cm3/sec at300°K) and produces principally H+ by the dissociative charge transfer branch. It is concluded that there may be a serious bottleneck in the conversion of two of the primary ions of the upper Jovian ionosphere, H+ and He+ (which recombine slowly), to the rapidly recombining H3+ ion (α[H3+]?3.4 × 10?7 cm3/sec at 150°K).  相似文献   

19.
Theoretical results on the daily variation of O+ and H+ field-aligned velocities in the topside ionosphere are presented. The results are for an L = 3 magnetic field tube under sunspot minimum conditions at equinox. They come from calculations of time-dependent O+ and H+ continuity and momentum balance in a magnetic field tube which extends from the lower F2 region to the equatorial plane (Murphy et al., 1976).There are occasions when ion counterstreaming occurs, with the O+ velocity upward and H+ velocity downward. The conditions causing this counterstreaming are described: the H+ layer is descending whilst O+ is supplied from below either to increase the O+ concentration at fixed heights or to replace O+ ions lost by charge exchange with neutral H. It is suggested that the results of observations at Arecibo by Vickrey et al. (1976) of O+ and H+ concentrations and counterstreaming velocities are significantly affected by E×B drift.  相似文献   

20.
Solar abundances of light nuclei and mixing of the Sun   总被引:1,自引:0,他引:1  
Radial profiles of the light nuclei (A 15) are calculated in the non-mixing Sun, taking into account the changes of solar structure with time. The results are discussed in relation to models of solar mixing and compared with abundance determinations at the solar surface or in the solar wind. B cannot be depleted in the outer convective zone without producing a large increase in the He3/He4 ratio. A decrease in He3/He4 would be accompanied by changes in C13/C12 and N15/N14 of a magnitude which is not observed.It is shown that boron could be depleted in the pre-main sequence period of the Sun, if mixing was on a time-scale of 106 yr. The simultaneous small increase in He3/He4 does not contradict observation. However, Be would be depleted more strongly than B.A He3/He4 decrease is always accompanied by large changes in N15/N14 and C13/C12. Since such changes are not observed, it is concluded that the He3/He4 ratio in the outer convective zone is a reliable upper limit for (He3 + D)/He4 in the solar nebula. Thus the D/H ratio in the protosolar material was much lower than it is in sea water or in carbonaceous chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号