首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Contaminated soils and mine tailings pose major environmental and agricultural problems worldwide. These problems may be partially solved by an emerging new technology: phytoremediation. This technique uses plants to extract soil contaminants from the ground. Thlaspi caerulescens is known to accumulate in their tissues several heavy metals from soil and aerial deposition. This study was conducted to screen plants growing on a contaminated site to determine their potential for metal accumulation. Seeds of T. caerulescens metallicolous have been collected in the vicinity of F.T. Laurent le Minier in the Pb–Zn mining district of les Malines (North of Montpellier, Southern France), and seeds of T. caerulescens non-metallicolous were sampled on Larzac Plateau (North of Montpellier, Southern France). Soil substrates were collected from a mine site of Mibladen and Zaida (West, Morroco). Cultivated plant and surface soil samples were analyzed for zinc, lead, and cadmium concentrations by inductively coupled plasma mass spectrometry. A non-metallicolous (NM) ecotype of T. caerulescens and a metallicolous (M) ecotype are compared for Pb, Cd, and Zn accumulation in shoot and root in five metal-contaminated soils and one uncontaminated soil. The growth of individuals from uncontaminated soil was greater than that of individuals from metal-contaminated soils. The NM populations had markedly higher root/shoot ratio compared to M populations. The results indicate that both ecotypes of T. caerulescens are highly tolerant of zinc and Cd. Ecotype NM had constitutively higher Zn uptake capacity than the M ecotype. T. caerulescens species accumulate higher amount of Zn and Cd in their tissues in polluted soil and, in both of the two ecotypes, the root Pb concentrations were much greater than those of the shoot Pb contents. From both uncontaminated and metal-contaminated soils, we conclude that T. caerulescens are interesting material for phytoremediation of zinc and cadmium.  相似文献   

2.
This study reports on trace metal uptake by the grass species Melinis repens, growing in roadside soils and sediments in tropical northeastern Australia. Median total Cu, Pb, Ni and Zn concentrations were significantly (P < 0.05) higher in road edge soils (Cu = 61.1 mg/kg, Pb = 97.3 mg/kg, Ni = 28.6 mg/kg, Zn = 729 mg/kg) than in background soils collected away from roads (Cu = 5.8 mg/kg, Pb = 11.2 mg/kg, Ni = 3.7 mg/kg, Zn = 21 mg/kg). Significantly (P < 0.05) elevated Zn values were recorded in the stems of the M. repens specimens growing on roadside soils (231.6 mg/kg dry weight of tissue) compared with those of grasses growing on background soils (40.8 mg/kg dry weight of tissue). Moreover, median Cu, Ni and Zn values in the roots of roadside grasses (Cu = 29.1 mg/kg, Ni = 2.73 mg/kg, Zn = 169 mg/kg) were significantly (P < 0.05) higher than their respective levels in the roots of background M. repens samples (Cu = 5.98 mg/kg, Ni = 0.70 mg/kg, Zn = 22 mg/kg). A greenhouse experiment showed that Cu and Zn in road sediments are labile and are available for uptake by M. repens. The studied roadside soils and sediments were leached with a diethylenetriaminepentaacetic acid–CaCl2–triethanolamine–HCl extraction solution, which proved to be a rudimentary indicator of Zn availability and uptake to the root tissue of M. repens. The results demonstrate that trace metals in roadside grasses have the potential to be directed up the food-chain as grasses are consumed by herbivores. In addition, bioavailable metal contaminants hosted by road sediments have the capacity to impact on ecosystems downstream of roads because these sediments are mobilised by road runoff waters from road surfaces into adjoining catchments.  相似文献   

3.
Concentrations of the elements N, P, K, Ca, Mg, S, Fe, Mn, Cu, Zn, Ni, Cr, Co, Mo, Cd and Pb were measured in serpentine and granite soils and in the fern Pteridium aquilinum sampled from the Ślęża Massif in Lower Silesia, Poland. The serpentine soils were typical for serpentine soils in general with deficiency of K and Ca and excess of Mg, Ni and Cr. The principal component analysis (PCA) ordination based on the matrix of concentrations of elements in plants growing on serpentine and granite soils enabled the identification of the parent material from which ferns in this study were collected. This method indicated that the ferns from granite soils were distinguished by higher concentrations of Mo and Pb, while those from serpentine soils were distinguished by higher concentrations of Mg, Ni, Cr and Co. These differences in bioaccumulation reflect the higher concentrations of total and plant-available forms of Mg, Ni, Cr, Co in serpentinite and the higher concentrations of total Mo and total and plant-available Pb in granites as reported in literature. The different parent material types in the Ślęża Massif on which the investigated soils were developed influence the concentration and type of elements accumulated in P. aquilinum.  相似文献   

4.
Arsenic in soil, vegetation and water of a contaminated region   总被引:2,自引:1,他引:1  
Arsenic concentrations of surface waters, soils and plants were surveyed in three contaminated villages of Bijar County. Total arsenic in water samples (4.5 to 280 μg/L) was correlated with electrical conductivity, total dissolved solid, total hardness, alkalinity, chloride, sulphate, bicarbonate, calcium and sodium (p<0.001). Total arsenic in the soils ranged from 105.4 to 1500 mg/kg. Some of the soil factors play an important role in soil arsenic content and its bioavailability for organisms. In general, the arsenic concentrations in plants were low, especially in the most common wild species. Among 13 plant species, the highest mean arsenic concentration was found in leaves of Mentha Longifolia (79.4 mg/kg). Arsenic levels in soils and plants were positively correlated, while the ability of the plants to accumulate the element, expressed by their biological accumulation coefficients and arsenic transfer factors, was independent of the soil arsenic concentration. Relationships between the arsenic concentrations in plants, soils and surface water and the environmental aspects of these relationships have been discussed in comparison with literature data. The accumulation of arsenic in environmental samples (soil, sediment, water, plant, etc.) poses a potential risk to human health due to the transfer of this element in aquatic media, their uptake by plants and subsequent introduction into the food chain.  相似文献   

5.
Arsenic concentrations are reported for the <2 mm fraction of ca. 2200 soil samples each from agricultural (Ap horizon, 0–20 cm) and grazing land (Gr, 0–10 cm), covering western Europe at a sample density of 1 site/2500 km2. Median As concentrations in an aqua regia extraction determined by inductively coupled plasma emission mass spectrometer (ICP-MS) were 5.7 mg/kg for the Ap samples and 5.8 mg/kg for the Gr samples. The median for the total As concentration as determined by X-ray fluorescence spectrometry (XRF) was 7 mg/kg in both soil materials. Maps of the As distribution for both land-use types (Ap and Gr) show a very similar geographical distribution. The dominant feature in both maps is the southern margin of the former glacial cover seen in the form of a sharp boundary between northern and southern European As concentrations. In fact, the median As concentration in the agricultural soils of southern Europe was found to be more than 3-fold higher than in those of northern Europe (Ap: aqua regia: 2.5 vs. 8.0 mg/kg; total: 3 vs. 10 mg/kg). Most of the As anomalies on the maps can be directly linked to geology (ore occurrences, As-rich rock types). However, some features have an anthropogenic origin. The new data define the geochemical background of As in agricultural soils at the European scale.  相似文献   

6.
This research is focused on evaluating heavy metals (Cd, Cu, Fe, Mn, Pb, and Zn) uptake and removal by Eleocharis ovata, Cyperus manimae, Typha dominguensis, and Pteridium aquilinum in a natural wetland impacted by mining activities. We analyzed heavy metals content and distribution in native plants, soils, and water of a semipermanent natural wetland in Taxco de Alarcón, Guerrero, and we also determined the physicochemical characteristics of the water. Translocation factor (TF) and bioconcentration factor (BCF) were evaluated. Results showed that physical and chemical conditions are favorable for plants development. Correlation analysis showed a good and positive relation (0.95) between Cu and Pb in soils and plants. In the analyzed matrices: Zn (0.62–2.20 mg/L) exceeded the permissible limits in water, high concentrations of Pb and Zn (26.57–525.67 and 266.67–983.33 mg/kg, respectively) were detected in the studied soils, and Pb exceeded the normal range for E. ovata and P. aquilinum in the analyzed plants. Uptake of heavy metals in the tissues of different species was found in the following order: root > leaf. Data of TF and BCF showed that E. ovata is a tolerant plant with respect to heavy metals exposure since TF value was greater than 1. This study showed that E. ovata could be considered as a bioaccumulator of heavy metals in contaminated soils.  相似文献   

7.
The present study was undertaken to evaluate the growth response of Vetiveria zizanioides amended with organic amendments to arsenic (As) in contaminated soils and its ability to sequester As. The test results indicate that the plants exhibited high tolerance to As in the soils and their normal growth continued even though As concentration reached 500 mg/kg. However, when As concentrations in soils were in the range of 1000~2000 mg/kg the plants could not survive no matter whether the soils were amended. The accumulation of As in roots (185.4 mg/kg) was higher than that in shoots (100.6 mg/kg). The As level in the contaminated soil was reduced from 500 mg/kg to 214 mg/kg after six months of As phytoextraction. Microbial population was not affected in the As contaminated soil amended with dairy sludge, mycorrhizae and Azotobacter.  相似文献   

8.
《Applied Geochemistry》2001,16(11-12):1377-1386
The heavy metal contamination and seasonal variation of the metals in soils, plants and waters in the vicinity of an abandoned metalliferous mine in Korea were studied. Elevated levels of Cd, Cu, Pb and Zn were found in tailings with averages of 8.57, 481, 4,450 and 753 mg/kg, respectively. These metals are continuously dispersed downstream and downslope from the tailings by clastic movement through wind and water. Thus, significant levels of the elements in waters and sediments were found up to 3.3 km downstream from the mining site, especially for Cd and Zn. Enriched concentrations of heavy metals were also found in various plants grown in the vicinity of the mining area, and the metal concentrations in plants increased with those in soils. In a study of seasonal variation on the heavy metals in paddy fields, relatively high concentrations of heavy metals were found in rice leaves and stalks grown under oxidizing conditions rather than a reducing environment (P<0.05).  相似文献   

9.
The Zlata Idka village is a typical mountainous settlement. As a consequence of more than 500 years of mining activity, its environment has been extensively affected by pollution from potentially toxic elements. This paper presents the results of an environmental-geochemical and health research in the Zlata Idka village, Slovakia. Geochemical analysis indicates that arsenic (As) and antimony (Sb) are enriched in soils, groundwater, surface water and stream sediments. The average As and Sb contents are 892 mg/kg and 818 mg/kg in soils, 195 mg/kg and 249 mg/kg in stream sediments, 0.028 mg/l and 0.021 mg/l in groundwater and 0.024 mg/l and 0.034 mg/l in surface water. Arsenic and Sb concentrations exceed upper permissible limits in locally grown vegetables. Within the epidemiological research the As and Sb contents in human tissues and fluids have been observed (blood, urine, nails and hair) in approximately one third of the village’s population (120 respondents). The average As and Sb concentrations were 16.3 μg/l and 3.8 μg/l in blood, 15.8 μg/l and 18.8 μg/l in urine, 3,179 μg/kg and 1,140 μg/kg in nails and 379 μg/kg and 357 μg/kg in hair. These concentrations are comparatively much higher than the average population. Health risk calculations for the ingestion of soil, water, and vegetables indicates a very high carcinogenic risk (>1/1,000) for as content in soil and water. The hazard quotient [HQ=average daily dose (ADD)/reference dose (RfD)] calculation method indicates a HQ>1 for groundwater As and Sb concentrations.  相似文献   

10.
《Applied Geochemistry》2003,18(9):1297-1312
The concentrations of As in surface- and up to 90 °C ground waters in a tholeiite flood basalt area in N-Iceland lie in the range <0.03–10 μg/kg. With few exceptions surface waters contain <0.5 μg/kg As whereas ground waters generally contain >0.5 μg/kg As. The As content of ground waters increases on the whole with rising temperature. Arsenic is highly mobile in the basalt-water environment of the study area. An insignificant fraction of the As dissolved from the rock is taken up into secondary minerals. Arsenic is less mobile than B but considerably more mobile than Na which has the highest mobility among the major aqueous components. A significant fraction of the As in the basalt occurs in an easily soluble form. The As hosted in the primary minerals is expected to be concentrated in the titano-magnetite. This mineral is stable in contact with both surface- and ground waters and does not, therefore, supply As to the water, explaining the difference in mobility between As and B. Aqueous As concentrations are a reflection of water/rock ratios, i.e. how much rock a given quantity of water has dissolved. This ratio increases with increasing temperature and increasing residence time of the water in contact with the rock. The distribution of As species has been calculated on the assumption of equilibrium at the redox potential retrieved from measurement of aqueous Fe(II) and Fe(III) concentrations. These calculations indicate that pentavalent As is stable in surface waters and in ground waters with an in situ pH of <10 and would occur mostly as H2AsO4 and HAsO4−2. In higher pH ground waters the concentrations of the arsenite species H2AsO3 is significant at equilibrium, up to 65% of the total dissolved As.  相似文献   

11.
This study determined copper, nickel and zinc concentrations in soils within the precincts of a copper-nickel mining and urban landfilling environments, and used obtained values to appraise the degree of soil contamination and pollution based on geoaccumulation index, contamination factor and pollution load index. Mean concentrations of copper (252.4?mg/kg), nickel (153.0?mg/kg) and zinc (30.4?mg/kg) in soils around the mining area were considerably higher than those around the landfill (4.3, 0.91, and 13.7?mg/kg, respectively, for copper, nickel and zinc). The mining area was moderate to heavily contaminated with copper, nickel and zinc (1?<?I geo?<?4), whereas the landfill area was moderately contaminated (1?<?I geo?<?3). In both areas, the level of copper contamination was higher than that of nickel and zinc. Contamination around the mining environment was attributed to mining activities whereas around the landfill area, migration of leachate from the disposed waste could have been responsible.  相似文献   

12.
Mineralogy and geochemistry of modern shallow sediments (up to 5 m thick) within the zone of water table fluctuations were studied to determine the likely sources and processes responsible for releasing As into groundwater. Samples were collected from different geological settings with varying groundwater As concentrations during dry (December 2005) and wet (September 2006) seasons at Sonargaon, Bangladesh. Stratigraphic sequences of the studied sediments showed three distinct lithofacies, viz. clayey-silt, silty-clay, and silty-very fine sand, corresponding to fine-grained overbank associations. Total As concentrations of shallow sediments ranged from <1 to 16 mg/kg without a significant difference in the range of As concentrations between the seasons. Sequential chemical extraction analysis of As revealed that >80% of the As was fixed in insoluble and organic phases, while the amount of As in reducible and acid-soluble phases was very low (<20%) and varied inversely with total As content. Total As concentration varied with mica content (muscovite and biotite) and its related elements (Al, Mg and Fe), but not with total organic C, suggesting that biotite is the major host phase of As. Arsenic appears to be liberated from biotite and/or other As-bearing minerals via chemical weathering (i.e., hydration-decomposition), either from the near-surface sediments which are subject to seasonal cycling of the redox conditions, or from within the aquifer sediments. Once released, progressive diagenesis to form As-bearing organic matter may be responsible for controlling As distribution in the sediments and coexisting groundwater of the study area.  相似文献   

13.
The fate and transport of As was examined at an industrial site where soil- and groundwater contamination are derived from the application of As2O3 as a herbicide. Application of arsenical herbicides was discontinued in the 1970s and soils in the source area were partially excavated in 2003. Arsenic contamination (up to 280 mg/kg) remains in the source area soils and a plume of As-contaminated groundwater persists in the surficial aquifer downgradient of the source area with maximum observed As concentrations of 1200 μg/L near the source area. The spatial extent of As contamination as defined by the 10 μg/L contour appears to have remained relatively stable over the period 1996–2006; the boundary of the 1000 μg/L contour has retreated over the same time period indicating a decrease in total As mass in the surficial groundwater.In column experiments conducted with source area soil, the As concentrations in the column effluent were comparable to those observed in groundwater near the source area. A substantial fraction of the As could be leached from the source area soil with ammonium sulfate and ammonium phosphate. Exhaustive extraction with background groundwater removed most of the total As. These results indicate that As in the source area soils is geochemically labile. Source area soils are low in extractable Fe, Mn and Al, and characterization by X-ray absorption spectroscopy and electron microscopy indicated that As is present primarily as arsenate sorbed to (alumino)silicate minerals. Batch sorption experiments showed much less sorption on surficial aquifer sediments than on sediments from the Jackson Bluff Formation (JBF), a presumed confining layer. This limited capacity of the surficial aquifer sediments for As sorption is consistent with the similar As contents observed for these sediments within and upgradient of the As plume. The apparent stability of the As plume cannot be explained by sequestration of As within the surficial aquifer. Sorption to JBF sediments may contribute to As sequestration, but As enrichment in JBF sediments within the plume (i.e., as compared with JBF sediments upgradient) was not observed. These results indicate that neither the persistence of As in the source area soils or the apparent stability of the plume of As-contaminated groundwater at this site can be explained by geochemical controls on As mobility. The absence of demonstrable geochemical bases for such observations suggests that possible hydrologic controls should be further investigated at this site.  相似文献   

14.
Fe2+ oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures was investigated in batch cultures in the presence of arsenate. The pH value was periodically monitored and Fe2+ content was analyzed by the 1,10-phenanthroline method. ICP-AES was employed for the analysis of As(V) concentration in the solution phase. Precipitates were collected and analyzed by X-ray diffraction. Slight enhancement of iron bio-oxidation was observed in mixed cultures with the two greatest As(V) concentrations (1.0 and 5.0 mg/L As), which were enriched from sediment samples in an abandoned copper mine site. As(V) concentrations decreased with time, indicating either the co-precipitation with or the adsorption by jarosite, the major sink of solid phase. Our data suggest that biogenically synthesized jarosite may play an important role in the attenuation of soluble arsenate in natural aquatic environments.  相似文献   

15.
Plant and soil samples were collected from one uncontaminated and four contaminated sites (in the Dashkasan mining area western Iran). Total and water-soluble arsenic in the soil ranged from 7 to 795 and from 0.007 to 2.32 mg/kg, respectively. The highest arsenic concentration in soil was found at the ore dressing area (up to 1,180 mg/kg) and lowest at an uncontaminated area (up to 11 mg/kg). A total of 49 plant species belonging to 15 families were collected from four sampling sites. A significant positive correlation was detected between the concentrations of arsenic in plant dry matter and those in soils. The highest arsenic concentrations were found in Hyoscyamus kurdicus Bornm. (up to 205 mg/kg) and Helichrysum oligocephalum DC. (up to 162 mg/kg). These two accumulator species could have potential for soil clean-up by phytoextraction. The data have been compared with those for the Zarshuran mining area (north-western Iran) obtained in a former study.  相似文献   

16.
Arsenic concentrations in groundwaters from two areas in Ghana, the Obuasi area in the Ashanti region and the Bolgatanga area of the Upper East region vary from <1–64 μg 1−1 and <1–141 μg 1−1, respectively. Sulphide minerals such as arsenopyrite and pyrite are present in the Birimian basement rocks of both areas and these form the dominant As sources. The basement aquifer is overlain by a variable thickness (ranging from <10 m to >40 m) of weathered regolith and lateritic soil. Arsenic concentrations are low in the shallowest groundwaters, but increase at greater depths (40–70 m below ground level in Obuasi and 20–40 m in Bolgatanga). At depths greater than this, total As concentrations are relatively low. The lateral and vertical variations in dissolved As concentrations are controlled by ambient pH and redox conditions and by the relative influences of sulphide oxidation and sorption. In the weathered regolith and lateritic soils, oxidation has been extensive. Shallow groundwaters are oxidizing and acidic. Under these conditions, As is readily oxidized to As(V) and may precipitate as ferric arsenate or be sorbed onto ferric hydroxide surfaces. At greater depth, groundwaters have longer contact times with the aquifer minerals and pH values are therefore higher (>6.0 in Obuasi and >6.5 in Bolgatanga). The oxidation of sulphide minerals may proceed, but dissolved O is consumed during the process and mildly reducing conditions (Eh 200–300 mV) result. Sorption of As onto ferric hydroxide minerals is less favoured under such pH and redox conditions and the element is relatively mobile. At the greatest abstraction depths, groundwaters are more reducing (Eh ≤200 mV; dissolved O <0.1 mg 1−1) and few electron acceptors are available in the system to drive sulphide oxidation. Dissolved As concentrations therefore remain relatively low. The mildly reducing groundwaters in the sulphide-bearing basement aquifer are therefore of the poorest potable quality with respect to dissolved As concentrations.  相似文献   

17.
Core sediments from two boreholes and groundwater from fifty four As-contaminated well waters were collected in the Chapai-Nawabganj area of northwestern Bangladesh for geochemical analysis. Groundwater arsenic concentrations in the uppermost aquifer (10 to 40 m of depth) range from 2.76?C315.15 mg/l (average 48.81 mg/l). Arsenic concentration in sediments ranges from 3.26?C10 mg/kg. Vertical distribution of arsenic in both groundwater and sediments shows that maximum As concentration (462 mg/l in groundwater and 10 mg/kg in sediments) occurs at a depth of 24 m. In January 2008, 2009 and 2010, maximum As concentration occurs at the same depth. Environmental scanning electron microscope (ESEM) with EDAX was used to investigate the presence of major and trace elements in the sediments. The dominant groundwater type is Ca-HCO3 with high concentrations of As and Fe, but with low levels of NO3 ? and SO3 ?2. Statistical analysis clearly shows that As is closely associated with Fe (R2 = 0.64) and Mn (R2 = 0.91) in sediments while As is not correlated with Fe and Mn in groundwater samples. Comparatively low Fe and Mn concentrations in some groundwater, suggest that probably siderite and/or rhodochrosite precipitated as secondary mineral on the surface of the sediment particles. The correlations along with results of sequential leaching experiments suggest that reductive dissolution of FeOOH and MnOOH mediated by anaerobic bacteria represents mechanism for releasing arsenic into the groundwater.  相似文献   

18.
The high salinity of coastal saline field is a key factor limiting the reclamation. Halophytes have been utilized in the reclamation of saline land. The study area is in Yancheng, China. An analysis of the concentrations of Rb, Cs, Sr, and Ba, the ratio of Rb/Cs, and Sr/Ba in soils in autumn shows that the soil of this study area has great homogeneity. Artemisia halodendron, Gossypium hirsutum, and Sesbania cannabina were selected as the reclamation plants in the present study. In order to know the spatial-temporal distribution of soil salinity, the influence of plant-specific vegetation, and the difference of desalination among these halophytes in coastal flat, the authors analyze the soil-layers and seasonal variation in salt ions. Sodium chloride was accumulated in 0–5 cm topsoil with no vegetation during the winter and spring. The effect of desalinization of halophytes is significant. Of the three plant species, Sesbania cannabina has the greatest desalinization. The difference of ions composition of soils covered with various plant species is significant. It can be concluded that halophytes have better amelioration of coastal soil salinity. Special attention should be paid to the selection of plant species and measures to plant and cultivate crops in the reclamation of saline land.  相似文献   

19.
High Arsenic (As) concentrations have been reported in superficial water in the Yamuna flood plains (YFP), Delhi, which is being extensively used for agriculture. The concentration of As in some common vegetables such as Solanum lycopersicum (tomato), Abelmoschus esculentus (lady’s finger), Solanum melongena (brinjal), Lagenaria siceraria (bottle gourd), Raphanus sativus (radish), Zea mays (corn), and Luffa acutangula (ridge gourd) has been studied in this work. The range of As concentrations (dry weight) varies from 0.6 to 2.52 mg/kg with the highest accumulation of 2.52 mg/kg in radish followed by tomato (2.36 mg/kg). The order of As concentration in the decreasing order is R. sativus > S. lycopersicum > Z. mays > L. acutangula > L. siceraria > S. melongena > A. esculentus. Thus, As accumulation is the highest in roots and the lowest in least juicy fruits. The daily dietary intake of As through the consumption of various vegetables was also calculated. Though the mean As concentration was the highest in radish (2.52 mg/kg) but the highest amount of As is being consumed through tomato (0.383 mg/day), which is nearly three times the World Health Organization’s provisional maximum tolerable daily intake limit of 0.126 mg/day for a 60 kg person. High concentration of As in vegetables grown in YFP, Delhi is being reported here. This high contamination is primarily due to the presence of As in irrigation water having its source from coal-based thermal power plants in the vicinity of the area. If not checked properly, it will pose a serious health risk to people living in these densely populated areas surrounding YFP.  相似文献   

20.
A soil-based geochemical survey was carried out in an area of about 350 km2 in northern Kosovo around the Zve?an Pb-Zn smelter. The concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, Sb, Tl, Th, U, Zn were determined in 452 topsoil and 82 subsoil samples. High contents of Pb, Cd, As, Sb, Zn and Cu were found in topsoil over a vast area including the Ibar and Sitnica river valleys. The highest concentrations were usually measured close to the Zve?an smelter. In some zones, the lead contents in surface soils exceeded 5000 mg/kg. Arsenic and antimony levels were usually more than 200 and 50 mg/kg, respectively, while cadmium contents were in the range 5-20 mg/kg. South of the Zve?an area, lead, antimony and cadmium pollution was strong in the densely populated urban area of Kosovska Mitrovica and along the agricultural alluvial plain of the Sitnica River. Depending on the chemical element, the pollution extended 15-22 km north and south of the Zve?an smelter. There was a progressive decrease of heavy element concentrations with increasing distance from the smelting plant. The contents of Pb, Zn, Cu, As, Cd, Sb significantly decreased with soil depth; in fact, the pollution only affected the upper 50 cm of soil. Crops were affected by soil pollution and many food-stuffs exceeded the EU standards. Suggestions for soil remediation are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号