首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of the late Archean Belingwe greenstone belt,Zimbabwe, is discussed in relation to the geochemistry of theultramafic to mafic volcanic rocks. Four volcanic types (komatiite,komatiitic basalt, D-basalt and E-basalt) are distinguishedin the 2·7 Ga Ngezi volcanic sequence using a combinationof petrography and geochemistry. The komatiites and D-basaltsare rocks in which isotopic systems and trace elements are depleted.Chemical variations in komatiites and D-basalts can be explainedby fractional crystallization from the parental komatiite. Incontrast, komatiitic basalts and E-basalts are siliceous anddisplay enriched isotopic and trace element compositions. Theirchemical trends are best explained by assimilation with fractionalcrystallization (AFC) from the primary komatiite. AFC calculationsindicate that the komatiitic basalts and E-basalts are derivedfrom komatiites contaminated with 20% and 30% crustal material,respectively. The volcanic stratigraphy of the Ngezi sequence,which is based on field relationships and the trace elementcompositions of relict clinopyroxenes, shows that the leastcontaminated komatiite lies between highly contaminated komatiiticbasalt flows, and has limited exposure near the base of thesuccession. Above these flows, D- and E-basalts alternate. Thekomatiite appears to have erupted on the surface only in theearly stages, when plume activity was high. As activity decreasedwith time, komatiite magmas may have stagnated to form magmachambers within the continental crust. Subsequent komatiiticmagmas underwent fractional crystallization and were contaminatedwith crust to form D-basalts or E-basalts. KEY WORDS: komatiite; crustal assimilation; Belingwe greenstone belt; continental flood basalt; plume magmatism  相似文献   

2.
Alteration of a Komatiite Flow from Alexo, Ontario, Canada   总被引:5,自引:4,他引:1  
To investigate the ability of komatiites to preserve duringalteration a record of the geochemical and isotopic compositionof the Archean mantle, we studied the petrology and geochemistryof a komatiite flow from Alexo, Ontario. Although this flowis relatively well preserved, two main types of alteration arerecognized: (1) hydration of variable intensity throughout thewhole flow; (2) local rodingitization. In samples only slightlyaffected by hydration, the alteration was essentially isochemical;where more intense, hydration was accompanied by the mobilityof TiO2, Zr and the light rare-earth elements (LREE). The mobilityof these reputedly immobile trace elements is influenced bytexture and secondary mineral assemblages. Rodingitization wasaccompanied by still greater mobility. An Nd isochron with anage of 272698 Ma and Nd(T) =+ 2.5 is defined by wholerock samples.Because the spread of Sm-Nd ratios is far greater than can beexplained by magmatic processes, the age is interpreted as thatof the main alteration event during or soon after emplacement.Scattered initial Sr isotopic ratios and Nd (T) (+ 3.6 to +0.7)provide evidence for several younger events. The Nd (T) of magnaticclinopyroxene ( plus;3.8) is higher than that of mafic tofelsicrocks and pyroxenes from the Abibiti belt (Nd (T) +2.5). Thisresult implies: (1) the komatiites exchanged Nd with surroundingrocks during waterrock interaction; (2) the isotopic compositionof komatiites and their mantle source differed from that ofthe more common basalts of the Abitibi belt. KEY WORDS: alteration; Archean; Komatiite; trace elements; radiogenic and stable islotopes *Present address: Ore Genesis Research Group, VIEPS Department of Earth Science, Monash University, Clayton, Vic 3168, Australia. Telephone: (61) 3 9905-3881. Fax: (61) 3 9905–4903. e-mail: ylahaye{at}artemis.earth.monash.edu.au  相似文献   

3.
The Tertiary to Recent basalts of Victoria and Tasmania havemineralogical and major element characteristics of magmas encompassingthe range from quartz tholeiites to olivine melilitites. Abundancesof trace elements such as incompatible elements, including therare earth elements (REE), and the compatible elements Ni, Coand Sc, vary systematically through this compositional spectrum.On the basis of included mantle xenoliths, appropriate 100 Mg/Mg+ Fe+2 (68–72) and high Ni contents many of these basaltsrepresent primary magmas (i.e., unmodified partial melts ofmantle peridotite). For fractionated basalts we have derivedmodel primary magma compositions by estimating the compositionalchanges caused by fractional crystallization of olivine andpyroxene at low or moderate pressure. A pyrolite model mantlecomposition has been used to establish and evaluate partialmelting models for these primary magmas. By definition and experimentaltesting the specific pyrolite composition yields parental olivinetholeiite magma similar to that of KilaeauIki, Hawaii (1959–60)and residual harzburgite by 33 per cent melting. It is shownthat a source pyrolite composition differing only in having0.3–0.4 per cent TiO2 rather than 0.7 per cent TiO2, isable to yield the spectrum of primary basalts for the Victorian-Tasmanianprovince by 4 per cent to 25 per cent partial melting. The mineralogiesof residual peridotites are consistent with known liquidus phaserelationships of the primary magmas at high pressures and thechemical compositions of residual peridotite are similar tonatural depleted or refractory lherzolites and harzburgites.For low degrees of melting the nature of the liquid and of theresidual peridotite are sensitively dependent on the contentof H2O, CO2 and the CO2/H2O in the source pyrolite. The melting models have been tested for their ability to accountfor the minor and trace element, particularly the distinctivelyfractionated REE, contents of the primary magmas. A single sourcepyrolite composition can yield the observed minor and traceelement abundances (within at most a factor of 2 and commonlymuch closer) for olivine melilitite (4–6 per cent melt),olivine nephelinite, basanite (5–7 per cent melt), alkaliolivine basalt (11–15 per cent melt), olivine basalt andolivine tholeiite (20–25 per cent melt) provided thatthe source pyrolite was already enriched in strongly incompatibleelements (Ba, Sr, Th, U, LREE) at 6–9 x chondritic abundancesand less enriched (2.5–3 x chondrites) in moderately incompatible(Ti, Zr, Hf, Y, HREE) prior to the partial melting event. Thesources regions for S.E. Australian basalts are similar to thosefor oceanic island basalts (Hawaii, Comores, Iceland, Azores)or for continental and rift-valley basaltic provinces and verydifferent in trace element abundances from the model sourceregions for most mid-ocean ridge basalts. We infer that thismantle heterogeneity has resulted from migration within theupper mantle (LVZ or below the LVZ) of a melt or fluid (H2O,CO2-enriched) with incompatible element concentrations similarto those of olivine melilitite, kimberlite or carbonatite. Asa result of this migration, some mantle regions are enrichedin incompatible elements and other areas are depleted. Although it is possible, within the general framework of a lherzolitesource composition, to derive the basanites, olivine nephelinitesand olivine melilitites from a source rock with chondritic relativeREE abundances at 2–5 x chondritic levels, these modelsrequire extremely small degrees of melting (0.4 per cent forolivine melilitite to 1 per cent for basanite). Furthermore,it is not possible to derive the olivine tholeiite magmas fromsource regions with chondritic relative REE abundances withoutconflicting with major element and experimental petrology argumentsrequiring high degrees (15 per cent) of melting and the absenceof residual garnet. If these arguments are disregarded, andpartial melting models are constrained to source regions withchondritic relative REE abundances, then magmas from olivinemelilitites to olivine tholeiites can be modelled if degreesof melting are sufficiently small, e.g., 7 per cent meltingfor olivine tholeiite. However, the source regions must be heterogenousfrom 1 to 5 x chondritic in absolute REE abundances and heterogerieousin other trace elements as well. This model is rejected in favorof the model requiring variation in degree of melting from 4per cent to 25 per cent and mantle source regions ranging fromLREE-enriched to LREE-depleted relative to chondritic REE abundances.  相似文献   

4.
The Roaring River Complex, Superior Province, Canada, containsrocks varying from diorite and monzodiorite to granodioritewhich are characterized by high mg-numbers (0.43–0.62),high abundances of Cr (150 ppm), Sr (500–2000 ppm), Ba(1000–2500ppm), and P2O5 (0.5 wt.%), low Rb/Sr ratios (001–0.02),and steeply fractionated, subparallel REE patterns (Cen =65–170,Ybn = 3–6) without Eu anomalies. The continuous compositionalvariation of the rock suite provides a basis for testing thevarious processes thought to have been important in the extractionof granodiorite magmas from the mantle during the Archean. Weconsider (1) the relative roles of partial melting, crystallizationfractionation, and other processes; (2) the role of garnet orother phases in controlling the steep REE patterns of the rocks;and (3) the chemical and isotopic composition of the sourceregion. The subparallel and decreasing REE patterns with increasingsilica, and the ten-fold variation and high abundances of Crand Ni within the diorite-granodiorite series are not consistentwith different extents of melting of basic crust. The scatterin bivariate plots for closely spaced samples does not supportsimple two-component mixing or liquid immiscibility. The compositionalvariation can be explained by crystallization differentiation(from 0 to 90%) of monzodioritic magma through separation ofdioritic cumulates containing clinopyroxene, hornblende, biotite,plagioclase, K-feldspar, and accessories. The compatibilityof the REEs resulted principally from crystallization of spheneand apatite. The parental monzodioritic magmas with their high mg-numbers,Ni, and Cr contents were derived from peridotitic source rocks(mg-numbers>0.80) with low Rb/Sr ratios (<0.02) and light-REEenrichment relative to chondrites. The differences in the REEpatterns of monzodiorite samples do not support, nor rule out,garnet in the residue for melting. If the monzodioritic meltswere derivatives of other melts, the parent melts would havebeen similar to high-Mg monzodiorites (‘sanukitoids’)recognized as components of other diorite-granodiorite bodiesin the region. An Rb-Sr whole-rock isochron (n = 25) yields a minimum crystallizationage of 2623 Ma (?19) with initial 87Sr/86Sr = 070134 (?000004;MSWD=l.8). Sm-Nd isotope data for six rocks yield Nd (2623)=+0.8 ?0.3. The isotope data indicate a source region with long-termRb/Sr of 0.02, similar to depleted mantle, and light-REE depletionrelative to chondrites. The peridotite source to the diorite-granodioriteseries became light-REE enriched before melting through theaddition of a light-REE component of a fluid or melt. In generating Archean granodiorite with suitably high mg-numbers,and Ni, Cr, Sr, Ba, P2O5, and light-REE contents, these dataindicate: (1) the importance of crystallization differentiationof high-Mg monzodioritic parent magmas, (2) that the steep REEpatterns may be a characteristic of the source rocks, and (3)light-REE-enriched, peridotitic sources were melting and contributingsiliceous material directly to the Archean crust.  相似文献   

5.
The present work reports the first broad geochemical investigationof the recently discovered late Archean (2700 Ma) Skjoldungenalkaline igneous province (SAP) in southeast Greenland. Therocks studied range in composition from ultramafic to felsicand comprise pyroxenites, hornblendites, hornblende noritesand diorites, monzonites, syenites, and nephelinitic rocks andcarbonatites. Various lithologic units from the host Archeangneissic basement are also investigated. The magmatic rocksshow remarkably coherent major element, trace element, rareearth element (REE), and Sr and Nd isotope systematics, suggestinga petrogenetic relationship. The most important geochemicalfeatures are high normative proportions of nepheline, forsteriteand albite, low TiO2 (<15 wt %) and moderate FeO (total)(<12 wt %) contents, enrichments in large ion lithophileelements (LILE) and light rare earth elements both absoluteand relative to high field strength elements (HFSE) that displaylarge negative anomalies, and generally low to moderate abundancesof compatible elements. Field relations and REE and compatibleelement systematics among Skjoldungen rocks suggest that maficand ultramafic hornblende-rich samples may represent cumulatelithologies of the regional parental magma. On the basis ofmineral data, this is deduced to have had mg-number of 064,shoshonitic affinities (K2O15 wt %), been close to silica saturationand volatile rich. Major element, trace element and REE systematicsfurther suggest that felsic intrusions are related to the maficregional parental magma through extensive olivine, hyperstheneand hornblende fractionation. Lack of correlation between La/Yband other critical trace and REE ratios indicates that apatite,zircon and titaniferous minerals were not important cumulusphases at advanced stages of evolution. The measured Sm–Ndwhole-rock isochron age is 2716 23 Ma (2 error) [mean squareof weighted deviates (MSWD) = 14], whereas linear regressionof the Sr isotope data yields an age of 26047 Ma (2 error)(MSWD = 22•2). The age obtained by Nd isotopes is corroboratedby U–Pb zircon results (2698 7 Ma), suggesting thatthe Sm–Nd system remained closed since crystallization.By contrast, the 100 Ma younger age obtained by Sr isotopessuggests that the Rb–Sr system has been disturbed. Initial143Nd/144 Nd ratios span a narrow range corresponding to Nd(27Ga) =+074 to –109, whereas initial Sr values at 27Ga cover a comparatively larger interval from –10 to +20.Neither initial Nd nor initial Sr values conform to previouslysuggested mantle depletion curves and no meaningful correlationexists between Nd and Sr isotopes for the Skjoldungen magmaticrocks as a whole. Although compositionally heterogeneous, theanalyzed suite of samples from the host agmatitic basement isextremely homogeneous with respect to age, with TCHUR crustalresidence times around 2700–2800 Ma confirming limitedavailable isotopic evidence. Large-scale assimilation of Archeancrust or recycling of sediments derived from the local basementinto the mantle source fails to explain adequately negativeNb anomalies and low Nd signatures characteristic of the Skjoldungenintrusions. Rather, the nearchondritic isotopic compositionof Nd in the Skjoldungen samples together with the decoupledLILE and HFSE enrichment and slightly positive Sr values areconsidered to reflect characteristics of the mantle source ina subduction zone environment. The geodynamic site hosting theSkjoldungen province thus may be an early manifestation of modern-styleplate tectonics. KEY WORDS: Skjoldungen province; Greenland; Archean; alkaline igneous rocks; geochronology; geochemistry *Corresponding author. Present address: Ecole Normale Suprieure de Lyon, 46 AlLe d'Italie, 69364 Lyon Cedex 07, France  相似文献   

6.
Unusual corundum-fuchsite rocks with Al2O3 contents up to 89per cent and Cr2O3 values up to 2.8 per cent were investigatedfrom two localities in Zimbabwe and Transvaal. They form lenseswithin volcano-sedimentary series of different metamorphic gradesand are closely associated with metamorphic ultramafics. In Zimbabwe the corundum contains up to 3.8 wt. per cent Cr2O3,and fuchsite up to 3.7 per cent Cr2O3. Coexisting minerals areandalusite (2 per cent Cr2O3), chlorite (3.2 per cent Cr2O3),complex margarite solid solutions, tourmaline (4.9 per centCr2O3), dispore (1.1 per cent Cr2O3), and rutile (1.9 per centCr2O3); gersdorffite (NiAsS), wehrlite (BiTe), and native bismuthare occasional opaque accessories. The minerals from the Transvaallocality are generally poorer in Cr2O3. Important parageneticdifferences are the lack of diaspore, tourmaline and margarite,the occurrence of kyanite (0.9 per cent Cr2O3) instead of andalusite,exsolution bodies of complex CrFeAl-oxides in rutile, and theappearance of biotite and plagioclase. Both biotite and fuchsitemay be rich in Ba. Critical mineral assemblages indicate that the Zimbabwe rockswere metamorphosed at temperatures not greatly exceeding 400°C and at pressures below 3.5 kb, those from Transvaal near600 °C at or above 5 kb. The textures suggest that the extremeAl-enrichment did not occur during metamorphism but essentiallyprior to it or at least in its early stages. Major and minor element analyses of the rocks from both localitiesshow that they are strongly enriched in the elements Al, Cr,B, V, and As, and locally also in K, Rb, Ni, Sb, Bi, and Te,whereas they are depleted in Si, Mg, Fe, Mn, Na, Ca, S, Cu,Zn, Ga, Sr, and Y. During their formation a strong Al/Ga fractionationmust have taken place leading to exceptionally low Ga/Al ratios. Three modes of primary origin are discussed. (1) Formation ofa low-iron bauxite in a reducing Archaean atmosphere is consideredunlikely, ly on geochemical grounds (very high B-contents; aberrantCr/Ni ratios; low Ga and Y), partly because similar rocks arefound in a non-Archaean formation of New Zealand. (2) Metasomatismin connection with early metamorphic serpentini-zation of theultramafic country rock does not seem impossible but would haveto be utterly different from the commonly observed rodingitizationand other metasomatic zones surrounding serpentinites. (3) Amodel is proposed for premetamorphic postvolcanic exhalativealteration of ultramafic komatiitic lavas, during which theelements B, K, Rb, As, Sb, Bi, Te were deposited from the solutions,while Al, Cr, Ni, and V were concentrated as immobile remaindersof the original rock, and Mg, Si, Fe, and Ca were largely dissolvedand transported away. The mineralogy of these alteration productsmay have been governed by aluminous sulphate minerals like alunite,KAl3[SO4]2 (OH)6, which, during subsequent regional metamorphism,broke down to form, with the remaining silica, fuchsite andAl2SiO5, and without silica, diaspore and corundum, while sulphatewas carried away by the metamorphic solutions.  相似文献   

7.
A new method has been suggested for evaluating the overall basicityof minerals and rocks by using ionization reactions involvingone proton: (sum of cations) + H2O = mineral + H+, (sum of cations) + H2O = (sum of normative minerals of a rock)+ H+. The basicity indicators are expressed as standard free energychanges of these reactions (). At standard water pressure (logPH2O = 0) and chemical activity of the metal ions ( log Mn+= 0), the relationship between and alkalinity of solutions(pH) becomes: = –2.303 RTlog H+ = 2.303 RT pH. The overall basicities of rock-forming oxides, minerals andmajor rocks were calculated from the thermodynamic data on ionsin water solutions and solid compounds.  相似文献   

8.
The Kolar Schist Belt of the Dharwar Craton of South India isan Archean greenstone belt dominated by metavolcanic rocks.The mafic metavolcanic rocks occur as komatiitic and tholeiiticamphibolites. The komatiitic amphibolites occur along the marginsof the N–S trending, synformal belt. They are much lessabundant than the tholeiitic amphibolites and have 14 to 21–3wt. per cent MgO. The komatiitic amphibolites from the west/centralpart of the belt have two distinctive REE patterns: (1) thoseenriched in the middle to light REE but depleted in Ce relativeto Nd; and (2) those with patterns that are convex up, i.e.depleted in both light and heavy REE, although more depletedin the light REE. Associated tholeiites have light REE depletedto flat REE patterns. Komatiitic and tholeiitic amphibolitesfrom the eastern part of the belt have enriched light REE patterns. The tholeiitic amphibolites from the Kolar Schist Belt are similarto the TH I and TH II types of Archean tholeiites of Condie(1981). The komatiitic amphibolites are similar to komatiitesand komatiitic basalts of Barberton Mountainland, but have higherFeO and TiO2 abundances and lower Yb/Gd ratios. The petrogenetic interpretations for these rocks are based primarilyon a modification of the MgO-FeO diagram of Hanson & Langmuir(1978), and modelling of Zr, Ni and REE. All of the rocks haveundergone some fractionation. While the modelling does not giveaccurate temperatures, pressures, compositions and extents ofmelting of the mantle sources for the various amphibolites,it does present an approach which can be used for estimatingthese parameters. For example, the komatiitic amphibolites appearto be derived from melts generated by 10 to 25 per cent meltingof the mantle over a range of depths and temperatures greaterthan 80 km and 1575?C. The variation in the P-T conditions ofmagma generation is possibly due to adiabatic melting in mantlediapirs with a range of FeO/MgO ratios. If the tholeiitic amphibolitesare derived from similar mantle sources (it is not clear thatthey are), their parent melts may have been generated by similarextents of melting, but at depths of less than 80 km. The komatiiticamphibolites from the west central part of the belt were generatedfrom light REE depleted mantle, whereas those from the easternpart of the belt appear to have been generated from light REEenriched mantle. The sources for the komatiitic amphibolitesin both areas were significantly enriched in FeO relative topyrolite. Thus, a light REE depleted and a light REE enrichedsource appear to have provided mafic volcanics with similarmajor element chemistry to this belt during its evolution.  相似文献   

9.
The paper presents U–Pb ages for zircon, titanite, andmonazite, and Hf isotopic data for zircon, from the rocks oftwo magmatic suites occurring mostly in the Archean Uchi Subprovinceand partly in the neighbouring Berens River and English Riversubprovinces of the northwestern Superior Province, Ontario.These data, together with observations on the morphologies and,where evident, the inheritance of the zircon crystals, constrainthe nature of the sources of the magmas and provide a recordof various crustal processes in their evolution. The older of the two magmatic suites formed at 2744–2740Ma along segments of a common arc system. The suite consistsof (1) several trondhjemitic to granodioritic plutons, withHf values of 6•1, intruded into older crust and possiblyformed from magma produced by partial melting of subducted,juvenile oceanic crust; (2) an assemblage of dacitic pyroclasticvolcanic rocks, with Hf values of 3•2–4•0, associatedwith tholeiitic basalts and probably derived from magma meltedfrom arc mantle; and (3) a bimodal assemblage of tholeiiticbasalts, rhyolites, and porphyries, also with Hf values of 6•1,associated with a volcanogenic massive sulphide deposit andapparently formed by differentiation of mantle-derived basalticmelts at shallow levels in an extensional back-arc setting. The second magmatic suite, formed between 2702 and 2693 Ma,comprises late orogenic plutons and batholiths of dioritic todominantly granodioritic composition. The characteristics ofthese intrusions are consistent with a process combining meltingof a metasomatized mantle source and subsequent fractional crystallizationof the derived magmas at shallow depths. However, most of thestudied occurrences show evidence of crustal contamination throughvarious combinations of assimilation of lower-crustal material,assimilation of underthrust sedimentary rocks, and contaminationby wall rock materials during the latest stages in the emplacementof the plutons. The involvement of crustal material is indicatedby the presence of zircon xenocrysts and by Hf values rangingfrom 1•4 to 4•4. Only one intrusion, with an Hf valueof 5•0 and no xenocrystic zircon, appears to have escapedwidespread contamination, perhaps because the ascent of itsmagma was facilitated by a crustal-scale fracture system.  相似文献   

10.
The <80 ka basalts–basanites of the Potrillo VolcanicField (PVF) form scattered scoria cones, lava flows and maarsadjacent to the New Mexico–Mexico border. MgO ranges upto 12·5%; lavas with MgO < 10·7% have fractionatedboth olivine and clinopyroxene. Cumulate fragments are commonin the lavas, as are subhedral megacrysts of aluminous clinopyroxene(with pleonaste inclusions) and kaersutitic amphibole. REE modellingindicates that these megacrysts could be in equilibrium withthe PVF melts at 1·6–1·7 GPa pressure. Thelavas fall into two geochemical groups: the Main Series (85%of lavas) have major- and trace-element abundances and ratiosclosely resembling those of worldwide ocean-island alkali basaltsand basanites (OIB); the Low-K Series (15%) differ principallyby having relatively low K2O and Rb contents. Otherwise, theyare chemically indistinguishable from the Main Series lavas.Sr- and Nd-isotopic ratios in the two series are identical andvary by scarcely more than analytical error, averaging 87Sr/86Sr= 0·70308 (SD = 0·00004) and 143Nd/144Nd = 0·512952(SD=0·000025). Such compositions would be expected ifboth series originated from the same mantle source, with Low-Kmelts generated when amphibole remained in the residuum. ThreePVF lavas have very low Os contents (<14 ppt) and appearto have become contaminated by crustal Os. One Main Series picritehas 209 ppt Os and has a Os value of +13·6, typical forOIB. This contrasts with published 187Os/188Os ratios for KilbourneHole peridotite mantle xenoliths, which give mostly negativeOs values and show that Proterozoic lithospheric mantle formsa thick Mechanical Boundary Layer (MBL) that extends to 70 kmdepth beneath the PVF area. The calculated mean primary magma,in equilibrium with Fo89, has Na2O and FeO contents that givea lherzolite decompression melting trajectory from 2·8GPa (95 km depth) to 2·2 GPa (70 km depth). Inverse modellingof REE abundances in Main Series Mg-rich lavas is successfulfor a model invoking decompression melting of convecting sub-lithosphericlherzolite mantle (Nd = 6·4; Tp 1400°C) between90 and 70 km. Nevertheless, such a one-stage model cannot accountfor the genesis of the Low-K Series because amphibole wouldnot be stable within convecting mantle at Tf 1400°C. Thesemagmas can only be accommodated by a three-stage model thatenvisages a Thermal Boundary Layer (TBL) freezing conductivelyonto the 70 km base of the Proterozoic MBL during the 20 Myrtectonomagmatic quiescence before PVF eruptions. As it grew,this was veined by hydrous small-fraction melts from below.The geologically recent arrival of hotter-than-ambient (Tp 1400°C) convecting mantle beneath the Potrillo area re-meltedthe TBL and caused the magmatism. KEY WORDS: western USA; picrites; Sr–Nd–Os isotopes; petrogenetic modelling; thermal boundary layer  相似文献   

11.
Komatiites from the 2 Ga Jeesiörova area in Finnish Laplandhave subchondritic Al2O3/TiO2 ratios like those in Al-depletedkomatiites from Barberton, South Africa. They are distinct inthat their Al abundances are higher than those of the Al-depletedrocks and similar to levels in Al-undepleted komatiites. Moderatelyincompatible elements such as Ti, Zr, Eu, and Gd are enriched.Neither majorite fractionation nor hydrous melting in a supra-subductionzone setting could have produced these komatiites. Their highconcentrations of moderately incompatible elements may haveresulted from contamination of their parental melt through interactionwith metasomatic assemblages in the lithospheric mantle or enrichmentof their mantle source in basaltic melt components. Re–Osisotope data for chromite from the Jeesiörova rocks yieldan average initial 187Os/188Os of 0·1131 ± 0·0006(2), Os(I) = 0·1 ± 0·5. These data, coupledwith an initial Nd of +4, indicate that melt parental to thekomatiites interacted minimally with ancient lithospheric mantle.If their mantle source was enriched in a basaltic component,the combined Os–Nd isotopic data limit the enrichmentprocess to within 200 Myr prior to the formation of the komatiites.Their Os–Nd isotopic composition is consistent with derivationfrom the contemporaneous convecting upper mantle. KEY WORDS: Finnish Lapland; Jeesiörova; komatiites; mantle geochemistry; petrogenesis; redox state; Re/Os isotopes; Ti enrichment  相似文献   

12.
A garnet websterite nodule from the Honolulu volcanic series,Oahu, Hawaii, has been melted in the presence of nearly pureH2O. The solidus is intermediate between that of peridotiteand gabbro. The curve displays a temperature minimum around20 kb reflecting the breakdown of plagioclase. The Iiquidusis between 1130 ?C and 1150 ?C between 10 and 20 kb vapor pressure.Amphibole (pargasitic hornblende) has an extensive stabilityfield, reaching a maximum temperature about 20 ?C below thegarnet websterite liquidus at 15 kb and a maximum pressure of27.5 kb at 950 ?C. The amphibole-out curve intersects the soliduswith a positive slope. Liquids formed by partial melting of garnet websterite are quartz-normativewithin the stability field of amphibole, but become olivine-normative(tholeiitic) with increasing temperature. Amphibole and clinopyroxeneare enriched in Tschermak's molecule at higher temperatures,pargasite content of amphibole increases with increasing pressure. A garnet websterite-rich upper mantle containing modal olivineyields quartz-normative (13–16 per cent), aluminous (21–4wt. per cent A12O3) melts at 17 P 10 kb and in the presenceof nearly pure H2O. However, the presence of amphibole controlsthe liquid composition, a situation not found for liquids formedfrom wet peridotite. In contrast to many basalt liquids, liquidof garnet websterite composition cannot fractionate to andesiteby precipitation of amphibole, as amphibole is not a liquidusphase.  相似文献   

13.
Hafnium isotope and incompatible trace element data are presentedfor a suite of mid-ocean ridge basalts (MORB) from 13 to 47°Eon the Southwest Indian Ridge (SWIR), one of the slowest spreadingand most isotopically heterogeneous mid-ocean ridges. Variationsin Nd–Hf isotope compositions and Lu/Hf ratios clearlydistinguish an Atlantic–Pacific-type MORB source, presentwest of 26°E, characterized by relatively low Hf valuesfor a given Nd relative to the regression line through all Nd–Hfisotope data for oceanic basalts (termed the ‘Nd–Hfmantle array line’; the deviation from this line is termedHf) and low Lu/Hf ratios, from an Indian Ocean-type MORB signature,present east of 32°E, characterized by relatively high Hfvalues and Lu/Hf ratios. Additionally, two localized, isotopicallyanomalous areas, at 13–15°E and 39–41°E,are characterized by distinctly low negative and high positiveHf values, respectively. The low Hf MORB from 13 to 15°Eappear to reflect contamination by HIMU-type mantle from thenearby Bouvet mantle plume, whereas the trace element and isotopiccompositions of MORB from 39 to 41°E are most consistentwith contamination by metasomatized Archean continental lithosphericmantle. Relatively small source-melt fractionation of Lu/Hfrelative to Sm/Nd, compared with MORB from faster-spreadingridges, argues against a significant role for garnet pyroxenitein the generation of most central SWIR MORB. Correlations betweenHf and Sr and Pb isotopic and trace element ratios clearly delineatea high-Hf ‘Indian Ocean mantle component’ that canexplain the isotope composition of most Indian Ocean MORB asmixtures between this component and a heterogeneous Atlantic–Pacific-typeMORB source. The Hf, Nd and Sr isotope compositions of IndianOcean MORB appear to be most consistent with the hypothesisthat this component represents fragments of subduction-modifiedlithospheric mantle beneath Proterozoic orogenic belts thatfoundered into the nascent Indian Ocean upper mantle duringthe Mesozoic breakup of Gondwana. KEY WORDS: mid-ocean ridge basalt; isotopes; incompatible elements; Indian Ocean  相似文献   

14.
The Ni-S System and Related Minerals   总被引:1,自引:0,他引:1  
The system Ni-S has been studied systematically from 200? to1, 030? C by means of evacuated, sealed silica-glass tube experimentsand differential thermal analyses. Compounds in the system areNi3S2 (and a high temperature, non-quenchable Ni3?S2 phase),Ni7S6, Ni1–S4 Ni3S4, and NiS2. The geologic occurrenceof the minerals heazlewoodite (Ni2S2), millerite (ßSNi1-2S),polydymite (Ni3S4), and vaesite (NiS2) can now be describedin terms of the stability ranges of their synthetic equivalents. Hexagonal heazlewoodite, which is stoichiometric within thelimit of error of the experiments, inverts on heating to a tetragonalor pseudotetragonal phase at 556? C. This high-temperature phase(Ni3 has a wide field of stability, from 23.5 to 30.5 wt percent sulfur at 600? C, and melts incongruently at 806??3? C.The ßNi7S6 phase inverts to Ni78 at 397? C6 when inequilibrium with Ni3S2, and at 400? C when in equilibrium withNiS. Crystals of Ni7S6 break down to Ni3-S2+NiS at 573??3?C.The low-temperature form of Ni1-S1 corresponding to the mineralmillerite, is rhombohedral, and the high-temperature form hasthe hexagonal NiAs structure. Stoichiometric NiS inverts at379??3?C, whereas Ni1-S with the maximum nickel deficiency invertsat 282??5OC. The Ni1-alphS-NiS2 solvus was determined to 985??3?C,the eutectic temperature of these phases. Stoichiometric NiSis stable at 600?C but breaks down to Ni2-S2 and Ni1-S below797?C, whereas Ni1-S with 38.2 wt per cent sulfur melts congruentlyat 992??3?C. Vaesite does not vary measurably from stoichiometricNiS2 composition, and melts congruently at 1.007?5?C. Polydymitebreaks down to aNi-S? vaesite at 356??3?C. Differential thermalanalyses showed the existence of a two-liquid field in the sulfur-richportion of the system above 991?C and over a wide compositionalrange.  相似文献   

15.
The system peridotite-H2O–CO2 serves as a simplified modelfor the phase relations of mantle peridotite involving morethan one volatile component. Run products obtained in a studyof phase relations of four mantle peridotites in the presenceof H2O- and (H2O+CO2)- bearing vapors and with controlled hydrogenfugacity (fH2) at high pressures and temperatures have beensubjected to a detailed chemical investigation, principallyby the electron microprobe. Mg/(Mg+Fe) of all phases generally increases with increasingtemperature and with increasing Mg/(Mg+Fe) of the starting material.This ratio appears to decrease with increasing pressure forolivine, and for amphibole coexisting with garnet. DecreasingfH2 from that of IW buffer to that of MH buffer decreases Mg/(Mg+Fe)of the partial melt from approximately 0-85 to approximately0.50, whereas the Fo content of coexisting olivine increasesslightly less than 3 per cent and the Mg/(Mg+Fe) of clinopyroxeneincreases about 4 per cent. However, the variations in Fo contentof olivines are within those observed in olivines from naturalmantle peridotite. The chemistry of other silicate mineralsdoes not significantly reflect variations of fH2. Consequently,the peridotite mineralogy and/or chemistry is not a good indicatorfor the fH2 conditions during crystallization. All crystalline phases, except amphibole, and to some extentgarnet, show increasing Cr content with increasing temperatureand increasing Cr content of the starting material, resultingin a positive correlation with Mg/(Mg+Fe). Partial melts aredepleted in Cr2O3 relative to the crystalline phases. High Mg/Mg+Fe)and Cr2O3 are thus expected in crystal residues after partialmelting. The absolute values depend on degree of melting andthe composition of the parent peridotite. Liquids formed by anatexis of mantle peridotite are andesiticunder conditions of XH2Ov > 0.6 to at least 25 kb total pressureand to more than 200?C above the peridotite solidus. This observationsupports numerous suggestions that andesite genesis in islandarcs may result from partial melting of underlying peridotitemantle. In contrast to basaltic rocks, the absence of amphibole(paragasitic hornblende) does not affect the silica-saturatednature of the liquids. Increasing K2O content of the startingmaterial (up to 1 wt. per cent K2O) results in increasing potassiumcontent of the amphibole (1 wt. per cent K2O) as well as theappearance of phlogopite. The liquid under these conditionsis relatively K20-poor (less than 1 wt. per cent K2O). Partial melts are olivine normative with XH2O 0.5, and initialliquids contain normative ol and ne at XH2O 0.4. The alkalinityof these liquids increases with decreasing XH2O below valuesof 0.5. The (ol+opx)-normative liquids resemble oceanic basaltswhereas (ol+ne)-normative liquids resemble olivine nepheliniteand melilite basalt. Low aHlo and high aCo2 conditions may bethose under which kimberlites and related rocks are formed inthe mantle.  相似文献   

16.
Small (<5 km2), lithologically diverse gabbro and dioritestocks make up 2% of the 34 to 2 Ma Chilliwack batholith, andoverlap in age with associated calc-alkaline granitoids. Thesemafic plutons are similar to those in other I-type bath-oliths,and represent basaltic magmas present during batholith formation.Objectives of this study are: (1) to examine the origins ofboth interpluton and intrapluton petrologic diversity, and (2)to compare chemical and Sr-Nd isotopic traits of these gabbroswith those of Cascade are basalts. Mafic rocks in the Chilliwackare divided into a medium-K series (MKS) and a low-K series(LKS). The former contain 0.7–2.4 wt% K20 and are similarin composition to calc-alkaline basalts and basaltic andesites.Inverse REE modeling supports derivation of the MKS by 9–27%melting of a garnet-free, LREE-enriched source (La/bN 2). ChilliwackLKS gabbros have chemical characteristics of low-K olivine tho-eiites,including low K2O (0.3–0.5 wt%) and La/bN (1.7–3.4),and high CaO (8.8–11.3 wt%) and Na2O/K2O (6–22).These traits suggest a source with more clinopyroxene and lowerLa/bN than the MKS source. Differences in Nd(O) between MKSand LKS gabbros suggest that lower Nd/Sm is a long-lived LKSsource characteristic. Lithologic variation within compositeplutons of both series resulted primarily from multiple intrusionof related magmas, in some cases differentiates of a commonparent. Two contrasting examples were studied in detail. AtMt Sefrit, MKS variation (gabbronorite-quartz diorite) is modeledby low-pressure fractionation (ol + plag + cpx), accompaniedby 10% wallrock assimilation. In contrast, chemical and Sr-Ndisotopic variation among LKS gabbro-quartz diorite at CopperLake points to crystallization dominated by clinopyroxene+plagioclaseCr-spinel,indicative of differentiation at pressures 10 kbar, althoughthe assimilant in this case is poorly constrained. Chemicaland isotopic similarities between these mafic plutons and QuaternaryCascade lavas indicate that mafic magmas present during theproduction of Chilli-wack granitoids were low-and medium-K arebasalts. KEY WORDS: are magmatism; Cascades; gabbro; granitoid; trace element *Present address: Department of Physics, Astronomy, & Geology, Valdosta State University, Valdosta, GA 31698, USA. Telephone: (912) 249–4847 or 333–5752 Fax: (912) 333–7389. e-mail: jtepper{at}valdosta.peachnet.edu  相似文献   

17.
An oxygen and hydrogen isotopic study of minerals and wholerocks from the granites of the Mourne Mountains Tertiary complex,and related rocks, shows that whereas a significant circulationof meteoric water was associated with the complex, it had onlyminor and localized effects on the granites themselves. TheSilurian slate and greywacke country rocks, which would havehad 18O(SMOW) values of +10 to +20 before the Tertiary igneousevents, have been depicted 18O to values of –40 to –05Tertiary acid minor intrusions outside the main granite massesare also 18O depleted. l8O whole-rock data on the granites showa range of +6.0 to +9.5, and include values significantly higherthan most of those obtained for the granites of the Tertiarycentral complexes of Skye, Mull, and Ardnamurchan. Many of thelowest whole-rock 18O values are found in samples where theminerals are not in isotopic equilibrium. The mineral oxygenisotopic data can be explained in terms of localized interactionwith meteoric water, resulting in preferential 18O depletionin feldspar(s) and biotite, with quartz being much less affected.The granites all show low values of D(SMOW) for biotite andamphibole separates (–137 to –104). The lowest valuesoccur close to the margins of the plutons, near internal contactsor near greisen localities, and these probably reflect limitedinteraction with meteoric water. The higher D values are fromsamples which show evidence of chloritization. This processappears to have occurred both during interaction with meteoricwater, and also during autometasomatism by an exsolved magmaticfluid in other parts of the plutons, including central locationswhere there is little or no evidence for the penetration ofmeteoric water. Granite samples which exhibit near-equilibriumoxygen isotope fractionations for constituent minerals are characterizedby magmatic O-isotopic compositions. The G2 granite, the largestpluton of the eastern centre, has a magmatic 18O(SMOW) valueof {small tilde}+95; intrusions G3 (eastern centre) and G4(western centre) both have 18O(SMOW) values of {small tilde}+90.The other two main intrusive phases have distinctly lower 18O(SMOW)values: {small tilde}+75 for Gl (the least fractionated graniteof the Mourne Mountains central complex), and from +75 to +85for G5. The oxygen isotopic data rule out simple partial meltingof the country rocks as the origin of the granites and alsopreclude an origin by closed-system fractional crystallizationof basaltic magma typical of that represented by Tertiary basicigneous rocks of the region. * Present address: NERC Isotope Geosciences Laboratory, Keyworth, Nottingham BG12 5GG, UK Present address: School of Engineering Technology, Georgian College, Barrie, Ontario, L4M 3X9, Canada  相似文献   

18.
Pan-African high-grade metamorphism in the Kerala KhondaliteBelt (South India) led to the in situ formation of garnet-bearingleucosomes (L1) in sodic quartz—alkali feldspar—biotitegneisses. Microtextures, mineralogy and the geochemical characteristicsof in situ leucosomes (L1) and gneiss domains (GnD) indicatethat the development of leucosomes was mainly controlled bythe growth of garnet at the expense of biotite. This is documentedby the selective transfer of FeO, MgO, , Sm and the heavy rareearth elements into the L1 domains. P-T constraints (T>800C,P>6kbar, aH2O0.3) suggest that the leucosomes were formedthrough complete melting of biotite in fluid-absent conditions,following the model reaction Biotite+Alkali feldspar+QuartzlGarnet+Ilmenite+Melt.The fraction of melt generated during this process was low (<10vol.%). The identical size of the leucosomes as well as theirhomogeneous and isotropic distribution at outcrop scale, whichlacks any evidence for melt segregation, suggest that the migmatiteremained a closed system. Subsequent to migmatization, the leptyniticgneisses were intruded by garnet-bearing leucogranitic melts(L2), forming veins parallel and subperpendicular to the foliation.The leucogranites are rich in potassium (K2O5.5 wt%), (Ba400p.p.m.) and Sr (300 p.p.m.), and exhibit low concentrationsof Zr (40 p.p.m.), Th (<1 p.p.m.) and (<10 p.p.m.). Thechondrite-normalized REE spectra show low abundances (LaN20,LuN3) and are moderately fractionated (LaN/LuN7). An Eu anomalyis absent or weakly negative. The higher 87Sr/86Sr ratio at550 Ma (0.7345) compared with the migmatite (0.7164) precludesa direct genetic relationship between leptynitic gneisses andleucogranites at Manali.Nevertheless, the chemical and mineralogicalcompositions of the leuocogranites strongly favour a derivationthrough fluid-absent biotite melting of isotopically distinctbut chemically comparable Manali-type gneisses. The undersaturationof Zr, Th and REE, a typical feature of leucogranitic meltsgenerated during granulite facies anatexis of psammo-peliticlithologies and attributed to disequilibrium melting with incompletedissolution of accessory phases (zircon, monazite), is weaklydeveloped in the leucogranites of Manali.It is concluded thatthis is mainly due to the sluggish migration of the melts instatic conditions, which facilitated equilibration with therestitic gneisses. *Fax: 0228-732763; e-mail: ingo.braun{at}uni-bonn.de  相似文献   

19.
The Palaeocene magnesian transitional basalts of the Main LavaSeries (SMLS) of Skye, NW Scotland, have concentration rangesof K, Ti, P, Rb, Sr, Ba, Nb, Ta, Zr, Hf, Th and light REE varyingby a factor of up to two at a given value of (FeO + Fe2O3)/(FeO+ Fe2O3 + MgO). Their chondrite-normalized REE patterns varywidely in slope and cuvature, with (Ce/Yb)N=2.2–4.7. Theabundances of Ti, P, Zr, Hf, Eu, Gd and Tb correlate negativelywith Si-saturation and are thought to be primary, reflectingvariable localized partial melting (5 per cent) for each magmabatch at about 60 km depth of a spinel-lherzolite upper mantle,leaving a lherzolitic residuum. Y and the heavy REE vary littlewith Si-saturation, due to their partial retention in residualmantle diopside. The large abundance ranges of Rb, Sr, Ba, Nb,Th, La, Ce and Nd in the SMLS basalts, uncorrelated with Si-saturation,may reflect local upper-mantle variability in the concentrationsof the ultra-incompatible elements beneath Skye, caused by thepre-Palaeocene extraction of small quantities of alkalic, incompatible-element-richmagma, such as formed the Permian lamprophyre dykes of westernScotland. The trace element data confirm major-element, least-squaresmodels, which show that fractional crystallization of SMLS magnesianbasalt to less-magnesian basalt residua involved the separationof 10 per cent olivine and 4 per cent plagioclase, whilst thefractionation of SMLS less-magnesian basalt to hawaiite occurredat about 35 km depth by precipitation of 8 per cent olivine,15 per cent plagioclase and 21 per cent aluminous sub-calcicaugite. The variation of Nb and Ta abundances in hawaiites,mugearites and low-Fe intermediate lavas suggests that theseelements partitioned strongly into liquidus titanomagnetitemicrophenocrysts. Zircon fractionation occurred during the finalstages of evolution of benmoreites and trachytes, the latterrepresenting the residuum of at least 90 per cent fractionalcrystallization of SMLS basalt magma. High-Ca, low-alkali olivine tholeiites of the Preshal Mhor magmatype occur near the top of the present lava field erosionalremnant and predominate in the dyke swarm transecting it. Theyhave low incompatible trace-element abundances and REE patternswith (Ce/Yb)N 0.6, similar to those of many mid-ocean ridgebasalts. Models attempting to explain the genesis and relationsof the contrasting SMLS and Preshal Mhor basalts by postulatingseparate mantle sources, arranged in plumes, blobs or layers,fail to account satisfactorily for: (1) the constant incompatible-elementratio ranges of all Skye basalt lavas, (2) the partial interstratificationof SMLS and Preshal Mhor basalts and (3) the appearance of PreshalMhor magmas at the climax of crustal extension in the dyke swarm.The contrasting REE patterns of SMLS transitional basalts andPreshal Mhor tholeiites, and the high Ca/Al, Ca/Na and Ca/Tiof the latter, can be explained if they were produced by furtherlimited partial fusion of the lherzolitic residuum (with a trappedmelt fraction) from SMLS genesis, leaving a final harzburgiticresiduum. The petrogenesis of the Skye lavas provides a localshort-timespan analogue of worldwide processes involved in thegeneration of mid-ocean ridge basalts.  相似文献   

20.
Aluminous granulites of the Archean (2?8 Ga) Kasai craton (Zaire)consist of two main mineral assemblages: Grt-Opx and Sil?Grt?Crdrocks. The high-grade metamorphic conditions as deduced from Grt-Opxand Grt-Opx-Pl-Qtz equilibria are 720?C-6?7 kb. Consideringthe zoning of the same minerals, the slope of the P-T path isestimated at 15 b/?C. Thermobarometry involving Crd is consistentwith those P-T conditions. Three cordierite-forming reactions have been observed petrographically: These equilibria are continuous reactions; end-member reactionshave slopes less than 15 b/?C; they are decompression reactionsoccurring after the metamorphic climax. Using available thermodynamic data, (R3) fixes the oxygen fugacityto a value below the QFM buffer (log10fO2 = – 17?6 at720?C, 6?7 kb and in the graphite stability field. The absence of graphite in the rocks showsthat the end of the granulite facies metamorphism did not occurunder important CO2 streaming. The polymetamorphic history of this Archean craton is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号