首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 552 毫秒
1.
增强型地热系统(EGS)热开采过程中循环工质的温度和压力会经历较大范围的变化,这会造成循环工质的热物性变化,从而影响流体工质的输运和岩石-流体热交换;数值模拟EGS热开采过程,预测EGS的寿命、出力等性能指标有必要考虑循环工质的热物性变化.笔者在EGS热开采过程三维数值模拟中考虑水和超临界二氧化碳的变物性,实现了热流双向耦合.针对水EGS分析了各物性变化对EGS采热性能的影响,并对变物性条件的水和超临界二氧化碳EGS的采热性能进行了对比研究.结果表明:工质在密度影响下开采寿命为9.0 a在密度和比定压热容共同影响下的开采寿命为7.5 a,说明密度和比定压热容越大则EGS开采寿命越短;在黏度系数影响下的开采寿命为18.0 a,说明黏度系数越大则EGS开采寿命越长;导热系数则对EGS采热性能无明显影响.注入压力一定的条件下以水为工质的EGS具有较长寿命,但相同时刻的质量流率和热开采率低于以临界二氧化碳为工质的EGS.  相似文献   

2.
亢方超  唐春安 《地学前缘》2020,27(1):185-193
地热能赋存于地球内部岩土体、流体和岩浆体中,是一种永久的、可再生的、储量丰富的清洁能源。地热能的开发,尤其是干热岩的开发利用,有可能成为解决人类未来能源危机的重要途径。目前采用的干热岩开采方法被称为增强型地热系统(EGS)。热储地质环境的复杂性和水力化措施对天然裂隙的依赖性,造成多数的EGS项目存在热储体积和换热面积不足、工质流量小、终端温度低,以及诱发地震风险等局限性,致使干热岩开发始终未能大规模商业化。基于开挖的增强型地热系统(EGS-E)的提出为突破传统EGS的技术弊端和规模局限提供了新思路。文章在其概念模型的基础上,从系统原理、工程构想、技术优势等方面对EGS-E进行了更详尽的阐述。EGS-E采用开挖、爆破、崩落等采矿技术,形成了独特的热储致裂系统和热能交换系统,能够大幅度降低地质环境对热储质量的限制,具备构建定制的热储空间、形成充足的换热面积,维持稳定的工质流量与温度及减少诱发地震风险等优势,为干热岩开发的商业化提供了新的解决方案。  相似文献   

3.
Wang  Jianfu  Jin  Shiping  Bai  Weiguo  Li  Yongliang  Jin  Yuhui 《Natural Hazards》2016,84(1):381-397

Carbon verification, which can guarantee the reliability and credibility of greenhouse gas (GHG) emission data, is the most important part of the daily operations of the carbon emission right trading system. Many international institutions, countries and regions have conducted research on and have practiced carbon verification policies and systems. Through comparative analysis of the international carbon verification policies and systems, they can provide experience for Chinese unified national carbon market to start supporting carbon verification. The paper study concludes that (1) carbon verification systems developed by international institutions focus on the scientific level of verification methods; (2) carbon verification policies and systems issued by important countries and regions draw on International Standardization Organization (ISO)14064 standards based on their national conditions and focus on the scientific level and reasonableness of verification methods; (3) major international experience includes complete verification policies and systems, strict standard verification procedures, diversified verification forms and a focus on key emission sources. Based on the differences in China’s carbon emissions characteristics caused by unbalanced regional economic development and the conditions of carbon verification in seven pilot carbon trading areas, this thesis proposes the following suggestions: pushing forward the establishment of carbon verification policies and systems by accelerating legislation on climate changes; facilitating carbon verification in a coordinated manner; regulating key GHG emission sources; establishing and improving supervision on carbon verification; and intensifying international exchanges and cooperation.

  相似文献   

4.
干热岩资源和增强型地热工程:国际经验和我国展望   总被引:1,自引:0,他引:1  
干热岩(HDR)是一种没有水或含有少量水的高温岩体,保守估计地壳中3~10 km深处干热岩所蕴含的能量相当于全球所有石油、天然气和煤炭所蕴藏能量的30倍。增强型地热系统(EGS)是指通过水力压裂等工程手段在地下深部低渗透性干热岩体中形成人工地热储层,采出相当数量热能的人工地热系统。EGS的研究与开发已有40年的历史,但早期只局限在美国、英国、法国、日本、澳大利亚等国家,我国这方面的研究于近几年起步。目前干热岩的开发面临诸多挑战,如大体积人工裂隙热储的建造、实现EGS商业化需要进一步研究和技术开发等。本文回顾分析了国际上重要EGS示范场地建设和研究过程中所取得的经验和积累的教训,讨论了我国近几年的研究进展,希望为我国今后EGS研究和工程化示范提供参考和借鉴。  相似文献   

5.
It is common sense that a deeper well implies higher temperature in the exploration of deep geothermal resources, especially with hot dry rock (HDR) geothermal resources, which are generally exploited in terms of enhanced geothermal systems (EGS). However, temperature is always different even at the same depth in the upper crust due to different heat sources. This paper summarizes the heat sources and classifies them into two types and five sub-types: crust-origin (partial melting, non-magma-generated tectonic events and radiogenic heat production), and mantle-origin (magma and heat conducted from the mantle). A review of global EGS sites is presented related to the five sub-types of heat sources. According to our new catalog, 71% of EGS sites host mantle-origin heat sources. The temperature logging curves indicate that EGS sites which host mantle-origin magma heat sources have the highest temperature. Therefore, high heat flow (>100 mW/m2) regions with mantle-origin magma heat sources should be highlighted for the future exploration of EGS. The principle to identify the heat source is elucidated by applying geophysical and geochemical methods including noble gas isotope geochemistry and lithospheric thermal structure analysis. This analytical work will be helpful for the future exploration and assessment of HDR geothermal resources.  相似文献   

6.
付雷  马鑫  刁玉杰  郑博文  郑长远  刘廷  邵炜 《中国地质》2022,49(5):1374-1384
【研究目的】 二氧化碳羽流地热系统(CPGS)在取热的同时可实现CO2地质封存,在碳达峰与碳中和背景下,CPGS碳封存的经济性是众多学者关注的要点。【研究方法】 以松辽盆地泉头组为例,采用数值模拟方法对比分析了注入压力、井间距与回注温度对热提取率的影响,在供暖情景下,计算了CPGS供暖效益与碳封存成本,并与常规水热型地热系统供暖效益进行了对比。【研究结果】 受携热介质转变与热突破影响,CPGS开采井温度呈现“降低-稳定-降低”的趋势,其中井间距对开采井温降影响显著,井间距越小开采井温降越明显;热提取率与回注压力呈现正相关性,与回注温度呈现负相关性,井间距对热提取率影响不显著;CPGS与常规水热型地热系统相比,采热量呈现“高-低-高”三个阶段,其中回注压力越小、回注温度与储层温度越接近,实现CPGS较水介质多采热能所需的时间越短。【结论】 仅考虑CO2价格与取热效益,供暖收益抵消部分碳封存成本后,井间距对CO2封存单位成本影响最为显著,井间距越小,CO2封存单位成本降低越迅速,在注采井间距300 m条件下,持续开采30 a后CO2封存单位成本可降至160元/t。  相似文献   

7.
浅层地热能具有储量大、分布广、埋深浅、易开发等特点,是可再生新能源。在传统能源资源紧张和环境恶化形势下,大力开发利用浅层地热能对全球低碳经济和节能减排具有重要的意义。水源热泵以能量利用率高、成本低、维修方便的优势占据重要地位,其中水源井是其关键,水源井的工程质量将直接影响着系统运行、回灌和使用寿命。通过大量的调查,分析研究了目前水源井工程存在的突出问题,并在试验和实际经验基础上提出了合理的水源井工程技术。  相似文献   

8.
开展煤矿区碳排放的系统评价和减排路径的综合分析,是落实我国碳达峰与碳中和愿景的具体行动。针对煤矿区碳排放源边界不清、核算模型缺乏及碳中和背景下发展方向等问题开展分析。通过文献查阅、资料收集等方法,厘清煤矿区碳排放源边界,并建立碳排放量核算模型,明确煤矿区低碳绿色发展方向。结果表明:煤矿区碳排放(CH4和CO2)来源可划分为自然排放和人为排放两大类,并细分为5种类型,针对不同碳排放源提出相应的数学模型;同时煤矿区要加大节能和低碳技术的投入,提高综合资源的利用程度和瓦斯的监测力度,加强绿色矿山修复和建设,积极参与碳市场和碳排放权交易及培育适应市场的管理模式等一系列措施,逐步实现低碳、绿色产业体系;此外,煤矿相关单位应高瞻远瞩,深入分析并发挥政府的低碳环保政策的作用,与相关高校加强合作,在我国碳减排目标下,大力推动煤制氢技术的发展,突破CO2-ECBM和CCUS关键技术中的运输、封存选址、安全稳定性评价、成本降低等瓶颈问题,以期在双碳背景下碳减排过程中实现经济、环保双重效益。   相似文献   

9.
黑河中游间作灌溉农田的能量平衡   总被引:2,自引:0,他引:2  
利用布设在黑河流域中游的张掖绿洲区的一套自动气象观测系统在2004年作物生长期内的完整资料,分析了黑河中游春小麦和玉米间作农田生态系统的辐射收支,在此基础上选用波文比能量平衡法(BREB)进行了能量平衡计算.结果表明:间作作物-土壤系统截获的太阳短波辐射占太阳总辐射的比例从生长初期的0.81持续增加到生长末期的0.86;净辐射在生长初期较小,生长中期第一阶段增幅大,至第二阶段达到最大,生长末期降低;净辐射占太阳总辐射的比例与净辐射的变化相似.能量平衡中,净辐射的消耗以潜热为主,占70%左右,感热能量占20%,土壤热通量占净辐射总值的10%.不同生长阶段的能量平衡差异较大,能量平衡在不同生长阶段呈现出不同的日变化特征.  相似文献   

10.
针对增强型地热系统中水通过复杂裂缝系统提取干热岩储层热量的过程,基于离散裂缝网络模型热流耦合构建了增强型地热系统的解析模型,利用Laplace变换得到了干热岩储层解析解,分析了在五点井网开采下注采井网参数对出口端温度及热提取的影响。研究结果表明:不同裂缝网络和井网模型下出口端温度下降幅度和热突破的时间不同;在相同裂缝网络下,井距越大,热突破时间越晚,当井距分别为50.0、100.0和150.0m时,热突破时间分别为2.0、5.2和15.0a;注水速率越小,温度下降越慢,当注水速率分别为0.1,0.2和0.3kg/s时,生产20.0a,温度下降幅度分别为53.0,34.5和26.8℃;通过正交实验分析方法得到注采参数中井距影响最大,其极差为13.15,其次为注水速率和注水温度,井网模型影响最小。  相似文献   

11.
Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.  相似文献   

12.
This study establishes theoretical models of supply and demand for carbon trading and proposes conditions for optimal trading prices and periods. Taiwan’s carbon market is used to verify the validity of the models. Simulations and empirical analysis position firms that emit greenhouse gases as the market buyers, and landowners that convert agricultural lands into plantation forests as the market sellers. The study compares four trading scenarios to determine optimal trading prices and time periods. There were four key conclusions. First, the higher the buyer’s cost to reduce carbon emissions, the higher the demand price is in the carbon trading market. The longer the trading period, the higher the carbon offsets, and the higher the demand price is for emissions trading. Second, the higher the emission trading price, the longer the optimal forest rotation period is for landowners. If emission costs do not exist at the time of logging, landowners are encouraged to log early, reducing the length of rotation periods. Furthermore, as the extension period in the trading scenarios increases, landowners’ costs increase, raising the market equilibrium price. Third, when landowners participate in forest carbon trading mechanisms or carbon subsidy policies, they may not always lengthen forest rotation periods. Therefore, if and when the government implements these mechanisms or policies, it should consider the factors affecting the length of forest rotation period. Finally, to respond to international interest in reducing greenhouse gas emissions, the government should design separate carbon programs and trading mechanisms for different types of private landowners. This would strengthen incentives for participating in the afforestation program.  相似文献   

13.
Liu  Wan-Yu  Wang  Qunwei 《Natural Hazards》2015,84(1):209-242

This study establishes theoretical models of supply and demand for carbon trading and proposes conditions for optimal trading prices and periods. Taiwan’s carbon market is used to verify the validity of the models. Simulations and empirical analysis position firms that emit greenhouse gases as the market buyers, and landowners that convert agricultural lands into plantation forests as the market sellers. The study compares four trading scenarios to determine optimal trading prices and time periods. There were four key conclusions. First, the higher the buyer’s cost to reduce carbon emissions, the higher the demand price is in the carbon trading market. The longer the trading period, the higher the carbon offsets, and the higher the demand price is for emissions trading. Second, the higher the emission trading price, the longer the optimal forest rotation period is for landowners. If emission costs do not exist at the time of logging, landowners are encouraged to log early, reducing the length of rotation periods. Furthermore, as the extension period in the trading scenarios increases, landowners’ costs increase, raising the market equilibrium price. Third, when landowners participate in forest carbon trading mechanisms or carbon subsidy policies, they may not always lengthen forest rotation periods. Therefore, if and when the government implements these mechanisms or policies, it should consider the factors affecting the length of forest rotation period. Finally, to respond to international interest in reducing greenhouse gas emissions, the government should design separate carbon programs and trading mechanisms for different types of private landowners. This would strengthen incentives for participating in the afforestation program.

  相似文献   

14.
《China Geology》2021,4(4):720-746
Climate change is a common problem in human society. The Chinese government promises to peak carbon dioxide emissions by 2030 and strives to achieve carbon neutralization by 2060. The proposal of the goal of carbon peak and carbon neutralization has led China into the era of climate economy and set off a green change with both opportunities and challenges. On the basis of expounding the objectives and specific connotation of China’s carbon peak and carbon neutralization, this paper systematically discusses the main implementation path and the prospect of China’s carbon peak and carbon neutralization. China’s path to realizing carbon neutralization includes four directions: (1) in terms of carbon dioxide emission control: energy transformation path, energy conservation, and emission reduction path; (2) for increasing carbon sink: carbon capture, utilization, and storage path, ecological governance, and land greening path; (3) in key technology development: zero-carbon utilization, coal new energy coupling, carbon capture utilization and storage (CCUS), energy storage technology and other key technology paths required to achieve carbon peak and carbon neutralization; (4) from the angle of policy development: Formulate legal guarantees for the government to promote the carbon trading market; Formulate carbon emission standards for enterprises and increase publicity and education for individuals and society. Based on practicing the goal and path of carbon peak and carbon neutralization, China will vigorously develop low carbon and circular economy and promote green and high-quality economic development; speed up to enter the era of fossil resources and promoting energy transformation; accelerate the integrated innovation of green and low-carbon technologies and promote carbon neutrality.©2021 China Geology Editorial Office.  相似文献   

15.
发展清洁、稳定、可再生的干热岩型地热资源对于缓解能源危机、减轻环境污染、改善人类健康具有重要意义。增强型地热系统(Enhanced Geothermal System,EGS)是一项改造干热岩天然储层,高效开发地热能资源的先进技术。以澳大利亚库珀盆地地热储层为研究对象,基于水力压裂实测微震数据,建立了三维分区均质渗透率模型和非均质渗透率模型,分别进行储层温度场、流场及采热性能变化的研究,并对比其差异。结果表明:在同样的注采流量下,由于非均质模型中微震事件集中于井口附近,进而形成明显的优势流动通道,流体从注入井更快流向生产井,温度下降速度相对更快,分区均质模型中优势流动通道没有非均质模型明显,温度下降速度较慢;地热模型运行期间分区均质模型的采热量变化相对稳定,降幅为3.74%,非均质模型采热量降幅较大,为12.72%。分区均质模型的模拟结果相比于非均质模型,温度下降幅度小、采热量高;但实际储层中的渗透率分布不均,分区均质模型的模拟采热量相比实际采热量偏高,因此在实际应用中,非均质模型的模拟结果对实际工程更具参考意义。  相似文献   

16.
Tulsishyam thermal springs are located in the Saurashtra region of Gujarat, India with discharge temperatures varying from 39 to 42 °C. The pH of these thermal springs varies from 7.1 to 7.4, indicating neutral character. Though these thermal springs propagate through the near surface layer of Deccan basalt, detailed geochemical analysis of the thermal waters using Piper diagram suggests that the water is interacting with the granitic basement rock. Silica and cation geothermometry estimates have reservoir temperature in the range of 138 to 207 °C categorizing it into a low to moderate enthalpy geothermal system. Furthermore, the area has high heat flow values of 53–90 mW/m2 because of shallow Moho depth. The prevailing conditions suggest that the geothermal energy can potentially be exploited through an enhanced geothermal system (EGS). The study also indicates different mineral phases that may precipitate out of water during exploitation of geothermal energy and it should be taken into account while designing an EGS for the area.  相似文献   

17.
为了综合分析增强型地热系统各参数对系统采热性能的影响,以及参数相互之间的影响规律,以云南腾冲热海热田为地质背景,利用正交设计思想通过数值模拟方法对井间距、注入流量、注入温度、储层渗透率等因素的变化进行了分析。结果表明:注入流量是影响系统采热性能的关键因素,并对注入温度、井间距的确定有显著影响;注入流量越大,系统稳定采热时间和运行寿命越短,且注入流量较小的变化(提高0.06 m3/s)会对系统采热温度产生较大的影响(降低47℃);增加注入温度可以提高系统的采热温度和运行寿命,但注入温度升高30℃、运行50 a后采热温度只提高10℃,效果有限;井间距、渗透率、开采压力对系统采热性能的影响相近,且远小于注入流量。  相似文献   

18.
Natural Hazards - In November 2015, China government announced that the national carbon emissions trading market is expected to start in 2017. Carbon emission trading system is a raising concern...  相似文献   

19.
无干扰地下换热井是利用中深部地层自然地温对循环介质预加热,实现冬季供暖辅助加热,达到节能减排效果。该循环系统为闭式循环,利用密闭的金属换热器,只取热不取水,是一种绿色的供暖方式。由于环保、清洁低碳、无污染等特点,将是北方地区清洁供暖的重要技术手段之一。介绍了该型换热系统及完井工艺。  相似文献   

20.
This study proposes a solution to the problem of maintaining the performance and sustainability of district-scale, cooling-dominated ground coupled heat pump (GCHP) systems. These systems tend to overheat because heat dissipates slowly in relation to the size of the borefields. To demonstrate this problem, a 2000-borehole field is considered at a district-scale GCHP system in the Upper Midwest, US. The borefield’s ground and fluid temperature responses to its design heating and cooling loads are simulated using computational fluid dynamics implemented by applying the finite volume method. The ground temperature is predicted by applying the thermal loads uniformly over the borefield and simulating heat dissipation to the surrounding geology through conduction coupled with advection due to groundwater flow. The results show that a significant energy imbalance will develop in the ground after the first few years of GCHP operation, even with high rates of groundwater flow. The model presented in this study predicts that the temperature at the center of the borefield will reach 18 °C after 5 years and approximately 50 °C after 20 years of operation in the absence of any mitigation strategies. The fluid temperature in the boreholes is then simulated using a single borehole model to estimate the heat pump coefficient of performance, which decreases as the modeled system heats up. To balance the energy inputs/outputs to the ground—thus maintaining the system’s performance—an operating scheme utilizing cold-water circulation during the winter is evaluated. Under the simulated conditions, this mitigation strategy carries the excess energy out of the borefield. Therefore, the proposed mitigation strategy may be a viable measure to sustaining the operating efficiency of cooling-dominated, district-scale borefields in climates with cold winters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号