首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Residual upland planation surfaces serve as strong evidence of peneplains during long intervals of base-level stability in the peneplanation process. Multi-stage planation surfaces could aid the calculation of uplift rates and the reconstruction of upland plateau evolution. However, most planation surfaces have been damaged by crustal uplift, tectonic deformation, and surface erosion, thus increasing the difficulty in automatically identifying residual planation surfaces. This study proposes a peak-cluster assessment method for the automatic identification of potential upland planation surfaces. It consists of two steps: peak extraction and peak-cluster characterization. Three critical parameters, namely, landform planation index (LPI), peak elevation standard deviation, and peak density, are employed to assess peak clusters. The proposed method is applied and validated in five case areas in the Tibetan Plateau using a Shuttle Radar Topography Mission digital elevation model (SRTM DEM) with 3 arc-second resolution. Results show that the proposed method can effectively extract potential planation surfaces, which are found to be stable with different resolutions of DEM data. A significant planation characteristic can be obtained in the relatively flat areas of the Gangdise–Nyainqentanglha Mountains and Qaidam Basin. Several vestiges of potential former planation areas are also extracted in the hilly-gully areas of the western part of the Himalaya Mountains, the northern part of the Tangula–Hengduan Mountains, and the northeastern part of the Kunlun–Qinling Mountains despite the absence of significant topographical features characterized by low slope angles or low terrain reliefs. Vestiges of planation surfaces are also identified in these hilly-gully upland areas. Hence, the proposed method can be effectively used to extract potential upland planation surfaces not only in flat areas but also in hilly-gully areas.  相似文献   

2.
K. Stüwe  J. Robl  S. Matthai 《Geomorphology》2009,108(3-4):200-208
A simple numerical landscape evolution model is used to investigate the rate of erosional decay of the Yucca Mountain crest in Nevada, USA — a location proposed as a permanent repository for high level radioactive waste. The model is based on a stream power approach in which we assume that the rate of erosion is proportional to the size of the catchment as a proxy for water flux and to the square of the topographic gradient. The proportionality constants in the model are determined using the structural history of the region: extensional tectonics has dissected the region into a series of well-defined tilt blocks in the last 11 my and the ratio of fault displacement and gully incision during this time is used to scale the model. Forward predictions of our model into the future show that the crest will denude to the level of the proposed site between 500,000 years and 5 my. This prediction is based on conservative estimates for all involved parameters. Erosion may be more rapid if other processes are involved. For example, our model does not consider continuing uplift or catastrophic surface processes as they have been recorded in the region. We conclude that any “total system performance analysis” (TSPA — as has been performed for the Yucca Mountain region to predict geological events inside the ridge) must consider erosion as an integral part of its predictions.  相似文献   

3.
滨海湿地是海陆交界的生态过渡带,也是对气候变化极为敏感的、脆弱的生态系统,海平面上升对全球滨海湿地构成了严重威胁.为了精确预测未来海平面加速上升背景下滨海湿地的变化趋势,有必要深入开展滨海湿地应对海平面上升的脆弱性评估研究.概述了评估滨海湿地应对海平面上升的脆弱性的研究范式,评估过程包括4个步骤:确定滨海湿地的高程资本...  相似文献   

4.
Abstract

With the recent technological advances offered by SfM-photogrammetry, we now have the possibility to study gully erosion at very high spatial and temporal scales from multi-temporal DEMs, and thus to enhance our understanding of both gully erosion processes and controls. Here, we examine gully degradation and aggradation at a gully headcut and at four re-incisions along a gully reach in Northern Ethiopia. Environmental controls recorded are topography rainfall, runoff, land use and cover, land management, and soil characteristics. The overall vulnerability of the catchment to erosion is low as calculated from the RUSLE (average 11.83 t ha?1 y?1). This reflects the successful land management of the past years. The runoff coefficient was on average 7.3% (maximum 18.2%). Runoff events caused most geomorphic change in the gully, but slumping of the gully bank also occurred on dry days. Most geomorphic change was caused by one major rainfall event of 54.8 mm d?1, and smaller runoff events caused both degradation and aggradation, often asynchronous between studied sites. Although most research focuses on gully heads alone, re-incisions at lower locations can still cause important gully degradation, which ultimately will reach the gully head and cause instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号