首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
A workflow for simultaneous joint PP‐PS prestack inversion of data from the Schiehallion field on the United Kingdom Continental Shelf is presented and discussed. The main challenge, describing reasonable PS to PP data registration before any prestack or joint PP‐PS inversion, was overcome thanks to a two‐stage process addressing the signal envelope, then working directly on the seismic data to estimate appropriate time‐variant time‐shift volumes. We evaluated the benefits of including PS along with PP prestack seismic data in a joint inversion process to improve the estimated elastic property quality and also to enable estimation of density compared with other prestack and post‐stack inversion approaches. While the estimated acoustic impedance exhibited a similar quality independent of the inversion used (PP post‐stack, PP prestack or joint PP‐PS prestack inversion) the shear impedance estimation was noticeably improved by the joint PP‐PS prestack inversion when compared to the PP prestack inversion. Finally, the density estimated from joint PP and PS prestack data demonstrated an overall good quality, even where not well‐controlled. The main outcome of this study was that despite several data‐related limitations, inverting jointly correctly processed PP and PS data sets brought extra value for reservoir delineation as opposed to PP‐only or post‐stack inversion.  相似文献   

2.
Rock typing and flow unit detection are more challenging in clastic reservoirs with a uniform pore system. An integrated workflow based on well logs, inverted seismic data and rock physics models is proposed and developed to address such challenges. The proposed workflow supplies a plausible reservoir model for further investigation and adds extra information. Then, this workflow has been implemented in order to define different rock types and flow units in an oilfield in the Persian Gulf, where some of these difficulties have been observed. Here, rock physics models have the leading role in our proposed workflow by providing a diagnostic framework in which we successfully differentiate three rock types with variant characteristics on the given wells. Furthermore, permeability and porosity are calculated using the available rock physics models to define several flow units. Then, we extend our investigation to the entire reservoir by means of simultaneous inversion and rock physics models. The outcomes of the study suggest that in sediments with homogeneous pore size distribution, other reservoir properties such as shale content and cementation (which have distinct effects on the elastic domain) can be used to identify rock types and flow units. These reservoir properties have more physical insights for modelling purposes and can be distinguished on seismic cube using proper rock physics models. The results illustrate that the studied reservoir mainly consists of rock type B, which is unconsolidated sands and has the characteristics of a reservoir for subsequent fluid flow unit analysis. In this regard, rock type B has been divided into six fluid units in which the first detected flow unit is considered as the cleanest unit and has the highest reservoir process speed about 4800 to 5000 mD. Here, reservoir quality decreases from flow unit 1 to flow unit 6.  相似文献   

3.
Time-lapse seismic data are generally used to monitor the changes in dynamic reservoir properties such as fluid saturation and pore or effective pressure. Changes in saturation and pressure due to hydrocarbon production usually cause changes in the seismic velocities and as a consequence changes in seismic amplitudes and travel times. This work proposes a new rock physics model to describe the relation between saturation-pressure changes and seismic changes and a probabilistic workflow to quantify the changes in saturation and pressure from time-lapse seismic changes. In the first part of this work, we propose a new quadratic approximation of the rock physics model. The novelty of the proposed formulation is that the coefficients of the model parameters (i.e. the saturation-pressure changes) are functions of the porosity, initial saturation and initial pressure. The improvements in the results of the forward model are shown through some illustrative examples. In the second part of the work, we present a Bayesian inversion approach for saturation-pressure 4D inversion in which we adopt the new formulation of the rock physics approximation. The inversion results are validated using synthetic pseudo-logs and a 3D reservoir model for CO2 sequestration.  相似文献   

4.
储层弹性与物性参数可直接应用于储层岩性预测和流体识别,是储层综合评价和油气藏精细描述的基本要素之一.现有的储层弹性与物性参数地震同步反演方法大都基于Gassmann方程,使用地震叠前数据,通过随机优化方法反演储层弹性与物性参数;或基于Wyllie方程,使用地震叠后数据,通过确定性优化方法反演储层弹性与物性参数.本文提出一种基于Gassmann方程、通过确定性优化方法开展储层弹性和物性参数地震叠前反演的方法,该方法利用Gassmann方程建立储层物性参数与叠前地震观测数据之间的联系,在贝叶斯反演框架下以储层弹性与物性参数的联合后验概率为目标函数,通过将目标函数的梯度用泰勒公式展开得到储层弹性与物性参数联合的方程组,其中储层弹性参数对物性参数的梯度用差分形式表示,最后通过共轭梯度算法迭代求解得到储层弹性与物性参数的最优解.理论试算与实际资料反演结果证明了方法的可行性.  相似文献   

5.
This paper tests the ability of various rock physics models to predict seismic velocities in shallow unconsolidated sands by comparing the estimates to P and S sonic logs collected in a shallow sand layer and ultrasonic laboratory data of an unconsolidated sand sample. The model fits are also evaluated with respect to the conventional model for unconsolidated sand. Our main approach is to use Hertz‐Mindlin and Walton contact theories, assuming different weight fractions of smooth and rough contact behaviours, to predict the elastic properties of the high porosity point. Using either the Hertz‐Mindlin or Walton theories with rough contact behaviour to define the high porosity endpoint gives an over‐prediction of the velocities. The P‐velocity is overpredicted by a factor of ~1.5 and the S‐velocity by a factor of ~1.8 for highly porous gas‐sand. The degree of misprediction decreases with increasing water saturation and porosity.Using the Hertz‐Mindlin theory with smooth contact behaviour or weighted Walton models gives a better fit to the data, although the data are best described using the Walton smooth model. To predict the properties at the lower porosities, the choice of bounding model attached to the Walton Smooth model controls the degree of fit to the data, where the Reuss bound best captures the porosity variations of dry and wet sands in this case since they are caused by depositional differences. The empirical models based on lab experiments on unconsolidated sand also fit the velocity data measured by sonic logs in situ, which gives improved confidence in using lab‐derived results.  相似文献   

6.
The propagation of seismic waves through a saturated reservoir compresses the fluid in the pore spaces. During this transition, parts of seismic energy would be attenuated because of intrinsic absorption. Rock physics models make the bridge between the seismic properties and petrophysical reality in the earth. Attenuation is one of the significant seismic attributes used to describe the fluid behaviour in the reservoirs. We examined the core samples using ultrasonic experiments at the reservoir conditions. Given the rock properties of the carbonate reservoir and experiment results, the patchy saturation mechanism was solved for substituted fluid using the theory of modulus frequency. The extracted relationship between the seismic attenuation and water saturation was used in time–frequency analysis. We performed the peak frequency method to estimate the Q factor in the Gabor domain and determined the water saturation based on the computed rock physics model. The results showed how the probable fault in the reservoir has stopped the fluid movement in the reservoir and caused touching the water‐bearing zone through drilling.  相似文献   

7.
One of the major aspects of rock-physics forward modelling is to predict seismic behaviour at an undrilled location using drilled well data. It is important to model the rock and fluid properties away from drilled wells to characterize the reservoir and investigate the root causes of different seismic responses. Using the forward modelling technique, it is possible to explain the amplitude responses of present seismic data in terms of probable rock and reservoir properties. In this context, rock-physics modelling adds significant values in the prospect maturation process by reducing the risk of reservoir presence in exploration and appraisal phases. The synthetic amplitude variation with offset gathers from the forward model is compared with real seismic gathers to ensure the fidelity of the existing geological model. ‘Prospect A’ in the study area has been identified from seismic interpretation, which was deposited as slope fan sediments in Mahanadi basin, East Coast of India. The mapped prospect has shown class-I amplitude variation with offset response in seismic without any direct hydrocarbon indicator support. The existing geological model suggests the presence of an excellent gas reservoir with proven charge access from the fetch area, moderate porosity and type of lithology within this fan prospect. But, whether the seismic response from this geological model will exhibit a class-I amplitude variation with offset behaviour or ‘dim spot’ will be visible; the objective of the present study is to investigate these queries. A rock-physics depth trend analysis has been done to envisage the possibilities of class-I reservoir in ‘Prospect A’. Forward modelling, using a combination of mechanical and chemical compaction, shows the synthetic gas gathers at ‘Prospect A’, which are class I in nature. The study has also depicted 2D forward modelling using lithology and fluid properties of discovery well within similar stratigraphy to predict whether ‘dim spot’ will be seen in seismic. The estimated change in synthetic amplitude response has been observed as ∼5% at contact, which suggests that the changes will not be visible in seismic. The study connects the existing geological model with a top-down seismic interpretation using rock-physics forward modelling technique to mature a deep-water exploratory prospect.  相似文献   

8.
More than 50 000 tons of CO2 have been injected at Ketzin into the Stuttgart Formation, a saline aquifer, at approximately 620 m depth, as of summer 2011. We present here results from the 1st repeat 3D seismic survey that was performed at the site in autumn 2009, after about 22 000 tons of CO2 had been injected. We show here that rather complex time‐lapse signatures of this CO2 can be clearly observed within a radius of about 300 m from the injection well. The highly irregular amplitude response within this radius is attributed to the heterogeneity of the injection reservoir. Time delays to a reflection below the injection level are also observed. Petrophysical measurements on core samples and geophysical logging of CO2 saturation levels allow an estimate of the total amount of CO2 visible in the seismic data to be made. These estimates are somewhat lower than the actual amount of CO2 injected at the time of the survey and they are dependent upon the choice of a number of parameters. In spite of some uncertainty, the close agreement between the amount injected and the amount observed is encouraging for quantitative monitoring of a CO2 storage site using seismic methods.  相似文献   

9.
Artificial neural networks (ANN) have been used in a variety of problems in the fields of science and engineering. Applications of ANN to the geophysical problems have increased within the last decade. In particular, it has been used to solve such inversion problems as seismic, electromagnetic, resistivity. There are also some other applications such as parameter estimation, prediction, and classification. In this study, multilayer perceptron neural networks (MLPNN) and radial basis function neural networks (RBFNN) were applied to synthetic gravity data and Seferihisar gravity data to investigate the applicability and performance of these networks for the method of gravity. Additionally performance of MLPNN and RBFNN were tested by adding random noise to the same synthetic test data. The structure parameters, such as the depths, the density contrasts, and the locations of the structures were obtained closely for different signal-to-noise ratios (S/N). Bouguer data of Seferihisar area were analyzed by MLPNN and RBFNN to estimate depth, density contrast, and location of the structure. The results of MLPNN, RBFNN, and classical inversion method were compared for real data obtained from Seferihisar Geothermal area and similar structure parameters were obtained. The experiments show that in general RBFNN not only increases the speed of the training stage enormously, but also provides slightly better performance.  相似文献   

10.
Digital marine seismic reflection data acquired in 1973 in the Bay of Pozzuoli, and recently reprocessed, were used to study the volcanological evolution of the marine sector of Campi Flegrei Caldera during the last 37 ka. In order to gain more information, interpretation also involved estimation of the "pseudo-velocity" and the "pseudo-density" from the resistivity logs of two onshore deep exploration wells. The main results are: (1) discovery of ancient pre-18 ka and post-37 ka submarine and mainly effusive volcanic activity, along coeval emission centers located at the edges of Campi Flegrei Caldera; (2) confirmation that the caldera collapse in the marine sector of Campi Flegrei seems strongly controlled by regional NE–SW and NW–SE structural discontinuities; (3) the finding of at least two episodes of collapse in the bay; and (4) identification of a post-18 ka volcanic deflation phase that has caused about 150–200 m of subsidence in the central sector of the Bay of Pozzuoli in the last 18 ka.Editorial responsibilty: T. Druitt  相似文献   

11.
The earthquake risk on Romania is one of the highest in Europe, and seismic hazard for almost half of the territory of Romania is determined by the Vrancea seismic region, which is situated beneath the southern Carpathian Arc. The region is characterized by a high rate of occurrence of large earthquakes in a narrow focal volume at depth from 70 to 160 km. Besides the Vrancea area, several zones of shallow seismicity located within and outside the Romanian territory are considered as seismically dangerous. We present the results of probabilistic seismic hazard analysis, which implemented the “logic tree” approach, and which considered both the intermediate-depth and the shallow seismicity. Various available models of seismicity and ground-motion attenuation were used as the alternative variants. Seismic hazard in terms of macroseismic intensities, peak ground acceleration, and response spectra was evaluated for various return periods. Sensitivity study was performed to analyze the impact of variation of input parameters on the hazard results. The uncertainty on hazard estimates may be reduced by better understanding of parameters of the Vrancea source zone and the zones of crustal seismicity. Reduction of uncertainty associated with the ground-motion models is also very important issue for Romania.  相似文献   

12.
The time domain electromagnetic method (TDEM) is applied to monitor, to delineate and to map the saltwater intrusion zones in the Mediterranean Plio‐Quaternary aquifer. Forty‐two TDEM soundings were carried out in the coastal plain of Nabeul–Hammamet region (NE Tunisia). TDEM resistivity data were correlated with the existing borehole logging data to assign them to a particular lithology and to provide information about the position of the freshwater–seawater transition zone. The geoelectric sections showing the vertical configuration of seawater intrusion, with the brackish‐salty‐saturated zones, have a resistivity ranging from ~0.1 to 5 Ω?m and are detected at a depth lower than 1.5 m. The salinized zones are located at Nabeul (Sidi Moussa, Sidi El Mahrsi, Al Gasba and Mrazgua) and at Hammamet (Touristic zone of Hammamet north and south, Baraket Essahel) and reached a distance of 4 km from the coastline, indicating a severe state for the aquifer in these zones. These TDEM results are confirmed by the increase of chloride concentration content in the analysed water samples of monitoring wells. Moreover, in the northeastern part, the presence of a saltwater front located far from the coast and along the NW–SE major surface fault can be explained by two hypothesis: (i) this fault seems to provide a conduit for seawater to move readily towards the water wells and (ii) the clay and gypsum infiltration of marine Messinian deposits through the fault plane leads to low resistivities. Finally, it comes out from this study that TDEM survey has successfully depicted salinized zones of this coastal aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A combined simulation–genetic algorithm (GA) optimization model is developed to determine optimal reservoir operational rule curves of the Nam Oon Reservoir and Irrigation Project in Thailand. The GA and simulation models operate in parallel over time with interactions through their solution procedure. A GA is selected as an optimization model, instead of traditional techniques, owing to its powerful and robust performance and simplicity in combining with a simulation technique. A GA is different from conventional optimization techniques in the way that it uses objective function information and does not require its derivatives, whereas in real‐world optimization problems the search space may include discontinuities and may often include a number of sub‐optimum peaks. This may cause difficulties for calculus‐based and enumerative schemes, but not in a GA. The simulation model is run to determine the net system benefit associated with state and control variables. The combined simulation–GA model is applied to determine the optimal upper and lower rule curves on a monthly basis for the Nam Oon Reservoir, Thailand. The objective function is maximum net system benefit subject to given constraints for three scenarios of cultivated areas. The monthly release is calculated by the simulation model in accordance with the given release policy, which depends on water demand. The optimal upper and lower rule curves are compared with the results of the HEC‐3 model (Reservoir System Analysis for Conservation model) calculated by the Royal Irrigation Department, Thailand, and those obtained using the standard operating policy. It was found that the optimal rule curves yield the maximum benefit and minimum damages caused by floods and water shortages. The combined simulation–GA model shows an excellent performance in terms of its optimization results and efficient computation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Isotope signatures in precipitation from the Global Network for Isotopes in Precipitation around the Mediterranean basin and literature data are compared with isotopic data from a large karstic aquifer in southeast Spain to explain the origin and type of the precipitation events dominating recharge. Analysis of the deuterium excess d at the scale of the Mediterranean basin and at the regional scale allows us to understand the isotopic context of the study area: Campo de Dalias and the Sierra de Gador (Almería province). The origin of precipitation can be determined from its d value. The d value changes as a function of the initial evaporation condition. It depends on the relative humidity and temperature during the evaporation producing the water vapour of the clouds. The water vapour, which dominates the study area, is generated in two areas: the Atlantic Ocean (d = 10‰) and the western Mediterranean basin (d = 15‰). With increasing precipitation volume, the western Mediterranean character dominates. These heavier storms contribute mainly to recharge, as illustrated by the d value of 13·6‰ in deep groundwater of the Campo de Dalias. Weighted d values increase with the volume of precipitation, giving a significant relationship for the southern and eastern coasts of the Iberian Peninsula. This selectivity of d to monthly precipitation was used to estimate the return period of precipitation leading to aquifer recharge at 0·9–4·9 years. Moderate rainfall, which occurs more frequently, still represents ~60–90% of the total precipitation. One of the challenges to meet ever‐growing water demands is to increase recharge from moderate events yielding intermediate quantities per event, but forming the bulk of the annual precipitation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号