首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subslab soil gas sampling and analysis is a common line of evidence for assessing human health risks associated with subsurface vapor intrusion to indoor air for volatile organic compounds; however, conventional subslab sampling methods have generated data that show substantial spatial and temporal variability, which often makes the interpretation difficult. A new method of monitoring has been developed and tested that is based on a concept of integrating samples over a large volume of soil gas extracted from beneath the floor slab of a building to provide a spatially averaged subslab concentration. Regular field screening is also conducted to assess the trend of concentration as a function of the volume removed to provide insight into the spatial distribution of vapors at progressive distances away from the point of extraction. This approach minimizes the risk of failing to identify the areas of elevated soil vapor concentrations that may exist between discrete sample locations, and can provide information covering large buildings with fewer holes drilled through the floor. The new method also involves monitoring the extraction flow rate and transient vacuum response for mathematical analysis to help interpret the vapor concentration data and to support an optimal design for any subslab venting system that may be needed.  相似文献   

2.
Petroleum hydrocarbon vapors biodegrade aerobically in the subsurface. Depth profiles of petroleum hydrocarbon vapor and oxygen concentrations from seven locations in sandy and clay soils across four states of Australia are summarized. The data are evaluated to support a simple model of biodegradation that can be used to assess hydrocarbon vapors migrating toward built environments. Multilevel samplers and probes that allow near‐continuous monitoring of oxygen and total volatile organic compounds (VOCs) were used to determine concentration depth profiles and changes over time. Collation of all data across all sites showed distinct separation of oxygen from hydrocarbon vapors, and that most oxygen and hydrocarbon concentration profiles were linear or near linear with depth. The low detection limit on the oxygen probe data and because it is an in situ measurement strengthened the case that little or no overlapping of oxygen and hydrocarbon vapor concentration profiles occurred, and that indeed oxygen and hydrocarbon vapors were largely only coincident near the location where they both decreased to zero. First‐order biodegradation rates determined from all depth profiles were generally lower than other published rates. With lower biodegradation rates, the overlapping of depth profiles might be expected, and yet such overlapping was not observed. A model of rapid (instantaneous) reaction of oxygen and hydrocarbon vapors compared to diffusive transport processes is shown to explain the important aspects of the 13 depth profiles. The model is simply based on the ratio of diffusion coefficients of oxygen and hydrocarbon vapors, the ratio of the maximum concentrations of oxygen and hydrocarbon vapors, the depth to the maximum hydrocarbon source concentration, and the stoichiometry coefficient. Whilst simple, the model offers the potential to incorporate aerobic biodegradation into an oxygen‐limited flux‐reduction approach for vapor intrusion assessments of petroleum hydrocarbon compounds.  相似文献   

3.
Continuous remediation monitoring using sensors is potentially a more effective and inexpensive alternative to current methods of sample collection and analysis. Gaseous components of a system are the most mobile and easiest to monitor. Continuous monitoring of soil gases such as oxygen, carbon dioxide, and contaminant vapors can provide important quantitative information regarding the progress of bioremediation efforts and the area of influence of air sparging or soil venting. Laboratory and field tests of a commercially available oxygen sensor show that the subsurface oxygen sensor provides rapid and accurate data on vapor phase oxygen concentrations. The sensor is well suited for monitoring gas flow and oxygen consumption in the vadose zone during air sparging and bioventing. The sensor performs well in permeable, unsaturated soil environments and recovers completely after being submerged during temporary saturated conditions. Calibrations of the in situ oxygen sensors were found to be stable after one year of continuous subsurface operation. However, application of the sensor in saturated soil conditions is limited. The three major advantages of this sensor for in situ monitoring arc as follows: (1) it allows data acquisition at any specified time interval; (2) it provides potentially more accurate data by minimizing disturbance of subsurface conditions; and (3) it minimizes the cost of field and laboratory procedures involved in sample retrieval and analysis.  相似文献   

4.
Detailed site investigations to assess potential inhalation exposure and risk to human health associated with the migration of petroleum hydrocarbon vapors from the subsurface to indoor air are frequently undertaken at leaking underground storage tank (UST) sites, yet documented occurrences of petroleum vapor intrusion are extremely rare. Additional assessments are largely driven by low screening‐level concentrations derived from vapor transport modeling that does not consider biodegradation. To address this issue, screening criteria were developed from soil‐gas measurements at hundreds of petroleum UST sites spanning a range of environmental conditions, geographic regions, and a 16‐year time period (1995 to 2011). The data were evaluated to define vertical separation (screening) distances from the source, beyond which, the potential for vapor intrusion can be considered negligible. The screening distances were derived explicitly from benzene data using specified soil‐gas screening levels of 30, 50, and 100 µg/m3 and nonparametric Kaplan‐Meier statistics. Results indicate that more than 95% of benzene concentrations in soil gas are ≤30 µg/m3 at any distance above a dissolved‐phase hydrocarbon source. Dissolved‐phase petroleum hydrocarbon sources are therefore unlikely to pose a risk for vapor intrusion unless groundwater (including capillary fringe) comes in contact with a building foundation. For light nonaqueous‐phase liquid (LNAPL) hydrocarbon sources, more than 95% of benzene concentrations in soil gas are ≤30 µg/m3 for vertical screening distances of 13 ft (4 m) or greater. The screening distances derived from this analysis are markedly different from 30 to 100 ft (10 to 30 m) vertical distances commonly found cited in regulatory guidance, even with specific allowances to account for uncertainty in the hydrocarbon source depth or location. Consideration of these screening distances in vapor intrusion guidance would help eliminate unnecessary site characterization at petroleum UST sites and allow more effective and sustainable use of limited resources.  相似文献   

5.
A detailed seasonal study of soil vapor intrusion at a cold climate site with average yearly temperature of 1.9 °C was conducted at a house with a crawlspace that overlay a shallow dissolved‐phase petroleum hydrocarbon (gasoline) plume in North Battleford, Saskatchewan, Canada. This research was conducted primarily to assess if winter conditions, including snow/frost cover, and cold soil temperatures, influence aerobic biodegradation of petroleum vapors in soil and the potential for vapor intrusion. Continuous time‐series data for oxygen, pressure differentials, soil temperature, soil moisture, and weather conditions were collected from a high‐resolution monitoring network. Seasonal monitoring of groundwater, soil vapor, crawlspace air, and indoor air was also undertaken. Petroleum hydrocarbon vapor attenuation and biodegradation rates were not significantly reduced during low temperature winter months and there was no evidence for a significant capping effect of snow or frost cover that would limit oxygen ingress from the atmosphere. In the residual light nonaqueous phase liquid (LNAPL) source area adjacent to the house, evidence for biodegradation included rapid attenuation of hydrocarbon vapor concentrations over a vertical interval of approximately 0.9 m, and a corresponding decrease in oxygen to less than 1.5% v/v. In comparison, hydrocarbon vapor concentrations above the dissolved plume and below the house were much lower and decreased sharply within a few tens of centimeters above the groundwater source. Corresponding oxygen concentrations in soil gas were at least 10% v/v. A reactive transport model (MIN3P‐DUSTY) was initially calibrated to data from vertical profiles at the site to obtain biodegradation rates, and then used to simulate the observed soil vapor distribution. The calibrated model indicated that soil vapor transport was dominated by diffusion and aerobic biodegradation, and that crawlspace pressures and soil gas advection had little influence on soil vapor concentrations.  相似文献   

6.
The diffusion of 2,2,4-trimethylpentane (TMP) and 2,2,5-trimethylhexane (TMH) vapors put of residually contaminated sandy soil from the U.S. Environmental Protection Agency (EPA) field research site at Traverse City, Michigan, was measured and modeled. The headspace of an intact core sleeve sample was swept with nitrogen gas to simulate the diffusive release of hydrocarbon vapors from residual aviation gasoline in and immediately above the capillary fringe to a soil-venting air flow in the unsaturated zone. The resulting steady-state profile was modeled using existing diffusivity and air porosity estimates in a balance of diffusive flux and a first order source term. The source strength, which was calibrated with the observed flux of 2,2,4-TMP leaving the sleeve, varied with the residual gasoline remaining in the core, but was independent of the headspace sweep flow rate. This finding suggested that lower soil-venting air flow rates were in principle as effective as higher air flow rates in venting LNAPL vapors from contaminated soils. The saturated vapor concentration ratio of 2,2,4-TMP to 2,2,5-TMH decreased from 6.6 to 3.5 over the duration of the experiments in an expression of distillation effects. The vertical profile model was tested against sample port data in four separate experiments for both species, yielding mean errors ranging from 0 to—24 percent in magnitude.  相似文献   

7.
The occurrence of aerobic biodegradation in the vadose zone between a subsurface source and a building foundation can all-but eliminate the risks from methane and petroleum vapor intrusion (PVI). Understanding oxygen availability and the factors that affect it (e.g., building sizes and their distribution) are therefore critical. Uncovered ground surfaces allow oxygen access to the subsurface to actively biodegrade hydrocarbons (inclusive of methane). Buildings can reduce the net flux of oxygen into the subsurface and so reduce degradation rates. Here we determine when PVI and methane risk is negligible and/or extinguished; defined by when oxygen is present across the entire sub-slab region of existing or planned slab-on-ground buildings. We consider all building slab sizes, all depths to vapor sources and the effect of spacings between buildings on the availability of oxygen in the subsurface. The latter becomes critical where buildings are in close proximity or when increased building density is planned. Conservative assumptions enable simple, rapid and confident screening should sites and building designs comply to model assumptions. We do not model the aboveground “building” processes (e.g., air exchange), and assume the slab-on-ground seals the ground surface so that biodegradation of hydrocarbons is minimized under the built structure (i.e., the assessment remains conservative). Two graphs represent the entirety of the outcomes that allow simple screening of hydrocarbon vapors based only on the depth to the source of vapors below ground, the concentration of vapors within the source, the width of the slab-on-ground building, and the gap between buildings; all independent of soil type. Rectangular, square, and circular buildings are considered. Comparison with field sites and example applications are provided, along with a simple 8-step screening guide set in the context of existing guidance on PVI assessment.  相似文献   

8.
Site closure for soil vacuum extraction (SVE) application typically requires attainment or specified soil concentration standards based on the premise that mass flux from the vadose zone to ground water not result in levels exceeding maximum contaminant levels (MCLs). Unfortunately, realization of MCLs in ground water may not be attainable at many sites. This results in soil remediation efforts that may be in excess of what is necessary for future protection of ground water and soil remediation goals which often cannot be achieved within a reasonable time period. Soil venting practitioners have attempted to circumvent these problems by basing closure on some predefined percent total mass removal, or an approach to a vapor concentration asymptote. These approaches, however, are subjective and influenced by venting design. We propose an alternative strategy based on evaluation of five components: (1) site characterization, (2) design. (3) performance monitoring, (4) rule-limited vapor transport, and (5) mass flux to and from ground water. Demonstration of closure is dependent on satisfactory assessment of all five components. The focus of this paper is to support mass flux evaluation. We present a plan based on monitoring of three subsurface zones and develop an analytical one-dimensional vertical flux model we term VFLUX. VFLUX is a significant improvement over the well-known numerical one-dimensional model. VLEACH, which is often used for estimation of mass flux to ground water, because it allows for the presence of nonaqueous phase liquids (NAPLs) in soil, degradation, and a lime-dependent boundary condition at the water table inter-face. The time-dependent boundary condition is the center-piece of our mass flux approach because it dynamically links performance of ground water remediation lo SVE closure. Progress or lack of progress in ground water remediation results in either increasingly or decreasingly stringent closure requirements, respectively.  相似文献   

9.
We present a low‐cost, reliable method for long‐term in situ autonomous monitoring of subsurface resistivity and temperature in a shallow, moderately heterogeneous subsurface. Probes, to be left in situ, were constructed at relatively low cost with an electrode spacing of 5 cm. Once installed, these were wired to the CR‐1000 Campbell Scientific Inc. datalogger at the surface to electrically image infiltration fronts in the shallow subsurface. This system was constructed and installed in June 2005 to collect apparent resistivity and temperature data from 96 subsurface electrodes set to a pole‐pole resistivity array pattern and 14 thermistors at regular intervals of 30 cm through May of 2008. From these data, a temperature and resistivity relationship was determined within the vadose zone (to a depth of ~1 m) and within the saturated zone (at depths between 1 and 2 m). The high vertical resolution of the data with resistivity measurements on a scale of 5‐cm spacing coupled with surface precipitation measurements taken at 3‐min intervals for a period of roughly 3 years allowed unique observations of infiltration related to seasonal changes. Both the vertical resistivity instrument probes and the data logger system functioned well for the duration of the test period and demonstrated the capability of this low‐cost monitoring system.  相似文献   

10.
In situ thermal desorption (ISTD) was used for the treatment of eight separate source zones containing chlorinated solvents in a tight loess (silt/clay) above the water table. The source areas were as much as 365 m (1200 feet) apart. A target volume of 38,200 m3 (49,950 cubic yards) of subsurface material to a depth of 9.1 m (30 feet) was treated in a period of 177 days. Energy was delivered through 367 thermal conduction heater borings, and vapors were extracted from 68 vertical vacuum wells. A vapor extraction and capture system, including a surface cover and vertical vacuum wells next to heater borings, provided for effective pneumatic control and capture of the chlorinated volatile organic compound (CVOC) vapors. A central treatment system, based on condensation and granular activated carbon filtration, was used to treat the vapors. Approximately 5675 kg (12,500 pounds) of contaminants was recovered in the extracted vapors. Forty-seven soil samples were used to document remedial performance. Based on these, the concentrations of the target contaminants were reduced to below the target remedial goals in all eight areas, typically with concentrations below 0.01 mg/kg in locations that had had CVOC concentrations higher than 1000 mg/kg. Turn-key costs for the thermal remediation were $3.9 million, and the unit treatment cost, including all utilities, was $103 per cubic meter treated ($79 per cubic yard).  相似文献   

11.
This study looks at the influence of surface covers on the performance of a single pumping well system. Pilot tests were conducted on a sandy soil to determine the influence of surface confinement based upon both induced vacuum and pore gas velocity design criteria. The results demonstrate how covering the surface can significantly alter the associated air flow patterns and velocity distribution. Comparison of streamline iso‐contours obtained in covered scenarios reveals that the surface seal tended to prevent air from entering the subsurface near the extraction well and force air to be drawn from a greater distance. Calculated and measured pressure differentials, for open and semi‐confined scenarios, clearly show that adding a clay layer as a surface cover increased the vacuum induced within the soil. Pore gas velocity analysis showed that when the cover clay layer was used, the zone of capture of the soil vapor extraction system increased. The radius of influence of soil vapor extraction (SVE) systems, based on the attainment of a critical vacuum or pore gas velocity, can then be increased by including a surface seal in the design of such systems. The focus of this study is limited to air flow patterns contrasted between covered and uncovered conditions and not on the nuances of a full scale remediation implementation.  相似文献   

12.
Soil vapor extraction (SVE) is effective for removing volatile organic compound (VOC) mass from the vadose zone and reducing the potential for vapor intrusion (VI) into overlying and surrounding buildings. However, the relationship between residual mass in the subsurface and VI is complex. Through a series of alternating extraction (SVE on) and rebound (SVE off) periods, this field study explored the relationship and aspects of SVE applicable to VI mitigation in a commercial/light-industrial setting. The primary objective was to determine if SVE could provide VI mitigation over a wide area encompassing multiple buildings, city streets, and subsurface utilities and eliminate the need for individual subslab depressurization systems. We determined that SVE effectively mitigates offsite VI by intercepting or diluting contaminant vapors that would otherwise enter buildings through foundation slabs. Data indicate a measurable (5 Pa) influence of SVE on subslab/indoor pressure differential may occur but is not essential for effective VI mitigation. Indoor air quality improvements were evident in buildings 100 to 200 feet away from SVE including those without a measurable reversal of differential pressure across the slab or substantial reductions in subslab VOC concentration. These cases also demonstrated mitigation effects across a four-lane avenue with subsurface utilities. These findings suggest that SVE affects distant VI entry points with little observable impact on differential pressures and without relying on subslab VOC concentration reductions.  相似文献   

13.
Vapor intrusion pathway evaluations commonly begin with a comparison of volatile organic chemical (VOC) concentrations in groundwater to generic, or Tier 1, screening levels. These screening levels are typically quite low reflecting both a desired level of conservatism in a generic risk screening process as well as limitations in understanding of physical and chemical processes that impact vapor migration in the subsurface. To study the latter issue, we have collected detailed soil gas and groundwater vertical concentration profiles and evaluated soil characteristics at seven different sites overlying chlorinated solvent contaminant plumes. The goal of the study was to evaluate soil characteristics and their impacts on VOC attenuation from groundwater to deep soil gas (i.e., soil gas in the unsaturated zone within 2 feet of the water table). The study results suggest that generic screening levels can be adjusted by a factor of 100× at sites with fine‐grained soils above the water table, as identified by visual observations or soil air permeability measurements. For these fine‐grained soil sites, the upward‐adjusted screening levels maintain a level of conservatism while potentially eliminating the need for vapor intrusion investigations at sites that may not meet generic screening criteria.  相似文献   

14.
When operated properly, in situ soil venting or vapor extraction can be one of the most cost-effective remediation processes for soils contaminated with gasoline, solvents, or other relatively, volatile compounds. The components of soil-venting systems are typically off-the-shelf items, and the installation of wells and trenches can be done by reputable environmental firms. However, the design, operation, and monitoring of soil-venting systems are not trivial. In fact, choosing whether or not venting should be applied at a given site is a difficult decision in itself. If one decides to utilize venting, design criteria involving the number of wells, well spacing, well location, well construction, and vapor treatment systems must be addressed. A series of questions must be addressed to decide if venting is appropriate at a given site and to design cost-effective in situ soil-venting systems. This series of steps and questions forms a "decision tree" process. The development of this approach is an attempt to identify the limitations of in situ soil venting, and subjects or behavior that are currently difficult to quantify and for which future study is needed.  相似文献   

15.
Factors influencing the response of total organic vapor detection instruments used in soil-gas surveying for subsurface gasoline leakage were investigated through performing theoretical assessments and laboratory experiments. Theoretical assessments indicate that total organic vapor measurements will depend on response conditions and the relative concentration of constituents in soil gas, in addition to absolute constituent levels. Laboratory tests conducted using flame ionization, photoionization and explosimeter devices indicated that conditions influencing their responses included instrument flow rate and soil-air permeability when performing direct-probe sampling; the linear range of the instrument; the multicomponent nature of gasoline vapors; and levels of oxygen, nitrogen, carbon dioxide and relative humidity in soil air. If an instrument's response to these conditions is not taken into account, survey results may be misleading. To circumvent adverse instrument responses, a serial dilution technique is presented.  相似文献   

16.
Soil venting, in addition to removing volatile organic compounds, has secondary effects on soil temprature and moisture content. A simple enthalpy balance model is used to illustrate the maganitude and direction of temperature and moisture content changes in the soil during ordinary venting and with several potential modifications to venting. Because of the importance of latent heat of vaporization, injection of warm, dry air into the substance is generally ineffective in heating the soil. In contrast, injection of humidified, slightly heated air is found to result in significant soil warming even at low flow rates. Soil warming is thought to be an important mechanism for enhancing remediation, particularly in the final or tail stage of cleanup where concentrations slowly decline wiht time. A variety of soil venting alternatives are simulated at hypothetical sites in Chicago, Illinois, and Tucson, Arizona, including simple humidification, humidification with solar heating, and venting under positive pressure. All there methods result in higher final soil temperatures than the control case of normal soil venting. Humidification of the input air at the rates applied does not result in significant change in average soil moisture content or saturation of the soil wtih water.  相似文献   

17.
This paper presents a full‐scale thermal remediation of a brownfields site near San Francisco, California. In Situ Thermal Desorption (ISTD) was used for treatment of chlorinated solvents in a tight clay below the water table. The site had contaminants in concentrations indicating that a tetrachloroethene (PCE)‐rich DNAPL was present. A target volume of 5097 m3 of subsurface material to a depth of 6.2 m was treated for a period of 110 d of heating. Energy was delivered through 126 thermal conduction heater borings, and vapors were extracted from a combination of vertical and horizontal vacuum wells. Approximately 2540 kg of contaminants were recovered in the extracted vapors by the end of treatment. The PCE concentration in the clay was reduced from as high as 2700 mg/kg to an average concentration of 0.012 mg/kg within 110 d of heating (a reduction of >99.999%). Similar effectiveness was documented for TCE, cis‐1,2‐DCE, and vinyl chloride. A total of 2.2 million kWh of electric power was used to heat the site. Approximately 45% of this energy was used to heat the subsurface to the target temperature. Another 53% was necessary to boil approximately 41% of the groundwater within the treatment zone, creating approximately 600 pore volumes of steam by the end of the 110‐d heating and treatment period. Steam generation thus occurred within the clay. Partitioning of the contaminants into the steam and its removal comprised the dominant remedial mechanism. The steam migrated laterally toward the ISTD heaters, where it encountered a small dry region adjacent to each of the heaters, which served as a preferential pathway allowing the steam to migrate upward along the heaters to the more permeable vadose zone. There the steam was captured by a system of vertical and horizontal vacuum extraction wells. This vapor removal strategy facilitated effective thermal treatment of the tight clays located below the water table. Features of a robust design are extension of the heaters at least 1.2 m deeper than the treatment depth, and the installation of shallow horizontal vapor collection wells which allow for establishment of pneumatic control.  相似文献   

18.
Gully erosion is a major cause of soil loss and severe land degradation in sub-humid Ethiopia. The objective of this study was to investigate the role and the effect of subsurface water level change on gully headcut retreat, gully formation and expansion in high rainfall tropical regions in the Ethiopian highlands. During the rainy seasons of 2017–2019, the expansion rate of 16 fixed gullies was measured and subsurface water levels were measured by piezometers installed near gully heads. During the study period, headcut retreats ranged from 0.70 to 2.35 m, with a mean value of 1.49 ± 0.56 m year−1, and average depth of the surface water level varied between 1.12 and 2.82 m, with a mean value of 2.62 m. Gully cross-section areas ranged from 2.90 to 20.90 m2, with an average of 9.31 ± 4.80 m2. Volumetric retreat of gully headcuts ranged from 4.49 to 40.55 m3 and averaged 13.34 ± 9.10 m3. Soil loss from individual gullies ranged from 5.79 to 52.31 t year−1 and averaged 17.21 ± 11.74 t year−1. The headcut retreat rate and sediment yield were closely related over the three study seasons. Elevated subsurface water levels facilitated the slumping of gully banks and heads, causing high sediment yield. When the soil was saturated, bank collapse and headcut retreat were favoured by the combination of elevated subsurface water and high rainfall. This study indicates that area exclosures are effective in controlling subsurface water level, thus reducing gully headcut retreat and associated soil loss.  相似文献   

19.
We utilize data from a Superfund site where radius of influence (ROI) testing was conducted in support of a venting design to describe limitations of ROI evaluation in more detail than has been done previously, and to propose an alternative method of design based on specification and attainment of a critical pore-gas velocity in contaminated subsurface media. Since accurate gas permeability estimation is critical to pore-gas velocity computation, we assess the usefulness of ROI testing data on estimation of radial permeability, vertical permeability, and leakance. We apply information from published studies on rate-limited vapor transport to provide the basis for selection of a critical design pore-gas velocity for soils at this site. Using single-well gas flow simulations, we evaluate whether this critical pore-gas velocity was achieved at measured ROIs. We then conduct a series of multi-well gas flow simulations to assess how variation in anisotropy and leakance affect three-dimensional vacuum and pore-gas velocity profiles and determination of an ROI. Finally, when attempting to achieve a critical design pore-gas velocity we evaluate whether it is more efficient to install additional wells or pump existing wells at a higher flow rate.  相似文献   

20.
When an open well is installed in an unsaturated zone, gas will flow to/from the well depending on the pressure difference between the well and the surrounding media. This process is called barometric pumping and the well is called a barometric pumping well (BPW). Understanding subsurface gas pressure distribution and gas flow rate to/from a BPW is indispensable to optimize passive soil vapor extraction. This study presents a 2-D semi-analytical solution to calculate the subsurface gas pressure and gas flow rate to/from a BPW with and without a check valve. The problem is conceptualized as a mixed-type boundary value problem. The solution for pumping without a check valve is used to analyze the behavior of the radius of influence (ROI). Results show that ROI is time-dependent. It increases with radial gas permeability and decreases with vertical gas permeability. Field application of the solution without a check valve demonstrates the high accuracy of the developed solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号