首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Portuguese margin in front of the Tagus and Sado rivers is characterized by a narrow shelf incised by numerous canyons and by a large mud deposit. The two estuaries that feed this continental margin have distinct impact. The suspended particulate matter concentration values in the mouth of the Tagus are four times higher than in the Sado. During the summer the surface nepheloid layer is always larger than during the winter when it is restricted near the mouth of the estuary. This nepheloid layer may reach 30 km in length extending westward. The bottom nepheloid layer usually shows higher nephelometer values, and has a typical distribution: it is usually diverted southward in the direction of the Lisbon Submarine Canyon. We estimate the amount of suspended matter being discharged annually from the Tagus estuary to be between 0.4 and 1×106 t. The area covered by fine deposits is about 560 km2. Hence the thickness of sediments deposited annually should be between 0.07 and 0.18 cm. The sedimentation rates calculated from the 210Pb excess vary between 0.16 and 2.13 cm y−1 which correspond to the maximum rate. For a layer of 1 cm thick, 81,000 t of particulate organic carbon (POC) should be trapped. That would represent, with a minimum sedimentation rate between 0.07 and 0.18 cm y−1, an entrapment of 6000–15,000 t POC y−1. The trace metals content of box core samples clearly shows the anthropogenic impact in the uppermost level (5 cm thick) in the Tagus estuary and in all the sedimentary deposits (15 cm thick) on the shelf muddy area. Despite the narrowness of the shelf, a significant part of continental fluxes fails to reach the deep ocean.  相似文献   

2.
The organic matter released by the marine phytoplankton species Dunaliella tertiolecta and its physico-chemical interaction with cadmium and copper ions were studied by electrochemical methods (differential pulse anodic stripping voltammetry (DPASV) and a.c. polarography). The interactions with cadmium and copper were studied at the model interface (mercury electrodesolution) and in the bulk phase by measuring the complexing ability of the released organic material.The axenic cultures were grown on different growth media, without and with trace metals and chelators. Culture media were analyzed 10 days after inoculation, containing 5 × 105−1.2 × 106 cells cm−3 when untreated or after separation of cells by gentle centrifugation.It was found that the content and type of the released surface-active material and complexing ligands depend on the initial composition of the growth media. In all cases, strong interaction of excreted organic substances with copper in the bulk phase and with cadmium at the model interface were observed.A rather high value of the complexing capacity, 9.5 × 10−7 mol Cu2+ dm−3, was found in the culture grown on medium without trace metals and chelators (medium I) whereas the surface activity of this culture was not high (0.2 mg dm−3 equivalent to Triton-X-100). Higher contents of surface-active material (0.8 and 1.0 mg dm−3) were found in cultures grown in media with trace metals and without chelators (II and III), accompanied by a high content of complexing ligands (5.8 × 10−7 and 9.5 × 10−7 mol Cu2+ dm−3). However, if the complexing capacity is calculated per cell the values obtained for cultures grown in media II and III (0.79 × 10−15 and 0.98 × 10−15 mol Cu2+ dm−3) are lower than for cultures grown on medium I (1.8 × 10−15 mol Cu2− dm−3). The exceptional adsorption effects and the copper complexing capacity for medium 1, and the presence of cells with degenerative symptoms can be ascribed to stressed growth conditions, and, particularly, to deficiency of metals. A qualitatively similar behaviour has been observed in natural samples of estuarine waters, indicating the existence of stressed conditions during the mixing of fresh and saline waters.  相似文献   

3.
A program of long-term observation of suspended solids (TSS), particulate organic carbon (POC) and cadmium transported into the Gironde estuary (France) by its major tributaries has been carried out between 1990 and 1999. This decade included contrasting hydrologic cycles and appears representative of a much longer period (1959–1999). The Garonne and the Dordogne river systems are the main tributaries of the Gironde estuary and derive their waters from drainage basins with different geological, industrial and agricultural features. To better understand their respective contributions, they have been observed separately and compared. Water and TSS fluxes of the Garonne River show greater temporal variations and discharge is more related to the hydrology of the drainage basin (e.g. wet/dry years, local flood events etc.). As POC and particulate Cd concentrations in suspended matter are much less variable than turbidity, their fluxes are mainly controlled by the TSS transport. A major part of annual fluxes of TSS and associated pollutants may occur within few flood days (depending on various parameters, e.g. intensity, duration, season, etc.), and also the succession of dry and wet years has an important influence on annual fluxes. The presented data allow calculating fluvial inputs into the Gironde as the sum of fluxes transported by its major tributaries, the Garonne and the Dordogne river systems. Mean annual fluxes into the Gironde observed in 1990–1999 are about 34×109 m3 year−1 for river water, 3.24×106 t year−1 for suspended solids (TSS) and 9.88×109 mol year−1 for particulate organic carbon (POC). Generally, these fluxes are dominated by the contributions of the Garonne River. However, in dry years, the mean contribution of the Dordogne river system (including Dronne and Isle rivers) to the POC input into the estuary exceeded that of the Garonne. This reflects significant differences in vegetation and soil due to natural properties and land management of the basins. Mean Cd fluxes into the estuary are about 110×103 mol year−1 of which 19.6×103 mol year−1 are transported in the dissolved and 90.8×103 mol year−1 in the particulate phases, respectively. In 1991 (dry year), the net (dissolved) Cd flux towards the ocean exceeded the gross fluvial input of total Cd, suggesting the release of Cd from an important stock in the maximum turbidity zone (MTZ) or the fluid mud of the Gironde estuary.  相似文献   

4.
The Patos–Mirim Lagoon system along the southern coast of Brazil is linked to the coastal ocean by a narrow mouth and by groundwater transport through a Holocene barrier. Although other groundwater systems are apparently active in this region, the hydraulic head of the lagoon, the largest in South America, drives groundwater transport to the coast. Water levels in wells placed in the barrier respond to changing water level in the lagoon. The wells also provide a measure of the nutrient concentrations of groundwater flowing toward the ocean. Additionally, temporary well points were used to obtain nutrient samples in groundwater on the beach face of the barrier. These samples revealed a subterranean freshwater–seawater mixing zone over a ca. 240 km shoreline. Previously published results of radium isotopic analyses of groundwater and of surface water from cross-shelf transects were used to estimate a water flux of submarine groundwater discharge (SGD) to nearshore surface waters of 8.5 × 107 m3/day. Using this SGD and the nutrient concentrations in different compartments, nutrient fluxes between groundwater and surface water were estimated. Fluxes were computed using both average and median reservoir (i.e. groundwater and surface water) nutrient concentrations. The SGD total dissolved inorganic nitrogen, phosphate and silicate fluxes (2.42, 0.52, 5.92 × 106 mol day− 1, respectively) may represent as much as 55% (total N) to 10% (Si) of the nutrient fluxes to the adjacent shelf environment. Assuming nitrogen limitation, SGD may be capable of supporting a production rate of ca. 3000 g C m2 year− 1in the nearshore surf zone in this region.  相似文献   

5.
An array of five buoys and three coastal stations is used to characterize the winds, stress, and curl of the wind stress over the shelf off Bodega Bay, California. The wind and wind stress are strong and persistent in the summer and weak in the winter. In the summer, wind and stress decrease strongly across the shelf, toward the coast. Combinations of buoys are used to compute the curl of the wind stress over different portions of the shelf. The mean summer 2001 curl of the wind stress over the array depends upon the area selected, varying between −1.32×10−6 and +7.80×10−6 Pa m−1. The winter 2002 wind-stress curl also depends on location, varying from −2.06×10−6 to +2.78×10−6 Pa m−1. Mean monthly curl of the wind stress is a maximum in the summer and a minimum near zero in the winter. In both the summer and the winter, the correlation between the wind-stress curl for different portions of the shelf varies between moderate negative, though insignificance, to high positive. A wind measurement at a single point can be poorly related to the measured curl of the wind stress at other locations over the shelf. The measurements show that the use of one wind measurement to characterize the curl of the wind stress over the shelf without further investigation of the local wind-stress curl structure is risky.  相似文献   

6.
Submarine groundwater discharge (SGD) is now recognized as an important pathway for water and chemical species fluxes to the coastal ocean. In order to determinate SGD to the Gulf of Lion (France), we measured the activities of 226Ra and 228Ra by thermal ionization mass spectrometry (TIMS) in coastal waters and in the deep aquifer waters of the Rhone deltaic plain after pre-concentration of radium by MnO2. Compared to conventional counting techniques, TIMS requires lower quantities of water for the analyses, and leads to higher analytical precision. Radium isotopes were thus measured on 0.25–2 L water samples containing as little as 20 fg of 226Ra and 0.2–0.4 fg of 228Ra with precision equal to 2%. We demonstrate that coastal surface waters samples are enriched in 226Ra and 228Ra compared to the samples further offshore. The high precision radium measurements display a small but significant 226Ra and 228Ra enrichment within a strip of circa 30 km from the coast. Radium activities decrease beyond this region, entrained in the northern current along the shelf break or controlled by eddy diffusion. The radium excess in the first 30 km cannot be accounted for by the river nor by the early diagenesis. The primary source of the radium enrichment must therefore be ascribed to the discharge of submarine groundwater. Using a mass-balance model, we estimated the advective fluxes of 226Ra and 228Ra through SGD to be 5.2 × 1010 and 21 × 1010 dpm/d respectively. The 226Ra activities measured in the groundwater from the Rhone deltaic plain aquifer are comparable to those from other coastal groundwater studies throughout the world. By contrast, 228Ra activities are higher by up to one order of magnitude. Taking those groundwater radium activities as typical of the submarine groundwater end-member, a minimum volume of 0.24–4.5 × 1010 l/d is required to support the excess radium isotopes on the inner shelf. This has to be compared with the average rivers water runoff of 15.4 × 1010 l/d during the study period (1.6 to 29% of the river flow).  相似文献   

7.
A five-element mooring array is used to study surface boundary-layer transport over the Northern California shelf from May to August 2001. In this region, upwelling favorable winds increase in strength offshore, leading to a strong positive wind stress curl. We examine the cross-shelf variation in surface Ekman transport calculated from the wind stress and the actual surface boundary-layer transport estimated from oceanic observations. The two quantities are highly correlated with a regression slope near one. Both the Ekman transport and surface boundary layer transport imply curl-driven upwelling rates of about 3×10−4 m s−1 between the 40 and 90 m isobaths (1.5 and 11.0 km from the coast, respectively) and curl-driven upwelling rates about 1.5×10−4m s−1 between the 90 and 130 m isobaths (11.0 and 28.4 km from the coast, respectively). Thus curl-driven upwelling extends to at least 25 km from the coast. In contrast, upwelling driven by the adjustment to the coastal boundary condition occurs primarily inshore of the 40-m isobath. The upwelling rates implied by the differentiating the 40-m transport observations with the coastal boundary condition are up to 8×10−4 m s−1. The estimated upwelling rates and the temperature–nitrate relationship imply curl-driven vertical nitrate flux divergences are about half of those driven by coastal boundary upwelling.  相似文献   

8.
The input of river-borne sediments to the New Zealand continental shelf has been calculated for all the major rivers and basins in New Zealand. South Island yields 284 ± 40 × 106 tonnes per year of sediment from a land area of 152 977 km2 and North Island yields 105 ± 9·4 × 106 tonnes per year from a land area of 114 621 km2. Particularly high discharges are noted off the west coast of South Island and east coast of North Island and result in higher offshore sedimentation there. The data are compatible with measured sedimentation rates on the New Zealand continental shelf. The specific sediment yield from South Island is amongst the highest previously recorded.  相似文献   

9.
The macro-tidal Keum River Estuary located in the eastern Yellow Sea has been suffering siltation and morphological change since 1994. To understand the effects of the large-scale coastal developments on the sedimentation processes in the estuary, hydrodynamic and sedimentary data collected from 1985 to 2002 were analyzed and numerical experiments of hydrodynamics were performed. The sedimentation rate in the estuary increased by a factor of 1.9, from 3.5 × 106 to 6.7 × 10my−1, after the construction of a dam in the upper reaches of the estuary in 1994. Large part of the estuary is veneered by the muddy sediments noticeably, which were rarely found before dam construction. Since then, siltation has concentrated in the upper estuary rather than the lower. The upstream transport and accumulation of fine-grained sediments is due to: (1) the change to flood-dominance in the main channel, i.e. the relative intensification of flood current and the flood-directed residual current; and (2) the decrease in transport capacity in the upper estuary, i.e. the marked decrease in current velocity, which was induced by dam construction. The former has resulted in the ebb-dominance of the Gaeya channel, a distributary in the north of the main channel. The tidal pumping of fine sediments was reinforced not by the freshwater/saltwater interaction but by the residual tidal circulation. The sediment fluxes observed in 2001–2002 demonstrate year-round net inflow both at the entrance of the jetties and at the Gaeya channel, which implies that the sediments delivered by the Keum River are entirely confined to the estuary, incapable of escaping to the sea. The net inward transport of fine sediments may accumulate pollutants adsorbed to or absorbed in the sediment grains in the estuary, thus deteriorating the benthic environment gradually and the water quality eventually.  相似文献   

10.
The distributions, sources and atmospheric fluxes of nitrous oxide (N2O) in the seawater of Jiaozhou Bay were investigated during four surveys in 2003 to evaluate this area as a source of N2O to the atmosphere. N2O concentrations in both the surface and bottom waters of Jiaozhou Bay showed obvious variability with both seasons and tidal cycles. Atmospheric fluxes of N2O in Jiaozhou Bay showed seasonal and spatial variations, with the highest values occurring in summer and the lowest in winter. The annual emission of N2O from the bay was estimated to be 1.09 × 106–2.23 × 106 mol yr−1. N2O in the water column of Jiaozhou Bay was found to come from several external sources including riverine water, sewage water and groundwater input, among which the riverine input was dominant while the groundwater input was rather limited. The spatial variation in distribution and atmospheric fluxes of N2O in Jiaozhou Bay was influenced by the input of polluted river waters and sewage effluent along the eastern coast, which highlights the effects of human impacts on N2O emission rates.  相似文献   

11.
A mass balance for the naturally-occurring radium isotopes (224Ra, 223Ra, 228Ra, and 226Ra) in Jamaica Bay, NY, was conducted by directly estimating the individual Ra contributions of wastewater discharge, diffusion from fine-grained subtidal sediments, water percolation through marshes, desorption from resuspended particles, and water exchange at the inlet. The mass balance revealed a major unknown source term accounting for 19–71% of the total Ra input, which could only be resolved by invoking a source from submarine groundwater. Shallow (< 2 m depth) groundwater from permeable sediments in Jamaica Bay was brackish and enriched in Ra relative to surface bay waters by over two orders of magnitude. To balance Ra fluxes, a submarine groundwater input of 0.8 × 109–9.0 × 109 L d− 1 was required. This flux was similar for all four isotopes, with individual estimates varying by less than a factor of 2. Our calculated groundwater flux was 6- to 70-fold higher than the fresh groundwater discharge to the bay estimated by hydrological methods, but closely matched direct flow rates measured with seepage meters. This suggests that a substantial portion of the discharge consisted of recirculated seawater. The magnitude of submarine groundwater discharge varied seasonally, in the order: summer > autumn > spring. Chemical analyses suggest that the recirculated seawater component of submarine groundwater delivers as much dissolved nitrogen to the bay as the fresh groundwater flux.  相似文献   

12.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   

13.
Copper complexing capacity of cell exudates of Dunaliella salina in natural seawater culture medium was investigated in order to evaluate the influence of this organism on speciation of trace metals in seawater.Seawater samples were collected at 200 m and 2 miles off the coast and immediately filtered. Copper complexing capacity (CCCu) and stability constants (K′) of related cupric complexes were then measured. They were, respectively, 27.1 × 10−8 mol l−1 and 0.56 × 107 l mol−1 for the samples collected at 200 m and 12.8 × 10−8 mol l−1 and 6.10 × 107 l mol−1 for those collected 2 miles off the coast. A stock culture (20 ml, 106 cells ml−1) in log-phase was inoculated in 2 l of each sample of filtered natural seawater. The trend of cell influence was estimated on filtered culture medium by measuring CCCu and K′ after 1 h, 3 and 7 days. From the results it appears that CCCu increased with respect to time and this was related to the growth rate, indicating a certain relationship with cell metabolic activity.It can be concluded that a comparison between the culture referring to 200 m and 2 miles, respectively, shows that the former presents a CCCu two times higher than the latter while the K′ is ten times higher at 2 miles than that at 200 m.  相似文献   

14.
Dissolved Al carried in river water apparently undergoes a fractional removal at the early stages of mixing in the Conway estuary. On the other hand, dissolved Al behaves almost conservatively in high salinity (>13) estuarine waters. In order to understand the geochemistry of Al in these estuarine waters, simple empirical sorption models have been used. Partitioning of Al occurs between solid and solution phases with a distribution coefficient, Kd, which varies from 0.67 × 105 to 3.38 × 106 ml g−1 for suspended particle concentrations of 2–64 mg l−1. The Kd values in general decrease with increasing suspended particulate matter and this tendency termed the “particle concentration effect” is quite pronounced in these waters. The sorption model derived by previous workers for predicting concentrations of dissolved Al with changing suspended sediment loads has been applied to these data. Reasonable fits are obtained for Kd values of 105, 106 and 107 ml g−1 with various values of α. Further, a sorption model is proposed for particulate Al concentrations in these waters that fits the data extremely well defined by a zone with Kd value 107 ml g−1 and C0 values 16 × 10−6 mg ml−1 and 92 × 10−6 mg ml−1. These observations provide strong evidence of sorption processes as key mechanisms influencing the distribution of dissolved and particulate Al in the Conway estuary and present new insight into Al geochemistry in estuaries.  相似文献   

15.
Dissolved cadmium and copper concentrations have been determined in 76 surface water samples in coastal and ocean waters around Scotland by anodic stripping voltammetry (ASV). A trace metal/salinity ‘front’ is observed to the west, north and north-east of Scotland separating high salinity ocean water (>35 × 10−3) with low concentrations of dissolved Cd and Cu from lower salinity (<35 × 10−3) coastal water containing higher concentrations of Cd and Cu. Mean Cd concentrations in ocean and coastal waters are 7 ng dm−3 (0·06 n ) and 11 ng dm−3 (0·10 n ) respectively; for Cu the respective levels are 60 ng dm−3 (0·95 n ) and 170 ng dm−3 (2·68 n ). The observed distribution is attributed principally to freshwater runoff and the advection of contaminated Irish Sea water into the study area.  相似文献   

16.
基于2006年夏季和2007年冬季实测温盐数据和悬浮体浓度数据,分析东海内陆架悬浮体水平和垂直分布季节性特征,并结合MIKE3数值模拟海流结果,定量估算东海关键断面悬浮体运移通量,探讨悬浮体输运与泥质区形成和演化的关系。研究表明:东海内陆架悬浮体分布主要受流系控制,且季节变化明显;一般天气条件下,东海内陆架泥质区海域输入悬浮体净通量约为2.24×108t/a,其中夏半年悬浮体向泥质区海域输入净通量约为52.19×106t,贡献约为23.29%,冬半年净通量约为171.87×106t,贡献约为76.71%,浙闽沿岸悬浮体输运净通量均有利于东海内陆架泥质区的发育。本研究将对东海内陆架泥质区物质来源和发育演化研究提供理论支持。  相似文献   

17.
The distribution and abundance of viable and non-viable (so-called resting eggs) embryos of the calanoid copepod Tortanus forcipatus were determined in the laboratory by the enumeration of nauplii that emerge from sediments collected in Victoria Harbor (Hong Kong). Sediment cores sliced down to a depth of 37 cm showed the highest number of viable resting eggs near the surface layer (0–5 cm). The number of viable eggs sharply decreased with sediment depth, particularly at the inner harbor stations, although diapause eggs remained viable as deep as 25 cm. 210Pb analyses of the sediments indicated that the mean egg age was 4.9 years. The egg mortality of T. forcipatus in the sediments was 0.135 year−1, or 78.22% annual egg survival, calculated by regressing ln (egg density) from sediment age. The range of horizontal distribution of viable resting eggs was 24.25 × 103–58.90 × 103 m−2, with a mean value of 36.8 × 103 m−2 over all stations. The accumulation of viable resting eggs that can persist for an extended period of time provided evidence for the existence of an egg bank of T. forcipatus in the sediments of Victoria Harbor.  相似文献   

18.
We present the results of six dye tracer experiments that measured the mixing and circulation at the shelfbreak front on the New England Shelf. The last three were conducted during the New England Shelfbreak Productivity Experiment (NESPEX) with concurrent isopycnal float deployments. The results are consistent with the Chapman and Lentz [Chapman, D.C., and Lentz, S.J. (1994). Trapping of a coastal density front by the bottom boundary layer. Journal of Physical Oceanography, 24, 1465–1479.] model prediction of the separation and upwelling along the shelfbreak front of bottom boundary layer (BBL) water forced by an Ekman buoyancy flux, but show considerable variability. Cross-shelf velocities at the detachment point are 2–3 × 10−2 m/s. But seaward, over the slope region, dye tagged water was sheared from the main patch into small filaments that upwelled along the front with cross-shelf speeds up to 0.1 m/s. Cross-shelf diffusion was of order 10 m2/s in the mixed bottom layer and 1 m2/s in the interior along the front. Within the stratified front, the mean vertical diffusivity was Kz  4 × 10−6 m2/s. The dispersion of shelfwater in the slope region is effected by turbulent flow with advective speeds exceeding the small scale diffusive mixing. The mean flux of the detached BBL water is sufficient to account for the net loss of shelf water during its transit from Cape Cod to Cape Hatteras.  相似文献   

19.
A set of hydrographic surveys were carried out in the Ría of Vigo (NW Spain) at 2–4 d intervals during four 2–3 week periods in 1997, covering contrasting seasons. Residual exchange fluxes with the adjacent shelf were estimated with a 2-D, non-steady-state, salinity–temperature weighted box model. Exchange fluxes consist of a steady-state term (dependent on the variability of continental runoff) and a non-steady-state term (dependent on the time changes of density gradients in the embayment). More than 95% of the short-time-scale variability of the exchange fluxes in the middle and outer ría can be explained by the non-steady-state term that, in turns, is correlated (R2>75%) with the offshore Ekman transport. Conversely, 96% of the variability of exchange fluxes in the inner ría rely on the steady-state term. The outer and middle ría are under the direct influence of coastal upwelling, which enhances the positive residual circulation pattern by an order of magnitude: from 102to 103 m3s−1. On the contrary, downwelling provokes a reversal of the circulation in the outer ría. The position of the downwelling front along the embayment depends on the relative importance of Ekman transport (Qx, m3s−1km−1) and continental runoff (R, m3s−1). When Qx/ R>7±2 the reversal of the circulation affects the middle ría. Our results are representative for the ‘Rías Baixas’, four large coastal indentations in NW Spain. During the upwelling season (spring and summer), 60% of shelf surface waters off the ‘Rías Baixas’ consist of fresh Eastern North Atlantic Central Water (ENACW) upwelled in situ. The remaining 40% consists of upwelled ENACW that previously enters the rías and it is subsequently outwelled after thermohaline modification. During the downwelling season (autumn and winter), 40% of the warm and salty oceanic subtropic surface water, which piled on the shelf by the predominant southerly winds, enters the rías.  相似文献   

20.
The spatial and temporal patterns in bacterial abundance, biomass, production, nanoflagellate abundance and the loss of bacterial production due to viral lysis were investigated in a temporarily open/closed estuary along the eastern seaboard of southern Africa over the period May 2006 to April 2007. Bacterial abundance, biomass and production ranged between 1.00 × 109 and 4.93 × 109 cells l−1, 32.43 and 108.59 μg C l−1 and 0.01 and 1.99 μg C l−1 h−1, respectively. With a few exceptions there were no significant spatial patterns in the values (P > 0.05). Bacterial abundance, biomass and production, however, demonstrated a distinct temporal pattern with the lowest values consistently recorded during the winter months. Bacterial dynamics showed no effect of mouth opening events. Nanoflagellate and bacterial abundances were significantly correlated to one another (P < 0.05) suggesting a strong predator-prey relationship. The frequency of visibly infected bacterial cells and the number of virus particles within each bacterial cell during the study demonstrated no significant temporal or spatial pattern (P > 0.05) and ranged from 0.5 to 6.1% and 12.0 to 37.5 virus particles per bacterium, respectively. Viral infection and lysis was thus a constant source of bacterial mortality throughout the year. The estimated percentage of bacterial production removed by viral lysis ranged between 7.8 and 88.9% (mean = 30.3%) of the total which suggests that viral lysis represents a very important source of bacterial mortality during the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号