首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental modelling usually requires spatially distributed inputs for model operation. We propose that such inputs are best obtained from field measured data. Geographic information systems (GIS) provide a logical framework to distribute measured inputs spatially, to manipulate ensuing data fields during analysis, and to display the results. This paper describes a study conducted on a 123 km2 catchment in Pennsylvania. The purpose was to evaluate how spatial variability of macroporosity affects distribution of other infiltration-related parameters. We measured sorptivity, conductivity and macroporosity at specific points within a catchment, and interpolated their spatial distributions by kriging. The measurements were made with ring and disk infiltrometers, sampling locations were geo-referenced with a global positioning system (GPS), and data were analysed using geostatistical techniques in a GIS context. Field values ( hard data ) were supplemented by soft data derived from cumulative distribution functions (cdfs) and available soil maps. Results showed that, when spatial variability associated with macroporosity was removed, infiltration parameters became less variable. Observed correlation among measured parameters suggested a form of potential transfer functions. We conclude that infiltration can be modelled at either the farm or catchment scale if macroporosity and spatial variability of infiltration parameters are adequately defined, and we suggest approaches which can be used in a GIS context to attain that goal.  相似文献   

2.
青藏高原湖泊面积、水位与水量变化遥感监测研究进展   总被引:1,自引:0,他引:1  
青藏高原湖泊数量多、分布广、所占面积大,是亚洲水塔的重要组成部分,其受到人类活动的干扰较少,是理解高原生态环境变化机理的钥匙.青藏高原湖泊是气候变化敏感的指示器,在全球快速变暖背景下其对气候变化的响应如何?本研究基于多源遥感数据监测结果,系统地总结了青藏高原湖泊(大于1 km2)在过去近50 a(1976年-2018年...  相似文献   

3.
Groundwater exploration and modelling requires hydrological parameters and a large volume of hydrologic database. This study integrates remote sensing and geographic information system (GIS) to map and classify hydrological parameters indicates areas of groundwater recharge and discharge. Bivariate quadratic surfaces with moving window size of 5 × 5 were fitted to the digital elevation model and drainage basins, drainage network, topographic wetness index (TWI) and hydroforms were derived. The eight-direction algorithm (D8) that determines in which neighbouring pixel any water in a central pixel will flow naturally was used to delineate drainage basin and drainage network in the study area. The TWI was used to quantify the effect of local topography on hydrological processes and for modelling soil moisture. The results indicate the presence of intensive of stream network (1336 km2), wettest zones and accumulation zones (63.99 km2) within Wadi Bih, the UAE and Wadi Khasb, Oman, suggesting regional recharge.  相似文献   

4.
5.
Abstract

The development of spatial decision support for environmental resource management, e.g. forest and agroecosystem management, biodiversity conservation, or hydrological planning, started in the 1980s and was the focus of many research groups in the 1990s. The combined availability of spatial data and communication, computing, positioning, geographic information system (GIS)- and remote sensing (RS)-technologies has been responsible for the implementation of complex SDSS since the late 1990s. The regional GIS-based modelling of environmental resources, and therefore ecosystems in general, requires setting-up an extensive geo and model database. Spatial data on topography, soil, climate, land use, hydrology, flora, fauna and anthropogenic activities have to be available. Therefore, GIS- and RS-technologies are of central importance for spatial data handling and analysis. In this context, the structure of spatial environmental information systems (SEIS) is introduced. In SEIS, the input data for environmental resource management are organised in at least seven sub-information systems: base geodata information system (BGDIS), climate information system (CIS), soil information system (SIS), land use information system (LUIS), hydrological information system (HIS), spatial/temporal biodiversity information system (STBIS), forest/agricultural management information system (FAMIS). The major tasks of a SEIS are to (i) provide environmental resource information on a regional level, (ii) analyse the impact of anthropogenic activities and (iii) simulate scenarios of different impacts.  相似文献   

6.
An integration between a visual programming environment and GIS has been developed to create and run spatial models. The visual programming environment provides graphical objects to create flowchart-like models of spatial phenomena using GIS data. The integrated system is object-oriented and designed to lessen the technical burdens of GIS programming. The system capabilities are demonstrated using a hydrological model example, and the model execution speed is compared with an equivalent model implementation in a traditional raster-based modelling system.  相似文献   

7.
In this article, an extensive inventory in the literature of water erosion modelling from a geospatial point of view is conducted. Concepts of scale, spatiality and complexity are explored and clarified in a theoretical background. Use of Geographic Information Systems (GIS) is pointed out as facilitating data mixing and model rescaling and thus increasing complexity in data-method relations. Spatial scale, temporal scale and spatial methodologies are addressed as the most determining geospatial properties underlying water erosion modelling. Setting these properties as classification criteria, 82 water erosion models are identified and classified into eight categories. As a result, a complete overview of water erosion models becomes available in a single table. The biggest share of the models is found in the category of the mechanistic pathway-type event-based models for watershed to landscape scales. In parallel, geospatial innovations that could be considered as milestones in water erosion modelling are highlighted and discussed. An alphabetical list of all models is also listed in the Appendix. For manipulating scale efficiently, two promising spatial theories are suggested for further exploitation in the future such as hierarchy theory and fractals theory. Regarding erosion applications, uncertainty analysis within GIS is considered to be necessary for further improving performance of erosion models.  相似文献   

8.
GIS-based simulation as an exploratory analysis for space-time processes   总被引:2,自引:0,他引:2  
The purpose of this paper is to argue for a novel use of geographical information system (GIS) as an exploratory device for understanding complex space-time processes. Conventionally, a GIS has been configured as a spatial database management system. Therefore, the capabilities of data input, storage, retrieval, manipulation and display have been well developed, whereas the analytical and dynamic processing and modelling capabilities are under-developed. The importance of integrating GIS with dynamic and analytical models has been widely recognised. Extending the use of GIS into spatial simulation represents a plausible research direction. On the other hand, the usefulness of conventional deductive model becomes limited when dealing with complex space-time processes. In essence, the inherent complexity calls for a simulation approach. The new nonlinear modelling paradigm, for example, cellular automata (CA), opened a way in which behaviourally-richer dynamics and more micro-spatial data could be incorporated into understanding space-time processes. It is argued therefore that GIS can be used as a platform – a controlled environment or laboratory – for exploring complex space-time processes. The discussion of GIS-based simulation in this paper is illustrated with a primitive simulation of the evolution of urban spatial structure. Received: 2 July 1997/Accepted: 19 November 1998  相似文献   

9.
Total evaporation is of importance in assessing and managing long-term water use, especially in water-limited environments. Therefore, there is need to account for water utilisation by different land uses for well-informed water resources management and future planning. This study investigated the feasibility of using multispectral Landsat 8 and moderate resolution imaging spectroradiometer (MODIS) remote sensing data to estimate total evaporation within the uMngeni catchment in South Africa, using surface energy balance system. The results indicated that Landsat 8 at 30 m resolution has a better spatial representation of total evaporation, when compared to the 1000 m MODIS. Specifically, Landsat 8 yielded significantly different mean total evaporation estimates for all land cover types (one-way ANOVA; F4.964?=?87.011, p < 0.05), whereas MODIS failed to differentiate (one-way ANOVA; F2.853?=?0.125, p = 0.998) mean total evaporation estimates for the different land cover types across the catchment. The findings of this study underscore the utility of the Landsat 8 spatial resolution and land cover characteristics in deriving accurate and reliable spatial variations of total evaporation at a catchment scale.  相似文献   

10.
针对鄱阳湖湿地植被长期变化的科学问题,本文基于谷歌地球引擎(GEE)遥感大数据平台和CART分类回归树算法提取鄱阳湖2000—2017年涨水期、丰水期、退水期和枯水期的年时序植被分布范围,阐明其时空变化特征;在此基础上,结合水位数据分析湿地植被与水文情势变化之间的响应关系。结果表明,(1)2000—2017年,枯水期、涨水期、丰水期和退水期鄱阳湖湿地植被平均面积分别为846.35、679.03、172.35、508.63 km^(2)。(2)2000—2017年,不同水位期鄱阳湖湿地植被总面积均呈增加趋势,并有向湖心演变的趋势。(3)鄱阳湖植被面积受水位影响显著,水位与植被面积呈负相关,降水异常(如极端降水或严重干旱)是导致植被面积明显偏离平均面积的主导因素。本文结论有助于鄱阳湖湿地生态系统的健康诊断,对鄱阳湖湿地保护和修复政策的制定具有科学参考意义。  相似文献   

11.
南极冰盖下流动水、活跃冰下湖的活动对冰动力学、接地线稳定性和冰盖物质平衡都有重要影响。本文结合ICESat和CryoSat-2测高卫星数据集,分别运用重复轨道法和差分DEM法,对Byrd冰川流域17个活跃冰下湖进行长达16年的监测,并计算其平均高程和平均水量变化,总结活跃冰下湖的水文特征。根据水势方程获取了此区域的冰下排水路径图,结合冰下湖的位置和活动情况分析其相互间的水文联系。结果表明Byrd冰川流域多个活跃冰下湖间存在明显的水文联系:Byrd1和Byrd2冰下湖具有以2~3年为周期的储排水活动规律,并且Byrd1冰下湖主要受到上游Byrd2冰下湖活动的影响;Byrds9和Byrds14分别受到上游Byrds11和Byrds15冰下湖排水的补充,使湖水水量持续上升。  相似文献   

12.
There is a growing requirement for GIS to incorporate dynamic analytic models. At the same time, there is a need to distribute results of dynamic GIS using the Internet. Therefore, this paper sets out to explore the implementation of dynamic environmental models using Internet-based geocomputation techniques. An overview discusses shortcomings of current Internet GIS techniques for dynamic modelling based on the idea that bidirectional and sustained communication is required between the client and the server sides. Thus an applet-servlet approach is explored to demonstrate the modelling process of a chosen hydrological model, TOPMODEL, which requires frequent and efficient client-server interactions. This approach overcomes the inherent shortcomings of the current Common Gateway Interface (CGI) and more primitive Java applet techniques. We present an effective and generic way to implement dynamic modelling and visualization processes in an Internet environment. This allows users to benefit from Internet-based geocomputation techniques to gain insights into computation and representation of dynamic spatial phenomena.  相似文献   

13.
This study considers two issues of interest to the hydrologic and geographical information systems community. One deals with identifying the spatial distribution of infiltration and runoff contributing areas. The other addresses process modelling within a GIS framework. The study operates on the premise that partitioning of precipitation into runoff or infiltration depends on rainfall intensity and on soil properties. The problem is that neither local rainfall intensity, nor soil properties such as infiltration capacity and macroporosity are known well enough for all points of a catchment and need to be estimated. We infer local intensity from the interpolated distribution of cumulated rain depths over the catchment and record duration at the official met site. Measured values of sorptivity and hydraulic conductivity define infiltration. Negative head infiltration describes macroporosity. To scale-up measured point values to larger areas and to model infiltration and macropore continuity at a catchment scale we use geostatistical kriging and conditional simulation together with standard GIS techniques of overlay manipulation. Results delineate areas contributing to runoff and infiltration and relate them to macroporosity. By intersecting overlays of precipitation with those of infiltration we create alternate GIS masks targeting specific portions of the watershed as either runoff or infiltration contributing zones. Choice of cell size and time interval define the scales of averaging for the application. Kriged surfaces illustrate the distribution of catchment infiltration, while conditional simulation provides a mechanism to define model uncertainty.  相似文献   

14.
海岸线是海陆动态的分界线.国内外对防城港-钦州海岸线的时空变迁研究甚少.基于Landsat系列卫星遥感数据,利用ENVI(environment visualizing images)、Arc-Map平台,采用归一化水体指数半自动提取5期海岸线,定量、定性分析海岸线时空演变.研究发现:①1999-2018年海岸线增长了...  相似文献   

15.
The direct recovery of surface mass anomalies using GRACE KBRR data processed in regional solutions provides mass variation estimates with 10-day temporal resolution. The approach undertaken herein uses a tailored orbit estimation strategy based solely on the KBRR data and directly estimates mass anomalies from the GRACE data. We introduce a set of temporal and spatial correlation constraints to enable high resolution mass flux estimates. The Mississippi Basin, with its well understood surface hydrological modelling available from the Global Land Data Assimilation System (GLDAS), which uses advanced land surface modeling and data assimilation techniques, and a wealth of groundwater data, provides an opportunity to quantitatively compare GRACE estimates of the mass flux in the entire hydrological column with those available from independent and reliable sources. Evaluating GRACE’s performance is dependent on the accuracy ascribed to the hydrological information, which in and of itself is a complex challenge (Rodell in Hydrogeol J, doi:, 2007). Nevertheless, the Mississippi Basin is one of the few regions having a large hydrological signal that can support a meaningful GRACE comparison on the spatial scale resolved by GRACE. The isolation of the hydrological signal is dependent on the adequacy of the forward mass flux modeling for tides and atmospheric pressure variations. While these models have non-uniform global performance they are excellent in the Mississippi Basin. Through comparisons with the independent hydrology, we evaluate the effect on the solution of changing correlation times and distances in the constraints, altering the parameter recovery for areas external to the Mississippi Basin, and changing the relative strength of the constraints with respect to the KBRR data. The accuracy and stability of the mascon solutions are thereby assessed, especially with regard to the constraints used to stabilize the solution. We show that the mass anomalies, as represented by surface layer of water within regional cells have accuracy estimates of ±2–3 cm on par with the best hydrological estimates and consistent with our accuracy estimates for GRACE mass anomaly estimates. These solutions are shown to be very stable, especially for the recovery of semi-annual and longer period trends, where for example, the phase agreement for the dominant annual signal agrees at the 10-day level of resolution provided by GRACE. This validation confirms that mascons provide critical environmental data records for a wide range of applications including monitoring ground water mass changes.  相似文献   

16.
利用重力恢复与气候实验(gravity recovery and climate experiment, GRACE)时变地球重力场模型计算得到非洲奥卡万戈三角洲地区2003-01—2014-12的陆地水储量变化信息,分别采用主成分分析(principal component analysis, PCA)和独立成分分析(independent component analysis, ICA)提取质量变化信号,并与全球陆地数据同化系统(global land data assimilation system, GLDAS)的水文模型进行对比。结果显示,在奥卡万戈河流域东北部,水储量表现出很强的周期性变化,两种数据空间特征分布的信号出现在相同位置的成分GRACE-IC1和GLDAS-IC1对应的时间序列的相关系数达到0.85。奥卡万戈三角洲地区水储量从2003-01—2011-10呈现上升趋势,两种数据空间特征分布的信号出现在相同位置的成分GRACE-IC2和GLDAS-IC3对应的时间序列的相关系数达到0.81,说明GRACE反演结果与GLDAS水文模型反演结果在研究区域内具有很强的一致...  相似文献   

17.
The present study demonstrates the applicability of the Operational Linescan System (OLS) sensor in modelling urban growth at regional level. The nighttime OLS data provides an easy, inexpensive way to map urban areas at a regional scale, requiring a very small volume of data. A cellular automata (CA) model was developed for simulating urban growth in the Indo-Gangetic plain; using OLS data derived maps as input. In the proposed CA model, urban growth was expressed in terms of causative factors like economy, topography, accessibility and urban infrastructure. The model was calibrated and validated based on OLS data of year 2003 and 2008 respectively using spatial metrics measures and subsequently the urban growth was predicted for the year 2020. The model predicted high urban growth in North Western part of the study area, in south eastern part growth would be concentrated around two cities, Kolkata and Howrah. While in the middle portion of the study area, i.e., Jharkhand, Bihar and Eastern Uttar Pradesh, urban growth has been predicted in form of clusters, mostly around the present big cities. These results will not only provide an input to urban planning but can also be utilized in hydrological and ecological modelling which require an estimate of future built up areas especially at regional level.  相似文献   

18.
Integrating a GIS has been a common way to combine the functionality of two or more systems for some time. A three-dimensional model of integration is described which shows the range of linkages that can be achieved. Extremely flexible and dynamic linkages between systems can now be created through the recent advances of client/server and object-oriented technology. An expert system shell is coupled with a GIS to create a generic spatial rule-based toolbox called SES (spatial expert shell). An expert system developer using this toolbox can transparently access spatial data and relationships from a GIS by linking application objects to spatial classes. These spatial classes include methods that format and send requests to the GIS server. Thus the linkage is determined at run-time allowing a flexible interwoven interaction between the expert system and the GIS.  相似文献   

19.
Hydrological modelling of large river catchments is a challenging task for water resources engineers due to its complexity in collecting and handling of both spatial and non-spatial data such as rainfall, gauge discharges, and topographic parameters. In this paper an attempt has been made to use satellite-based rainfall products such as Climatic Prediction Centre (CPC)-National Oceanic and Atmospheric Administration (NOAA) data for hydrological modelling of larger catchment where the limited field rainfall data is available. Digital Elevation Models (DEM) such as Global DEM (1 km resolution) and Shuttle Radar Topography Mission (SRTM) 3-arc second (90 m resolution) DEM have been used to extract topographic parameters of the basin for hydrological modelling of the study area. Various popular distributed models have been used in this study for computing excess rainfall, direct runoff from each sub-basin, and flow routing to the main outlet. The Brahmaputra basin, which is very complex both hydraulically and hydrologically due to its shape, size, and geographical location, has been examined as study area in this study. A landuse map derived from the satellite remote sensing data in conjunction with DEM and soil textural maps have been used to derive various basin and channel characteristics such as each sub-basin and channel slope, roughness coefficients, lag-time. Percentage of residual flows computed between observed flows and simulated flows using Global and SRTM DEMs are discussed. It is found that the topographic parameters computed using SRTM DEM could improve the model accuracy in computing flood hydrograph. Need of using better resolution satellite data products and the use of high-density field discharge observations is discussed.  相似文献   

20.
Sprinkler irrigation, an agricultural production system that is causing increasing conflict among water resource users, is expanding quickly in the Central Western Cerrado regions of Brazil. To subsidize watershed management and concession of water rights, GIS-based spatial modelling was applied to spatially predict relative likelihood of the installation of centre sprinkler irrigation systems. Interpretation of multitemporal Landsat Thematic Mapper and Enhanced Thematic Mapper imagery was conducted to map spatial distribution of centre-pivot sprinkler systems. Multi-source data layers on environmental conditions and infrastructure were elaborated to test their predictive power in an Ecological Niche Factor Analysis, a spatial modelling technique for presence-only data. Underpinned by an exploratory analysis of spatial autocorrelation of irrigation systems, suitability predictions were found to be accurate on landscape scale and improved when the model includes underlying ecogeographical factors (EGV) such as farming suitability, soil groupings and distance to the hydrographic network and a density layer of existing irrigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号