首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paleomagnetic studies of Quaternary deposits from the Malyi Kut rock sequence (Krasnodar krai, western part of the Taman Peninsula) in two time intervals of Late Pleistocene are carried out. The Malyi Kut sequence is a marine terrace of the Baku age, which is embedded in the disturbed marine Sarmatian deposits. The terrace of the Bakinian age nests the Karangat marine terrace. The presence of the marine molluscan fauna in the both terraces enables reliable dating of the studied deposits. The composition, grain size, and concentration of ferromagnetic fraction present in the studied rocks are investigated by a set of rock magnetic methods. The directions of natural remanent magnetization (NRM) are studied, and the reliability of their isolation is estimated. The results are compared with the paleomagnetic records of NRM in the rocks of the parallel coeval sections of the Tuzla (Taman Peninsula) and Roxolany (Ukraine). This correlation suggests that the studied rock sequences recorded the Mono Lake geomagnetic excursion.  相似文献   

2.
Summary The natural remanent magnetization (NRM) of basalts from Argentina and Iceland and dolerite from the Great Whin Sill exhibit reversed magnetization. In order to test whether this was due to a self-reversing property of the rocks, samples from these three suites have been examined byx-ray and thermomagnetic techniques. No correlation between the properties of rocks and the sense of the NRM was found. The thermal stability of the magnetic extracts from these rocks was related to their lattice parameters and Curie points.  相似文献   

3.
The rock magnetic properties of the samples of dredged rocks composing the submarine volcanic edifices within the Sea-of-Okhotsk slope of the northern part of the Kuril Island Arc are studied. The measurements of the standard rock magnetic parameters, thermomagnetic analysis, petrographical studies, and microprobe investigations have been carried out. The magnetization of the studied rocks is mainly carried by the pseudo-single domain and multidomain titanomagnetite and low-Ti titanomagnetite grains. The high values of the natural remanent magnetization are due to the pseudo-single-domain structure of the titanomagnetite grains, whereas the high values of magnetic susceptibility are associated with the high concentration of ferrimagnetic grains. The highest Curie points are observed in the titanomagnetite grains of the igneous rocks composing the edifices of the Smirnov, Edelshtein, and 1.4 submarine volcanoes.  相似文献   

4.
The magnetic properties of samples of the Olivenza chondrite (LL5) obtained from four collections have been investigated. The natural remanent magnetization (NRM) consists of a very stable primary component, which is randomly scattered in direction on a scale of 1 mm3 or less within the samples, and a secondary magnetization widely varying in intensity, and probably also in direction. The origin of the secondary NRM is not clear, and may be of terrestrial origin. It is concluded that the NRM is carried by the ordered nickel-iron mineral, tetrataenite. The origin of the primary NRM could be a magnetic field associated with the solar nebula, out of which the metal grains condensed and acquired a thermo-remanent magnetization (TRM), or Olivenza could be a fine-grained breccia, the constituent fragments possessing randomly directed magnetization. The implications for the origin and evolution of Olivenza and its parent body if the former magnetizing process has occurred are discussed.  相似文献   

5.
Results derived from the study of petrophysical properties and mineralogy of rocks, minerals, and model objects differing in formation conditions and composition are presented. Petromagnetic and paleomagnetic characteristics of rock samples are examined and modeling experiments on crystallization of ferromagnetic minerals are carried out in a wide region of pressures and temperatures. Minerals of rocks of different origins and ages (igneous and metamorphic rocks, xenoliths, and megacrystals) are studied, and the physicochemical conditions of their formation are reconstructed. Constraints are obtained on redox conditions of occurrence of rocks, the depth of magma chambers, and implications of secondary superimposed processes of metasomatism and metamorphism for variations in physical properties of Earth’s interior substance with depth. The structural factor is shown to be of great significance for the formation of magnetic properties of iron oxides. Using mineral geothermobarometry, the deep distributions of temperature and oxygen fugacity beneath volcanically active regions are estimated.  相似文献   

6.
Magnetic properties of samples from Bell Island sedimentary rocks have been studied. X-ray analysis indicates that the main magnetic mineral is hematite in all samples. The other iron-bearing minerals identified are siderite and chamosite. Microscope observations of thin sections suggest that the rocks consist of oolitic hematite in a matrix of siderite or calcite. The intensity of natural remanent magnetization (NRM) varies in the range of (0.03–0.4 A m?1), depending on the percentage of hematite. The thermal demagnetization curves of NRM show in some cases a sharp increase in magnetization at temperatures in the range 500–600°C. The peaks that occur in these demagnetization curves are due to a chemical change of siderite during repeated laboratory heating. X-ray analysis confirmed that the newly formed material is magnetite. Since the original NRM has been masked by the new intergrown material, this would result in a serious error in the determination of paleomagnetic pole positions. The samples showing this behaviour were not considered for paleomagnetic study. The samples containing oolitic hematite in a calcite matrix exhibit very high stability of NRM, including directional stability until almost 670°C. For these samples, a virtual pole position based on N = 6 samples (32 specimens) demagnetized to 665°C is 34°N, 114°E, not far from published Ordovician poles for the North American craton.  相似文献   

7.
8.
The remanent magnetization of igneous and sedimentary rocks, if not changed by heating or by alteration of magnetic minerals, keep the information about the intensity of that magnetic field in which initial magnetization took place.It has been determined that the dependence of anhysteretic remanent magnetization of such a rock on d.c. magnetic field permits us to find the paleointensity. A method of investigation of rock specimens by means of such remagnetization is suggested and applied to determining the paleointensity for a series of Permo-Triassic rocks.  相似文献   

9.
A representative collection of Upper Cretaceous rocks of Georgia (530 samples from 24 sites) is used for the study of magnetic properties of the rocks and the determination of the paleodirection and paleointensity (H an) of the geomagnetic field. Titanomagnetites with Curie points of 200–350°C are shown to be carriers of natural remanent magnetization (NRM) preserving primary paleomagnetic information during heatings to 300–350°C. The characteristic NRM component of the samples is identified in the interval 120–350°C. The Thellier and Thellier-Coe methods are used for the determination of H an meeting modern requirements on the reliability of such results. New paleointensity determinations are obtained and virtual dipole magnetic moment (VDM) values are calculated for four sites whose stratigraphic age is the Upper Cretaceous (Cenomanian-Campanian). It is shown that, in the interval 99.6–70.6 Ma, the VDM value was two or more times smaller than the present value, which agrees with the majority of H an data available for this time period. According to our results, the H an value did not change at the boundary of the Cretaceous normal superchron.  相似文献   

10.
Experimental evidence and theory indicate that chemical changes occur in many igneous rocks at sufficiently low temperatures to significantly affect the remanent magnetization. Some chemical changes lead to self-reversals of magnetization that are not reproducible in laboratory experiments. Such self-reversals appear to be very rare in subaerially-erupted basalts, but they probably are much more common in some other rock types, such as granites and diorites. The stability of the natural remanent magnetization in igneous rocks can be decreased, left unaltered, or increased by chemical changes. In addition, chemical changes will usually affect the intensity of magnetization in a rock; the intensity can increase, decrease, or (rarely) be left unaltered by a chemical change. Such changes are important to consider in the development of improved techniques for obtaining reliable estimates of the intensity of the Earth's magnetic field in the past and in correctly interpreting marine magnetic anomalies. Finally, experiments and theory are presented which suggest that many of the chemical changes in igneous rocks will only occasionally produce significant changes in the direction of the magnetization.  相似文献   

11.
Rock magnetic investigations of Permo-Carboniferous carbonate sediments from two areas on Spitsbergen are described, conducted to identify the carriers of the NRM in these rocks. Since microscopic and magnetic separation techniques could not profitably be applied, the nature of magnetic minerals was investigated by thermal demagnetization of the NRM and decay of saturation isothermal remanence (Irs) during heating to 600°C, as well as by the distribution of the median destructive fields of the NRM and observation of magnetic susceptibility after subsequent heatings. The results show that the NRM of these limestones resides mainly in magnetite, but creation of magnetic pyrrhotite and of fresh magnetite is observed during heating to 600°C. Presence of sulphides indicates that magnetite is an oxidation product of pyrite or of non-magnetic pyrrhotite. Examination of rock magnetic properties of limestones leads to the conclusion that most of the magnetite in the rocks of the Bellsund area is of detrital origin, whereas the rocks at Festningen contain magnetite derived from pyrite probably during an early stage of the diagenetic process.  相似文献   

12.
Summary Over the shield region of Northern Sweden, the Geological Survey runs a low altitude (30 m) aeromagnetic survey and regional gravity surveys cover almost the same areas. The production of detailed geological maps would be almost impossible without these geophysical measurements. To enhance their interpretation, a study of the appropriate petrophysical properties was started by measurements of density, susceptibility and remanence on all rock specimens collected by field geologists. Up to now more than 30,000 specimens have been measured and almost as many in situ susceptibility determinations have been made. About 10% of the samples are oriented. The information obtained is useful not only for the direct interpretation of geophysical surveys but also reflects the effects of various geological processes acting during and after the formation of the rocks considered.In precambrian rocks, density is obviously closely correlated to mineral composition and thus to chemical composition. This is demonstrated for igneous rocks by the correlation trends between density and SiO2-content and the CM/AF-index.Susceptibility mainly reflects the magnetite content of rocks. As magnetite is an accessory mineral it is seldom considered by geologists. However, a closer study of the magnetic susceptibility of rocks reveals that its extreme complexity reflects the effects of primary and secondary geological processes. The susceptibility spectrum of a certain rock may prove to be a useful classification tool — at least regarding intermediate and basic igneous rocks.The combination of the physical parameters density and susceptibility in 2-dimensional frequency distributions seems to be a promising approach to the understanding of certain petrological processes and makes possible the delineation of local or regional secondary processes. Magmatic differentiation and serpentinization can be demonstrated in this manner.Remanent magnetization plays a secondary role in the majority of precambrian rocks. Still there are places where the natural remanence dominates and shows pronounced directions deviating from today's magnetic field. So far we have only one case where a follow up by demagnetization has been attempted, but intensified paleomagnetic research should most certainly add to our understanding of precambrian geology.Combination of susceptibility and remanance shows some characteristic correlations for highly remanent rocks, reflecting mainly exosolution phenomena among magnetic opaques and grain size distributions. Even these features might be used as diagnostic or classifying tools. They also explain some of the diversity of susceptibility spectra.  相似文献   

13.
南海北部陆区岩石磁化率的矿物学研究   总被引:6,自引:3,他引:3       下载免费PDF全文
基于2517套现场测量资料,245块岩石样品的体积磁化率测量和详细的岩矿鉴定及硅酸盐全分析结果,结合单矿物磁化率特征及各岩石之间的对比研究,发现岩石磁化率主要受组成岩石的矿物磁化率控制.即岩石磁化率(κr)与组成岩石各个矿物磁化率(κ1)及其体积含量(C2)成正比.例如侵入岩磁化率,κr=-5.68×102Cq+2.8...  相似文献   

14.
核磁共振测井在火成岩地层应用的适应性分析   总被引:1,自引:0,他引:1  
火成岩岩石具有高磁化率特征,与沉积岩差别明显,岩石的高磁化率会对核磁共振信号产生显著影响,开展核磁共振测井在火成岩地层应用的适应性分析研究,为广泛使用核磁共振测井用于火成岩储层评价提供参考.采用理论模拟、实验分析及实际测井资料相结合的方法,分析了高磁化率岩石的核磁共振响应特征.分析结果表明,火成岩岩石具有很高的磁化率,从酸性火成岩到基性火城岩,岩石的磁化率一般是逐渐增大的.高磁化率岩石孔隙内部会产生强梯度磁场,孔隙内部的磁场梯度越强,核磁共振的T2谱前移越明显,核磁信号衰减幅度也越大,核磁分析孔隙度与常规分析的孔隙度误差也越大;相同岩石磁化率情况下,岩石孔径越小,岩石孔隙内部磁场梯度越强,核磁信号衰减越大,核磁共振测井计算的孔隙度也越低.因此,核磁共振测井与岩性有关系,核磁共振测井会受到高磁化率岩石的显著影响.核磁共振测井在部分火成岩,尤其在中基性火成岩和小孔径火成岩储层中应用具有很大的局限性.  相似文献   

15.
The reliability of the Thellier method for determining the paleointensity of a geomagnetic field is explored on recent igneous rocks of Kamchatka. The main magnetic mineral in the studied rocks is titanomagnetite with different degree of oxidation. It is obtained that the reliability of the results can be assessed based on the deviations of the check points of the partial thermoremanent magnetization (pTRM) during the Thellier experiment. Besides, for different rocks, it is found that the stability of titanomagnetites to heating during the experiments can be insufficient for validating the reliability of the results of paleointensity determination; however, at the same time, the reliability may depend on the initial (oxidation) state of the magnetic minerals of the studied rocks.  相似文献   

16.
Paleomagnetic investigations of marine and subaqueous deposits in the 12-meter marine terrace of a section of the Karadzha Range (Azerbaijan) are performed. These deposits correspond to OI stage 3 and encompass the time interval ~45–20 ka. Four anomalous deviations of the magnetization from the dipole field at the sampling site are recorded in the upper and lower transgressive members of deposits. Investigations of the influence of the anisotropy of the magnetic susceptibility (AMS) on directions of the natural remanent magnetization (NRM) showed that only three of the four identified intervals can actually reflect geomagnetic field changes. The fourth interval of the anomalous NRM behavior is recorded in samples demonstrating the presence of the identified AMS direction pointing to a possible deformation of layers, which could turn the NRM vector toward the direction of the acting factor. Based on the age of the terrace under investigation, three other anomalous horizons could correspond to heavily reduced records of the Mono and Lashamp excursions of the geomagnetic field.  相似文献   

17.
The collections of Carboniferous rocks from sections of the Russian Platform (Gzhelian, Moscovian, Bashkirian, and Visean stages) are studied. The new mean paleomagnetic poles are obtained from the Gzhelian, Moscovian, and Visean layers of the Carboniferous of the Russian Platform. In the redbed Gzhelian and Moscovian rocks, the natural remanent magnetization (NRM) components with the inclination shallowing are revealed, which is due to the presence of the large hematite particles or particle aggregates associated with the interaction between the magnetic and clay particles. Based on the obtained determinations and the results contained in the World paleomagnetic database, the trajectory of the apparent polar wander path (APWP) for the East European Platform is constructed in the interval from the Devonian to Early Permian. The Carboniferous kinematics of the East European Platform is estimated.  相似文献   

18.
岩石剩余磁化强度的应力效应   总被引:8,自引:3,他引:8       下载免费PDF全文
郝绵绮  黄平章 《地震学报》1989,11(4):381-391
为模拟构造应力对岩石剩余磁化强度的影响,本研究对六种不同类型的44块岩样进行了应力实验,发现岩石天然剩磁随应力的变化规律比迄今所估计的要复杂得多.作者指出,这些变化可归属于三种类型:在弱不可逆的Ⅰ型效应中,剩磁随应力呈现规则的减小,应力解除后剩磁部分恢复;而在强不可逆的Ⅱ型效应中,应力去除后剩磁大部不恢复;在Ⅲ型效应中,剩磁随应力呈极不规律的变化.进一步的岩石磁学分析表明,不同应力效应的重要原因,在于天然剩磁中的粘滞剩磁的比例不同,微观上取决于磁性矿物成分及其磁畴状态等因素.因此,不能用单一的岩石压磁模式来解释地震压磁效应,须考虑各震源区的不同岩石组成.   相似文献   

19.
During revisiting the Upper Pleistocene Pekla loess-soil section located on the Sea of Azov coast of the Taman Peninsula, its lower 6 m were continuously sampled, which led to an increase in the age range from ∼50 to 400 ka. The detailed rock magnetic study of the structure, grain-size, and concentrations of magnetic mineral (natural remanent magnetization (NRM) carrier) in the collected rock samples revealed regular changes in rock magnetic characteristics along the section and their correlation with climatic fluctuations. Magnetite and hematite both deposited during the transport of sedimentary material and formed during pedogenesis, which involved the entire section to a varying extent, represent the main magnetic minerals in the examined rocks. Automorphic paleosoils that were formed during warm and humid periods corresponding to odd stages of the MIS scale are characterized by elevated concentrations of magnetic mineral (NRM, magnetic susceptibility (K lf), saturation isothermal remanent magnetization (SIRM), and anhysteresis (ideal) remanent magnetization (ARM)) parameters and share of superparamagnetic particles (up to 80%, according to elevated values of the frequency-dependent magnetic susceptibility K td) as well as by lowered rigidity parameter (B cr) and grain size (ARM/K parameter). Such changes in the paleosoils may be explained by the occurrence of newly formed fine-grained magnetite particles close in size to its superparamagnetic and single-domain varieties due to the activation of bio/geochemical processes during warm stages. The growth of the above-mentioned rock magnetic parameters in automorphic soils may be considered as serving a quantitative criterion for defining the boundary between warm and cold periods even in poorly developed soils.  相似文献   

20.
A suite of Sierra Madera Impact deformed rocks was studied and magnetic analyses were performed. We characterized the magnetic signatures of two locations, sites A and B that have different physical characteristics of shock fractured structures as well as the magnetic signatures. Shatter cone at site A has a fine-scale (few to ∼10 mm) distributed array of complete shatter cones with sharp apex. Natural remanent magnetization (NRM) of site A shatter cone is distributed within the plane that is perpendicular to the apexes of the cones. Shatter cone at site B shows no apparent cone shape or apex, instead, a relatively larger scale and multiple striated joint set (MSJS) and sinusoidal continuous peak. NRM of site B shatter cone is clustered along the apexes. The difference in magnetization direction is a likely indicator of the shock pressure where parallel to apex indicates pressures larger than 10 GPa and perpendicular to apex indicate pressures less than 10 GPa. Intensities of NRM and saturation isothermal remanent magnetization (SIRM) contrast and fluctuate within a shatter cone as well as in between two sites. We observed a random orientation of magnetic vector directions and amplitudes changing over small scales leading to the absence of coherent macro-scale signature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号