首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new, adaptive multi‐criteria method for accurate estimation of three‐component three‐dimensional vertical seismic profiling of first breaks is proposed. Initially, we manually pick first breaks for the first gather of the three‐dimensional borehole set and adjust several coefficients to approximate the first breaks wave‐shape parameters. We then predict the first breaks for the next source point using the previous one, assuming the same average velocity. We follow this by calculating an objective function for a moving trace window to minimize it with respect to time shift and slope. This function combines four main properties that characterize first breaks on three‐component borehole data: linear polarization, signal/noise ratio, similarity in wave shapes for close shots and their stability in the time interval after the first break. We then adjust the coefficients by combining current and previous values. This approach uses adaptive parameters to follow smooth wave‐shape changes. Finally, we average the first breaks after they are determined in the overlapping windows. The method utilizes three components to calculate the objective function for the direct compressional wave projection. An adaptive multi‐criteria optimization approach with multi three‐component traces makes this method very robust, even for data contaminated with high noise. An example using actual data demonstrates the stability of this method.  相似文献   

2.
Wave field reconstruction – the estimation of a three‐dimensional (3D) wave field representing upgoing, downgoing or the combined total pressure at an arbitrary point within a marine streamer array – is enabled by simultaneous measurements of the crossline and vertical components of particle acceleration in addition to pressure in a multicomponent marine streamer. We examine a repeated sail line of North Sea data acquired by a prototype multicomponent towed‐streamer array for both wave field reconstruction fidelity (or accuracy) and reconstruction repeatability. Data from six cables, finely sampled in‐line but spaced at 75 m crossline, are reconstructed and placed on a rectangular data grid uniformly spaced at 6.25 m in‐line and crossline. Benchmarks are generated using recorded pressure data and compared with wave fields reconstructed from pressure alone, and from combinations of pressure, crossline acceleration and vertical acceleration. We find that reconstruction using pressure and both crossline and vertical acceleration has excellent fidelity, recapturing highly aliased diffractions that are lost by interpolation of pressure‐only data. We model wave field reconstruction error as a linear function of distance from the nearest physical sensor and find, for this data set with some mismatched shot positions, that the reconstructed wave field error sensitivity to sensor mispositioning is one‐third that of the recorded wave field sensitivity. Multicomponent reconstruction is also more repeatable, outperforming single‐component reconstruction in which wave field mismatch correlates with geometry mismatch. We find that adequate repeatability may mask poor reconstruction fidelity and that aliased reconstructions will repeat if the survey geometry repeats. Although the multicomponent 3D data have only 500 m in‐line aperture, limiting the attenuation of non‐repeating multiples, the level of repeatability achieved is extremely encouraging compared to full‐aperture, pressure‐only, time‐lapse data sets at an equivalent stage of processing.  相似文献   

3.
We apply interferometric theory to solve a three‐dimensional seismic residual statics problem to improve reflection imaging. The approach calculates the static solutions without picking the first arrivals from the shot or receiver gathers. The static correction accuracy can be significantly improved by utilising stacked virtual refraction gathers in the calculations. Shots and receivers may be placed at any position in a three‐dimensional seismic land survey. Therefore, it is difficult to determine stationary shots and receivers to form the virtual refraction traces that have identical arrival times, as in a two‐dimensional scenario. To overcome this problem, we use a three‐dimensional super‐virtual interferometry method for residual static calculations. The virtual refraction for a stationary shot/receiver pair is obtained via an integral along the receiver/shot lines, which does not require knowledge of the stationary locations. We pick the maximum energy times on the interferometric stacks and solve a set of linear equations to derive reliable residual static solutions. We further apply the approach to both synthetic and real data.  相似文献   

4.
Ghawar, the largest oilfield in the world, produces oil from the Upper Jurassic Arab‐D carbonate reservoir. The high rigidity of the limestone–dolomite reservoir rock matrix and the small contrast between the elastic properties of the pore fluids, i.e. oil and water, are responsible for the weak 4D seismic effect due to oil production. A feasibility study was recently completed to quantify the 4D seismic response of reservoir saturation changes as brine replaced oil. The study consisted of analysing reservoir rock physics, petro‐acoustic data and seismic modelling. A seismic model of flow simulation using fluid substitution concluded that time‐lapse surface seismic or conventional 4D seismic is unlikely to detect the floodfront within the repeatability of surface seismic measurements. Thus, an alternative approach to 4D seismic for reservoir fluid monitoring is proposed. Permanent seismic sensors could be installed in a borehole and on the surface for passive monitoring of microseismic activity from reservoir pore‐pressure perturbations. Reservoir production and injection operations create these pressure or stress perturbations. Reservoir heterogeneities affecting the fluid flow could be mapped by recording the distribution of epicentre locations of these microseisms or small earthquakes. The permanent borehole sensors could also record repeated offset vertical seismic profiling surveys using a surface source at a fixed location to ensure repeatability. The repeated vertical seismic profiling could image the change in reservoir properties with production.  相似文献   

5.
Three‐dimensional receiver ghost attenuation (deghosting) of dual‐sensor towed‐streamer data is straightforward, in principle. In its simplest form, it requires applying a three‐dimensional frequency–wavenumber filter to the vertical component of the particle motion data to correct for the amplitude reduction on the vertical component of non‐normal incidence plane waves before combining with the pressure data. More elaborate techniques use three‐dimensional filters to both components before summation, for example, for ghost wavelet dephasing and mitigation of noise of different strengths on the individual components in optimum deghosting. The problem with all these techniques is, of course, that it is usually impossible to transform the data into the crossline wavenumber domain because of aliasing. Hence, usually, a two‐dimensional version of deghosting is applied to the data in the frequency–inline wavenumber domain. We investigate going down the “dimensionality ladder” one more step to a one‐dimensional weighted summation of the records of the collocated sensors to create an approximate deghosting procedure. We specifically consider amplitude‐balancing weights computed via a standard automatic gain control before summation, reminiscent of a diversity stack of the dual‐sensor recordings. This technique is independent of the actual streamer depth and insensitive to variations in the sea‐surface reflection coefficient. The automatic gain control weights serve two purposes: (i) to approximately correct for the geometric amplitude loss of the Z data and (ii) to mitigate noise strength variations on the two components. Here, Z denotes the vertical component of the velocity of particle motion scaled by the seismic impedance of the near‐sensor water volume. The weights are time‐varying and can also be made frequency‐band dependent, adapting better to frequency variations of the noise. The investigated process is a very robust, almost fully hands‐off, approximate three‐dimensional deghosting step for dual‐sensor data, requiring no spatial filtering and no explicit estimates of noise power. We argue that this technique performs well in terms of ghost attenuation (albeit, not exact ghost removal) and balancing the signal‐to‐noise ratio in the output data. For instances where full three‐dimensional receiver deghosting is the final product, the proposed technique is appropriate for efficient quality control of the data acquired and in aiding the parameterisation of the subsequent deghosting processing.  相似文献   

6.
We present the analysis of a multi-azimuth vertical seismic profiling data set that has been acquired in a tight gas field with the objective of characterizing fracture distributions using seismic anisotropy. We investigate different measurements of anisotropy, which are shear-wave splitting, P-wave traveltime anisotropy and azimuthal amplitude variation with offset. We find that for our field case shear-wave splitting is the most robust measure of azimuthal anisotropy, which is clearly observed over two distinct intervals in the target. We compare the results of the vertical seismic profiling analysis with other borehole data from the same well. Cross-dipole sonic and Formation MicroImager data from the reservoir section suggest that no open fractures intersect the well or are present within half a metre of the borehole wall. Furthermore, a detailed dispersion analysis of the sonic scanner data provides no indication of stress-induced seismic anisotropy along the logged borehole section. We therefore explain the azimuthal anisotropy measured in the vertical seismic profiling data with a model that contains discrete fracture corridors, which do not intersect the well itself but lie within the vertical seismic profiling investigation radius. We show that such a model can reproduce some basic characteristics of azimuthal anisotropy observed in the vertical seismic profiling data. The model is also consistent with well test data that suggest the presence of a fracture corridor away from the well. With this study we demonstrate the necessity of integrating different data types that investigate different scales of rock volume and can provide complementary information for understanding the characteristics of fracture networks in the subsurface.  相似文献   

7.
A modified reverse-time migration algorithm for offset vertical seismic profiling data is proposed. This algorithm performs depth imaging of target areas in the borehole vicinity without taking into account the overburden. Originally recorded seismograms are used; reliable results can be obtained using only the velocity profile obtained along the well. The downgoing wavefield emitted from a surface source is approximated in the target area using the transmitted P-wave, recorded by the receivers deployed in the well. This is achieved through a reverse-time extrapolation of the direct transmitted P-wave into the target area after its separation in offset vertical seismic profiling seismograms generated using a finite-difference scheme for the solution of the scalar wave equation.
The proposed approach produces 'kinematically' reliable images from reflected PP- and PS-waves and, furthermore, can be applied as a salt proximity tool for salt body flank imaging based on the transmitted PS-waves. Our experiments on synthetic data demonstrate that the modified reverse-time migration provides reliable depth images based on offset vertical seismic profiling data even if only the velocity profile obtained along the borehole is used.  相似文献   

8.
Seismic facies analysis is a well‐established technique in the workflow followed by seismic interpreters. Typically, huge volumes of seismic data are scanned to derive maps of interesting features and find particular patterns, correlating them with the subsurface lithology and the lateral changes in the reservoir. In this paper, we show how seismic facies analysis can be accomplished in an effective and complementary way to the usual one. Our idea is to translate the seismic data in the musical domain through a process called sonification, mainly based on a very accurate time–frequency analysis of the original seismic signals. From these sonified seismic data, we extract several original musical attributes for seismic facies analysis, and we show that they can capture and explain underlying stratigraphic and structural features. Moreover, we introduce a complete workflow for seismic facies analysis starting exclusively from musical attributes, based on state‐of‐the‐art machine learning computational techniques applied to the classification of the aforementioned musical attributes. We apply this workflow to two case studies: a sub‐salt two‐dimensional seismic section and a three‐dimensional seismic cube. Seismic facies analysis through musical attributes proves to be very useful in enhancing the interpretation of complicated structural features and in anticipating the presence of hydrocarbon‐bearing layers.  相似文献   

9.
本文首先解决了声波方程的非Born近似的正演计算问题,从而获得理论上不带近似的正演数据;然后,推导了井间(CBP)、垂直地震剖面(VSP)和地面反射(SRP)三种不同的数据采集方式下的衍射CT的重建公式;利用这些重建算法和正演数据,系统地研究了影响到地球物理CT成象质量的三种因素,即:(1)数据采集方式,(2)异常程度和(3)成象区域的尺寸,对重建图象的影响;并比较了衍射地震CT和射线地震CT的成象质量。  相似文献   

10.
A seismic source consisting of a 700 kg weight that could be dropped vertically or projected down a ramp inclined at 45° to the vertical was tested as a source of P, SV and SH waves within a crystalline rock body at Chalk River, Ontario. The seismic energy was recorded by arrays of both horizontal and vertical-component geophones at distances between 30 and 600 m from the source, which was operated over glacial overburden varying in thickness from less than a meter to a few tens of meters. Seismic energy was more efficiently generated when the overburden thickness was at least several meters. The signals identified visually as S are generally true S, though some may be the converted wave PS. The SV amplitudes are generally larger than those of P, regardless of the type of shot, while the signal frequencies are roughly 60 Hz and 90 Hz, respectively. The horizontal-component seismograms for the inclined shots showed no evidence of SH polarization, and the SH amplitudes were only rarely enhanced relative to P and SV amplitudes on changing from vertical to inclined shots. These unexpected results are attributed to the combined effect of the high velocity and density contrasts and the irregularity of the boundary between the glacial overburden and the rock body.  相似文献   

11.
Due to the complicated geophysical character of tight gas sands in the Sulige gasfield of China, conventional surface seismic has faced great challenges in reservoir delineation. In order to improve this situation, a large‐scale 3D‐3C vertical seismic profiling (VSP) survey (more than 15 000 shots) was conducted simultaneously with 3D‐3C surface seismic data acquisition in this area in 2005. This paper presents a case study on the delineation of tight gas sands by use of multi‐component 3D VSP technology. Two imaging volumes (PP compressional wave; PSv converted wave) were generated with 3D‐3C VSP data processing. By comparison, the dominant frequencies of the 3D VSP images were 10–15 Hz higher than that of surface seismic images. Delineation of the tight gas sands is achieved by using the multi‐component information in the VSP data leading to reduce uncertainties in data interpretation. We performed a routine data interpretation on these images and developed a new attribute titled ‘Centroid Frequency Ratio of PSv and PP Waves’ for indication of the tight gas sands. The results demonstrated that the new attribute was sensitive to this type of reservoir. By combining geologic, drilling and log data, a comprehensive evaluation based on the 3D VSP data was conducted and a new well location for drilling was proposed. The major results in this paper tell us that successful application of 3D‐3C VSP technologies are only accomplished through a synthesis of many disciplines. We need detailed analysis to evaluate each step in planning, acquisition, processing and interpretation to achieve our objectives. High resolution, successful processing of multi‐component information, combination of PP and PSv volumes to extract useful attributes, receiver depth information and offset/ azimuth‐dependent anisotropy in the 3D VSP data are the major accomplishments derived from our attention to detail in the above steps.  相似文献   

12.
4D seismic is widely used to remotely monitor fluid movement in subsurface reservoirs. This technique is especially effective offshore where high survey repeatability can be achieved. It comes as no surprise that the first 4D seismic that successfully monitored the CO2 sequestration process was recorded offshore in the Sleipner field, North Sea. In the case of land projects, poor repeatability of the land seismic data due to low S/N ratio often obscures the time‐lapse seismic signal. Hence for a successful on shore monitoring program improving seismic repeatability is essential. Stage 2 of the CO2CRC Otway project involves an injection of a small amount (around 15,000 tonnes) of CO2/CH4 gas mixture into a saline aquifer at a depth of approximately 1.5 km. Previous studies at this site showed that seismic repeatability is relatively low due to variations in weather conditions, near surface geology and farming activities. In order to improve time‐lapse seismic monitoring capabilities, a permanent receiver array can be utilised to improve signal to noise ratio and hence repeatability. A small‐scale trial of such an array was conducted at the Otway site in June 2012. A set of 25 geophones was installed in 3 m deep boreholes in parallel to the same number of surface geophones. In addition, four geophones were placed into boreholes of 1–12 m depth. In order to assess the gain in the signal‐to‐noise ratio and repeatability, both active and passive seismic surveys were carried out. The surveys were conducted in relatively poor weather conditions, with rain, strong wind and thunderstorms. With such an amplified background noise level, we found that the noise level for buried geophones is on average 20 dB lower compared to the surface geophones. The levels of repeatability for borehole geophones estimated around direct wave, reflected wave and ground roll are twice as high as for the surface geophones. Both borehole and surface geophones produce the best repeatability in the 30–90 Hz frequency range. The influence of burying depth on S/N ratio and repeatability shows that significant improvement in repeatability can be reached at a depth of 3 m. The level of repeatability remains relatively constant between 3 and 12 m depths.  相似文献   

13.
Seismic monitoring of reservoir and overburden performance during subsurface CO2 storage plays a key role in ensuring efficiency and safety. Proper interpretation of monitoring data requires knowledge about the rock physical phenomena occurring in the subsurface formations. This work focuses on rock stiffness and elastic velocity changes of a shale overburden formation caused by both reservoir inflation induced stress changes and leakage of CO2 into the overburden. In laboratory experiments, Pierre shale I core plugs were loaded along the stress path representative for the in situ stress changes experienced by caprock during reservoir inflation. Tests were carried out in a triaxial compaction cell combining three measurement techniques and permitting for determination of (i) ultrasonic velocities, (ii) quasistatic rock deformations, and (iii) dynamic elastic stiffness at seismic frequencies within a single test, which allowed to quantify effects of seismic dispersion. In addition, fluid substitution effects connected with possible CO2 leakage into the caprock formation were modelled by the modified anisotropic Gassmann model. Results of this work indicate that (i) stress sensitivity of Pierre shale I is frequency dependent; (ii) reservoir inflation leads to the increase of the overburden Young's modulus and Poisson's ratio; (iii) in situ stress changes mostly affect the P‐wave velocities; (iv) small leakage of the CO2 into the overburden may lead to the velocity changes, which are comparable with one associated with geomechanical influence; (v) non‐elastic effects increase stress sensitivity of an acoustic waves; (iv) and both geomechanical and fluid substitution effects would create significant time shifts, which should be detectable by time‐lapse seismic.  相似文献   

14.
In hydraulic fracturing treatments, locating not only hydraulic fractures but also any pre‐existing natural fractures and faults in a subsurface reservoir is very important. Hydraulic fractures can be tracked by locating microseismic events, but to identify the locations of natural fractures, an additional technique is required. In this paper, we present a method to image pre‐existing fractures and faults near a borehole with virtual reverse vertical seismic profiling data or virtual single‐well profiling data (limited to seismic reflection data) created from microseismic monitoring using seismic interferometry. The virtual source data contain reflections from natural fractures and faults, and these features can be imaged by applying migration to the virtual source data. However, the imaging zone of fractures in the proposed method is strongly dependent on the geographic extent of the microseismic events and the location and direction of the fracture. To verify our method, we produced virtual reverse vertical seismic profiling and single‐well profiling data from synthetic microseismic data and compared them with data from real sources in the same relative position as the virtual sources. The results show that the reflection travel times from the fractures in the virtual source data agree well with travel times in the real‐source data. By applying pre‐stack depth migration to the virtual source data, images of the natural fractures were obtained with accurate locations. However, the migrated section of the single‐well profiling data with both real and virtual sources contained spurious fracture images on the opposite side of the borehole. In the case of virtual single‐well profiling data, we could produce correct migration images of fractures by adopting directional redatuming for which the occurrence region of microseismic events is divided into several subdivisions, and fractures located only on the opposite side of the borehole are imaged for each subdivision.  相似文献   

15.
The geological storage of carbon dioxide is considered as one of the measures to reduce greenhouse gas emissions and to mitigate global warming. Operators of storage sites are required to demonstrate safe containment and stable behaviour of the storage complex that is achieved by geophysical and geochemical monitoring, combined with reservoir simulations. For site characterization, as well as for imaging the carbon dioxide plume in the reservoir complex and detecting potential leakage, surface and surface‐borehole time‐lapse seismic monitoring surveys are the most widespread and established tools. At the Ketzin pilot site for carbon dioxide storage, permanently installed fibre‐optic cables, initially deployed for distributed temperature sensing, were used as seismic receiver arrays, demonstrating their ability to provide high‐resolution images of the storage formation. A vertical seismic profiling experiment was acquired using 23 source point locations and the daisy‐chained deployment of a fibre‐optic cable in four wells as a receiver array. The data were used to generate a 3D vertical seismic profiling cube, complementing the large‐scale 3D surface seismic measurements by a high resolution image of the reservoir close to the injection well. Stacking long vibro‐sweeps at each source location resulted in vertical seismic profiling shot gathers characterized by a signal‐to‐noise ratio similar to gathers acquired using geophones. A detailed data analysis shows strong dependency of data quality on borehole conditions with significantly better signal‐to‐noise ratio in regions with good coupling conditions.  相似文献   

16.
The aim of this paper is to understand the seismic anisotropy of the overburden shale in an oilfield in the North West Shelf of Western Australia. To this end, we first find the orientation of the symmetry axis of a spherical shale sample from measurements of ultrasonic P‐wave velocities in 132 directions at the reservoir pressure. After transforming the data to the symmetry axis coordinates, we find Thomsen's anisotropy parameters δ and ? using these measurements and measurements of the shear‐wave velocity along the symmetry axis from a well log. To find these anisotropy parameters, we use a very fast simulated re‐annealing algorithm with an objective function that contains only the measured ray velocities, their numerical derivatives and the unknown elasticity parameters. The results show strong elliptical anisotropy in the overburden shale. This approach produces smaller uncertainty of Thomsen parameter δ than more direct approaches.  相似文献   

17.
Testing the ability of surface arrays to monitor microseismic activity   总被引:2,自引:0,他引:2  
Recently there has been much interest in the use of data from surface arrays in conjunction with migration‐based processing methods for passive seismic monitoring. In this study we use an example of this kind of data recorded whilst 18 perforation shots, with a variety of positions and propellant amounts, were detonated in the subsurface. As the perforation shots provide signals with known source positions and origin times, the analysis of these data is an invaluable opportunity to test the accuracy and ability of surface arrays to detect and locate seismic sources in the subsurface. In all but one case the signals from the perforation shots are not visible in the raw or preprocessed data. However, clear source images are produced for 12 of the perforation shots showing that arrays of surface sensors are capable of imaging microseismic events, even when the signals are not visible in individual traces. We find that point source locations are within typically 45 m (laterally) of the true shot location, however the depths are less well constrained (~150 m). We test the sensitivity of our imaging method to the signal‐to‐noise ratio in the data using signals embedded in realistic noise. We find that the position of the imaged shot location is quite insensitive to the level of added noise, the primary effect of increased noise being to defocus the source image. Given the migration approach, the array geometry and the nature of coherent noise during the experiment, signals embedded in noise with ratios ≥0.1 can be used to successfully image events. Furthermore, comparison of results from data and synthetic signals embedded in noise shows that, in this case, prestack corrections of traveltimes to account for near‐surface structure will not enhance event detectability. Although, the perforation shots have a largely isotropic radiation pattern the results presented here show the potential for the use of surface sensors in microseismic monitoring as a viable alternative to classical downhole methods.  相似文献   

18.
Time‐lapse seismic surveying has become an accepted tool for reservoir monitoring applications, thus placing a high premium on data repeatability. One factor affecting data repeatability is the influence of the rough sea‐surface on the ghost reflection and the resulting seismic wavelets of the sources and receivers. During data analysis, the sea‐surface is normally assumed to be stationary and, indeed, to be flat. The non‐flatness of the sea‐surface introduces amplitude and phase perturbations to the source and receiver responses and these can affect the time‐lapse image. We simulated the influence of rough sea‐surfaces on seismic data acquisition. For a typical seismic line with a 48‐fold stack, a 2‐m significant‐wave‐height sea introduces RMS errors of about 5–10% into the stacked data. This level of error is probably not important for structural imaging but could be significant for time‐lapse surveying when the expected difference anomaly is small. The errors are distributed differently for sources and receivers because of the different ways they are towed. Furthermore, the source wavelet is determined by the sea shape at the moment the shot is fired, whereas the receiver wavelet is time‐varying because the sea moves significantly during the seismic record.  相似文献   

19.
We present the results of a seismic interferometry experiment in a shallow cased borehole. The experiment is an initial study for subsequent borehole seismic surveys in an instrumented well site, where we plan to test other surface/borehole seismic techniques. The purpose of this application is to improve the knowledge of the reflectivity sequence and to verify the potential of the seismic interferometry approach to retrieve high‐frequency signals in the single well geometry, overcoming the loss and attenuation effects introduced by the overburden. We used a walkaway vertical seismic profile (VSP) geometry with a seismic vibrator to generate polarized vertical and horizontal components along a surface seismic line and an array of 3C geophones cemented outside the casing. The recorded traces are processed to obtain virtual sources in the borehole and to simulate single‐well gathers with a variable source‐receiver offset in the vertical array. We compare the results obtained by processing the field data with synthetic signals calculated by numerical simulation and analyse the signal bandwidth and amplitude versus offset to evaluate near‐field effects in the virtual signals. The application provides direct and reflected signals with improved bandwidth after vibrator signal deconvolution. Clear reflections are detected in the virtual seismic sections in agreement with the geology and other surface and borehole seismic data recorded with conventional seismic exploration techniques.  相似文献   

20.
Moving source profiling is a modification of walk-away vertical seismic profiling in which the source is moved along a line across a well while the signal is recorded in the well at a certain depth. The method was designed to better predict the target horizon below the drill bit and away from the well location. The method has several advantages in areas of complicated overburden. In overthrust regions, the receiver is placed below much of the complicated structure to minimize distortion of the reflected signal. The final seismic image is a depth presentation of the subsurface structure and stratigraphy based on wavefront calculations. This depth estimation is obtained without extensive processing of the recorded data. The final result is available within a few days and can help interpreters to decide if and where to sidetrack the well. The method is demonstrated using an example from the overthrust zone of the Lower Saxonian Basin and the Pompeckj's well in Northern Germany.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号