首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
中国阿尔泰山和俄罗斯阿尔泰山均属于阿尔泰山脉的组成部分,地理上互相连接,地质上具有相似的古生代演化历史,同样都发育中生代花岗岩及伴生的稀有金属矿床。中国阿尔泰山和俄罗斯阿尔泰山的中生代花岗岩及其稀有金属矿床既表现出一定的相似性,也存在一定的差别。两地与稀有金属矿床有关的中生代花岗岩主要为S型花岗岩,属于非造山花岗岩类,但在俄罗斯阿尔泰山发育以岩珠和岩脉型钨-钼、锂-钽为主的稀有金属矿床,时限为晚三叠世和早侏罗世,而中国阿尔泰山则发育以花岗伟晶岩脉型锂-铍-铌-钽为主的稀有金属矿床,时限从晚三叠世到晚侏罗世。这些花岗岩具有相似的Sr- Nd同位素特征,但~(87)Sr/~(86)Sr初始比值变化很大,可能是岩浆-流体作用的结果,而变化较小的ε_(Nd)(t)值与富集地幔来源的岩浆基本相当,或者可以解释为幔源岩浆与地壳物质混合的结果。  相似文献   

2.
山门银金矿铅同位素地球化学研究   总被引:2,自引:0,他引:2  
在研究中将矿石铅、岩石铅同位素数据投影于Zartman铅构造模式图中。矿石铅数据点都位于造山带和地幔铅演化线之间,大洋火山岩范围内,更靠近地幔铅演化曲线,说明矿石铅主要来自地幔;岩石铅数据点都落在造山带和上地壳演化线之间,说明岩石铅来自地壳物质重熔或同熔产生的花岗岩类。从而认为山门矿床成矿物质主要来自赋矿地层。矿区印支期或印支燕山期花岗岩是该区老地层重熔形成。该花岗岩的热液活动对山门矿床的最终形成具有重要作用。  相似文献   

3.
阿尔泰大型-超大型矿床富集区地壳演化   总被引:4,自引:0,他引:4  
通过构造、岩浆、变质、成矿等地质作用及其时空演化规律的对比分析,以及物探重力、航磁及遥感信息的综合研究,认为古生代阿尔泰富蕴地幔热柱成因的三联点裂谷形成与演化———“手风琴式”开合,是阿尔泰大型- 超大型矿床富集区形成与演化的根本原因。地幔热柱热地幔物质大规模上涌和横向扩张,产生三联点裂谷系统,导致古大陆解体,形成阿尔泰“洋岛型”蛇绿岩、阿尔泰型花岗岩、花岗岩化、高温低压变质带和主要大型- 超大型矿床;地幔热柱活动停止或间息,导致三联点裂谷系统发生A 型俯冲而封闭造山,形成三叉式陆间造山带和同造山花岗岩、  相似文献   

4.
抱板金矿带产于戈枕脆韧性剪切断裂带西侧中元古代花岗岩体内接触带上。有剪切带蚀变岩型、石英脉型和含金伟晶岩型三种主要类型的矿床,以前一类最为重要。经多年研究认为,不同类型矿床的成矿时代不同,具多期成矿的特点。含金伟晶岩型和石英脉型金矿形成于海西期,成矿物质主要来自同期岩浆热液;含金剪切带的糜棱岩型金矿化发生于印支期;剪切带蚀变岩型金矿床形成于燕山期,成矿物质主要来自于与燕山期安玄玢岩同源的深部岩浆,  相似文献   

5.
张辉  吕正航  唐勇 《矿床地质》2019,38(4):792-814
文章对阿尔泰造山带中的主要伟晶岩类型、时空分布特征、形成物源以及稀有金属矿化类型、形成条件(包括温度、压力、侵位深度)、可能控制因素等进行了归纳和总结,进而提出了阿尔泰伟晶岩成因模式、稀有金属矿化机制、伟晶岩型稀有金属矿床找矿模型及其找矿方向。阿尔泰稀有金属伟晶岩显示2个期次(同造山和后造山)和4个阶段(泥盆纪—早石炭世、二叠纪、三叠纪、早侏罗世)的成岩成矿特征。其中,以后造山阶段的三叠纪伟晶岩成岩及其Be、Li成矿作用最为显著。不同期次和阶段的伟晶岩显示规律的时空分布特征,稀有金属伟晶岩的成岩成矿明显受"构造-变质-物源-岩浆"的控制,而伟晶岩与周边花岗岩存在时代或物源上的解耦,表明阿尔泰伟晶岩不是由花岗质岩浆分异演化晚期的残余岩浆固结形成,由此提出阿尔泰不同时代伟晶岩的成因模式,即造山过程中加厚的不成熟地壳物质在伸展减压背景下发生小比例部分熔融(深熔)形成独立伟晶岩。通过对形成伟晶岩初始岩浆中磷含量、伟晶岩分异演化程度的评价以及基于围岩蚀变过程中全岩及蚀变矿物电气石中稀有金属Li、Rb、Cs含量特征,建立了阿尔泰伟晶岩型稀有金属矿床找矿模型、地质-地球化学找矿指标体系,并提出不同尺度的找矿方向。  相似文献   

6.
东秦岭地区和阿尔泰造山带均产出大量稀有金属伟晶岩,是中国重要的稀有金属产地。前者工作程度低,远景尚不明朗;后者规模巨大。开展成矿条件对比研究十分必要。东秦岭地区产出铍矿、锂矿和复杂稀有金属矿,以锂矿化为主,伟晶岩类型复杂,包括绿柱石-铌铁矿型、复杂型锂辉石亚型、复杂型锂云母亚型和钠长石-锂辉石型。阿尔泰稀有金属伟晶岩发育多种稀有金属矿化组合,伟晶岩类型为绿柱石-铌铁矿型、复杂型锂辉石亚型和钠长石-锂辉石型。东秦岭稀有金属伟晶岩的内部结构分带型式包括对称分带结构、均一结构和分层结构,阿尔泰稀有金属伟晶岩以对称分带结构为主,也见均一结构。东秦岭与阿尔泰稀有金属矿石矿物相近,东秦岭产出更多含锂磷酸盐矿物。东秦岭稀有金属伟晶岩分异演化程度相对集中且高,阿尔泰稀有金属伟晶岩分异演化程度跨度大。东秦岭和阿尔泰锂矿的锂矿化主要发生于岩浆就位前,复杂稀有金属矿稀有金属富集作用发生在岩浆就位前和就位后,但阿尔泰复杂稀有金属矿经历了更为复杂和极度的分异演化过程。东秦岭稀有金属伟晶岩可能与同期花岗岩为同一熔融事件的产物,与早期花岗岩来自同一物质来源。阿尔泰稀有金属伟晶岩与花岗岩关系复杂,但大量早期花岗岩的形成提高了地壳成熟度,有利于形成晚期稀有金属伟晶岩。东秦岭稀有金属伟晶岩产出于北秦岭单元中,形成于晚造山和造山后阶段,集中于造山后阶段,稀有金属矿化呈多期断续叠加特征。阿尔泰稀有金属伟晶岩主要产出于琼库尔-阿巴宫地体和中阿尔泰山地体内,集中于造山后和非造山阶段。伟晶岩岩浆活动受控于物质来源和造山作用。储存稀有金属的岩石在造山作用中熔融,发生多期的大规模花岗质岩浆活动,稀有金属通过长期复杂的分异演化过程在残余熔体中不断富集。这种富挥发分和稀有金属的过铝质硅酸盐岩浆随后上升就位,可经后续冷却结晶和不混溶作用进一步富集稀有金属,从而形成稀有金属伟晶岩。东秦岭具有形成含稀有金属高度分异演化岩浆的有利条件,该区具有寻找铍矿和复杂稀有金属矿的潜力。  相似文献   

7.
阿尔泰稀有金属矿床的类型与造山过程   总被引:5,自引:2,他引:3  
阿尔泰地区的伟晶岩在成因上主要有岩浆结晶分异和变质成因两种。前人对于伟晶岩的分类已作了详细研究,但并非所有的伟晶岩都是矿体,稀有金属矿化也并不局限于伟晶岩中。根据矿体产出特点和矿种,可将稀有金属矿床大致分为产于基性和/或碱性岩体内部或边部的综合性稀有金属矿床、产于花岗岩内部及其接触带的稀有金属或宝石矿床及产于古老变质岩中的稀有金属白云母矿床3大类。其中,稀有金属白云母矿床形成于地壳深部高压环境,代表了海西期造山作用主阶段的产物,与花岗岩有关稀有金属矿床往往形成于造山作用刚结束的阶段,而综合性稀有金属矿床主要形成于造山之后,甚至可延续到燕山期。  相似文献   

8.
中亚成矿域发育一系列锂矿床,这些矿床主要分布在西伯利亚克拉通南部的造山带中,矿床的形成具有多期性,包括前寒武纪(1.85~1.83Ga)、晚寒武世-早奥陶世(494~483Ma)、早二叠世(294~272Ma)、晚三叠世-早白垩世(220~180Ma)和早白垩世(139~121Ma)等5个成矿期,矿床类型主要为伟晶岩型和花岗岩型。基于成矿构造背景和锂成矿特征的研究,以重要构造线为界,将成矿域划分为2个成矿省和7个成矿带:(1)阿尔泰-东萨彦成矿省,位于成矿域的西部,包括阿尔泰、桑吉伦高地和东萨彦等3个成矿带,主要发育伟晶岩型锂矿床,成矿作用集中在上述前4个成矿期,矿床形成与西伯利亚克拉通和古亚洲洋2个构造体系有关。(2)蒙古-鄂霍茨克成矿省,位于成矿域的东部,包括东外贝加尔成矿带以及Gobi Ugtaal-Baruun Urt和大兴安岭等2个锂远景成矿带,主要发育早白垩世花岗岩型锂矿床,矿床形成主要与蒙古-鄂霍次克构造体系有关。此外,在中国东天山发育少量晚三叠世伟晶岩型锂矿床,构成东天山锂远景成矿带,矿床形成与哈萨克斯坦-准噶尔板块和塔里木板块碰撞有关。中亚成矿域稀有金属花岗岩和大多数稀有金属伟晶岩为花岗质岩浆高分异结晶的产物,其结晶分异的驱动机制主要是热驱动。富含稀有金属的花岗岩和伟晶岩岩浆的形成温度偏低(~650℃),压力变化较大(500~170MPa);锂富集机理为岩浆结晶分异作用和流体不混溶作用。本次研究分别提出了阿尔泰伟晶岩型锂矿床的成矿模式“地壳熔融→深部花岗岩岩基→浅部稀有金属花岗岩岩枝-伟晶岩岩脉”和东外贝加尔花岗岩型锂矿床的成矿模式“地壳熔融→深部花岗岩岩基→浅部花岗岩-稀有金属花岗岩岩株”。  相似文献   

9.
伟晶岩矿床示踪造山过程的研究进展   总被引:26,自引:0,他引:26  
国内外伟晶岩及伟晶岩矿床的研究比较薄弱,对于伟晶岩矿床在造山过程中的示踪更是知之甚少。但是,与花岗岩和玄武岩可以指示构造演化一样,伟晶岩及其相关矿床同样可以作为构造演化尤其是造山过程的示踪标志。世界上伟晶岩矿床最集中的阿尔泰地区从加里东期到海西期、印支期、燕山期均有伟晶岩及伟晶岩型矿床形成,并具有从早到晚矿床规模越来越大、元素组合和矿物组合越来越多、伟晶岩分带越来越完善、矿种从加里东期比较单纯的白云母矿床向燕山期超大型综合性矿床演化的规律,主要的成矿阶段发生在各造山运动之后相对宁静的时期。国内外其它地区也有类似的情况,因此,伟晶岩矿床尤其是规模大、分带性好、矿种多元素全的矿床代表了造山后的产物。  相似文献   

10.
阿尔泰是中亚成矿域重要的内生金属矿产集中区,该矿集区晚古生代发育有5类内生金属矿床:1)块状硫化物Cu-Pb-Zn矿床,2)斑岩型Cu-Au矿床,3)岩浆Cu-Ni硫化物矿床,4)矽卡岩型Cu-Mo-Fe矿床,5)造山型金矿床和伟晶岩型稀有金属矿床。在构造上,这些矿床的形成与阿尔泰造山带俯冲—增生作用密切相关。阿尔泰晚古生代矿床的形成可以划分为3个主要阶段:Ⅰ)早-中泥盆世,沿阿尔泰南缘古生代活动大陆边缘弧后伸展,导致在阿尔泰西部琼库尔—塔拉特地质体中形成的多金属火山成因块状硫化物矿床,以及阿尔泰东段铁—铜矽卡岩矿床;Ⅱ)石炭纪—二叠纪的地体增生和弧岩浆作用,在布尔津—二台和额尔齐斯地体中形成了广泛分布的斑岩型矿床、岩浆铜镍硫化物矿床,在额尔齐斯地体中形成的铜铁矽卡岩矿床;Ⅲ)早二叠世的持续增生导致阿尔泰南部的杜拉特岛弧形成,并伴随有矽卡岩铜钼矿床和造山型金矿的形成;晚二叠世阿尔泰地区进入造山带演化阶段,并发生区域动力热流变质作用和片麻岩穹隆,伴随有花岗岩化和重熔岩浆活动和大量伟晶岩矿床的形成。晚古生代阿尔泰南缘的俯冲—增生构造演化过程,导致了不同类型内生金属矿床的形成,构成了我国重要...  相似文献   

11.
新疆阿尔泰两棵树铁矿床位于阿尔泰南缘克朗盆地,产于花岗岩体与地层接触带的伟晶岩脉中。应用LA-ICP-MS锆石U-Pb测年法,获得该矿区花岗岩的结晶年龄为(376.7±1.3)M a,属中泥盆世晚期岩浆活动的产物,同时该年龄限定两棵树铁矿床为中泥盆世晚期成矿。它与同时代的花岗岩有相同的构造背景,即形成于活动大陆边缘环境。  相似文献   

12.
文章通过对哈密镜儿泉伟晶岩型稀有金属矿床中白云母的40Ar/39Ar同位素定年研究,测得该矿床的同位素年龄数据,其坪年龄为(243±2)Ma。这一结果显示,镜儿泉的含稀有金属伟晶岩脉是在印支期形成的,并且在形成之后没有再受到后期地质事件的影响。与阿尔泰成矿省相似,东天山在印支期也发生了伟晶岩型稀有金属的成矿作用。这表明,东天山地区的成矿演化与阿尔泰地区具有可比性,从而为2个地区的地质找矿指出了新的方向。  相似文献   

13.
柳树湾花岗伟晶岩型铀矿床地处华北克拉通南缘,南接南秦岭构造带,位于北秦岭东段的灰池子岩体东段北侧.本文对柳树湾花岗伟晶岩型铀矿床中含铀花岗伟晶岩脉、接触带附近黑云斜长片麻岩和黑云母二长花岗岩所含黄铁矿开展了铅同位素对比研究.结果表明,黑云母二长花岗岩黄铁矿铅μ值为9.50~9.58,区别于正常铅μ值,而介于地幔μ值与造...  相似文献   

14.
扎乌龙-草陇锂矿床位于松潘-甘孜造山带中西部,为典型的花岗伟晶岩型稀有金属矿床.前人基于矿区花岗岩和伟晶岩紧密的时空及成因关系,认为伟晶岩与白云母花岗岩同源且成矿与花岗质岩浆的分异相关.然而,岩浆分异演化过程中熔体的信息记录及其何种地质过程对成矿起主导作用,仍缺乏有效制约.本文对矿区花岗质岩浆来源及其演化过程开展了研究...  相似文献   

15.
The Metallogenetic Regularities of Lithium Deposits in China   总被引:2,自引:0,他引:2  
Lithium resources support the development of high-technology industries. China has abundant lithium resources which are mainly distributed in Tibet,Qinghai,Sichuan and Jiangxi. Salt lakes in China have significant lithium reserves,but lithium is mainly produced from hard rock lithium deposits because the extraction from salt lakes requires further improvements. The hard rock lithium deposits mainly occur in granitic pegmatite in the Altay region of Xinjiang and the Jiajika deposit in western Sichuan Province; they mainly formed in the Mesozoic and occurred in a relatively stable stage during orogenic processes. On the basis of the information from 151 lithium deposits or spots,14 lithium metallogenic series were identified,and granitic pegmatite,granite,and sedimentary types were considered to be the main prediction types of lithium resources. Twelve lithium mineralization belts were divided and a series of maps showing the lithium metallogenetic regularity in China were drawn. We conclude that the hard rock and brine type of lithium resources possibly have a similar lithium source related to magmatism. The metallogenic features of the lithium in China were related with the distinct history of tectonic-magmatic activity in China. This study benefits the assessment of,and prospecting for,lithium resources in China.  相似文献   

16.
中亚造山带以晚古生代成矿为特色,但最近十几年来在新疆阿尔泰、东天山等发现越来越多的三叠纪矿床,包括3个超大型矿床。在古生代造山带中为什么三叠纪能够成矿和成大矿,不同类型矿产特征和分布规律是值得关注的重要科学问题。目前确定新疆中亚造山带19个三叠纪矿床主要为花岗伟晶岩型稀有金属矿床、斑岩型钼矿床和矽卡岩型钨矿床。花岗伟晶岩型稀有金属矿床分布于阿尔泰,斑岩型钼矿床、矽卡岩型钨矿床和钨(钼)矿床分布于东天山。19个矿床的成矿年龄变化于193~248 Ma,峰值为215 Ma。不同矿床类型成矿时代略有差别,形成时间相对较早的有矽卡岩型,其次是斑岩型,伟晶岩型形成时间跨度最大,多数形成于晚三叠世,少数延续到早侏罗世。东天山沙东-小白石头一带钨矿和阿尔泰稀有金属矿最具找矿潜力。  相似文献   

17.
In this review, we describe the geological characteristics and metallogenic–tectonic origin of Fe deposits in the Altay orogenic belt within the Xinjiang region of northwestern China. The Fe deposits are found mainly within three regions (ordered from northwest to southeast): the Ashele, Kelan, and Maizi basins. The principal host rocks for the Fe deposits of the Altay orogenic belt are the Early Devonian Kangbutiebao Formation, the Middle to Late Devonian Altay Formation, with minor occurrences of Lower Carboniferous and Early Paleozoic metamorphosed volcano-sedimentary rocks. The principal mineral-forming element groups of the deposits are Fe, Fe–Cu, Fe–Mn, Fe–P, Fe–Pb–Zn, Fe–Au, and Fe–V–Ti. The Fe deposits are associated with distinct formations, such as volcanic rocks, skarn deposits, pegmatites, granite-related hydrothermal vein mineralization, and mafic pluton-related V–Ti-magnetite deposits. The Fe deposits are most commonly associated with volcanic rocks in the upper Kangbutiebao Formation, in the volcano-sedimentary Kelan Basin, and in skarn deposits at several localities, including the lower Kangbutiebao Formation in the volcano-sedimentary Maizi Basin, and the Altay Formation at Jiaerbasidao–Kekebulake region. Homogenization temperatures of fluid inclusions in the prograde, retrograde and sulfide stages of the skarn type deposit are mainly medium- to high-temperature (cluster between 200 and 500 °C), medium-temperature (cluster between 200 and 340 °C) and low- to medium temperature (cluster between 160 and 300 °C), respectively. Ore fluids in the sedimentation period in the volcano-sedimentary type deposit are characterized by low- to medium temperature (with a peak around 190 °C), low to moderate salinity (3.23 to 22.71 wt.% NaCl equiv). Ore fluids in the pegmatite type deposit are characterized by low- to medium temperature (with a peak at 240 °C), low salinity (with a peak around 9 wt.% NaCl equiv). An analysis of the isotopic data for Fe deposits from the Altay orogenic belt indicates that the sulfur was derived from several sources, including volcanic rocks and granite, as well as bacterial reduction of sulfate from seawater. The present results indicate that different deposit types were derived from various sources. The REE geochemistry of rocks and ores from the Fe deposits in the Altay orogenic belt suggests that the ore-forming materials were derived from mafic volcanic rocks. Based on isotopic age data, the timing of the mineralization can be divided into four broad intervals: Early Devonian (410–384 Ma), Middle Devonian (377 Ma), Early Permian (287–274 Ma), and Early Triassic (c. 244 Ma). The ore-forming processes of the Fe deposits are closely related to volcanic activity and the emplacement of intermediate and felsic intrusions. We conclude that Fe deposits within the Altay orogenic belt developed in a range of tectonic settings, including continental arc, post-collisional extensional settings, and intracontinental settings.  相似文献   

18.
葛军 《化工矿产地质》2003,25(4):213-218
河南省水洞岭铜锌多金属矿床硫同位素特征显示出海相火山岩型矿床特有的混合硫(幔源硫+海水硫)特征;矿区内铅同位素组成比较均一,在铅构造模式图上主要落在地幔及造山带之间,反映其源区以地幔铅为主,并混有造山带、上地壳铅的特征,表明其成矿物质主要来源于火山作用。由此建立该矿床的火山喷发沉积的成矿模式。  相似文献   

19.
《Chemical Geology》2003,193(1-2):137-154
The composition of Kuerti mafic rocks in the Altay Mountains in northwest China ranges from highly geochemically depleted, with very low La, Ta and Nb and high εNd(t) values, to slightly enriched, arc lava-like composition. They display flat to light rare earth element (REE)-depleted patterns and have variable depletions in high field-strength elements (HFSE). These mafic rocks were most probably derived from a variably depleted mantle source containing a subduction component beneath an ancient intra-oceanic backarc basin. Together with the slightly older arc volcanic rocks in the Altay region, the Kuerti mafic rocks display generally positive correlations of their key elemental ratios (e.g., Th/Nb, La/Yb and Th/Yb). These indicate that the more mid-ocean ridge basalt (MORB) component was contained in these magmas, the less arc component was present in their mantle source. Therefore, we propose a two-stage melting evolution model to interpret the compositional evolution of the Kuerti mafic rocks and associated arc volcanic rocks. First, arc basaltic melts were extracted from the hydrated arc mantle wedge beneath Kuerti, leaving behind a mantle source that is variably depleted in incompatible trace elements. Then, mafic rocks were erupted during seafloor spreading in the Kuerti backarc basin from the upwelling asthenospheric mantle. The variably depleted mantle source produced mafic rocks with composition ranging from arc lava-like to more geochemically depleted than MORB. The recognition of Kuerti mafic rocks as backarc basin basalts (BABB) is consistent with the proposed tectonic model that an active backarc basin–island arc system along the paleo-Asian ocean margin was formed in the Altay region during Devonian–Early Carboniferous. New data further indicate that the final orogenic event in the Altay Mountains, i.e. the collision of the north and south continental plates in the region, most probably took place in Late Carboniferous and Permian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号