首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
魏兴  周金龙  梁杏  乃尉华  曾妍妍  范薇  李斌 《地球科学》2020,45(5):1807-1817
新疆喀什三角洲地下水“水质型”缺水问题较为突出,开展地下水流系统研究具有实际意义.采用水化学和环境同位素年龄测试法,在对喀什三角洲地下水含水系统划分基础上,对地下水化学和循环更新特征进行了分析研究.结果表明:三角洲含水系统由山前倾斜冲洪积平原潜水、河流冲积平原潜水和河流冲积平原承压水构成.沿地下水流向,水化学类型演化为HCO3·SO4-Ca→SO4-Ca→SO4·Cl-Mg·Na→SO4·Cl-Na,TDS增高,水质趋向盐化.山前倾斜冲洪积平原为溶滤-径流区,河流冲积平原为径流-累盐区.研究区地下水更新速率为0.03%~16.35%·a-1,具有山前倾斜冲洪积平原潜水>河流冲积平原潜水>河流冲积平原承压水的特征.利用3H估算得出,山前倾斜冲洪积平原潜水年龄为8~49 a,平均值为29 a;河流冲积平原潜水年龄为14~>50 a,其中上部潜水平均年龄为24 a,下部潜水平均年龄大于50 a.利用14C估算得出,河流冲积平原潜水为476~33 623 a,平均值为8 106 a;河流冲积平原承压水为5 186~34 578 a,平均值为30 043 a,与潜水比为“更古老”的水.综合以上特征得出,喀什三角洲地下水含水系统可以划分为2个更新速率较快的局部水流系统(Ⅰ1和Ⅰ2)和一个循环滞缓的区域水流系统(Ⅱ).   相似文献   

2.
In a confined alluvial aquifer located between two rivers, discrete zones of anomalously high concentrations of redox species such as iron, are thought to be a result of groundwater flow dynamics rather than a chemical evolution along continuous flow paths. This new hypothesis was confirmed at a study site located between Nan and Yom rivers in Phitsanulok, Thailand, by analyzing concentrations of redox species in comparison with dynamic groundwater flow patterns. River incision into the confined alluvial aquifer and seasonally varying river stages result in truncated flow paths. The groundwater flow dynamics between two rivers has four phases that are cyclic, including: aquifer discharge into both rivers, direct flow from one river toward another, aquifer recharge from both rivers, and reverse of river-to-river flow. The resulting groundwater flow direction has a zigzag pattern and its general trend is almost parallel to the river flow. High iron anomaly appears as discrete zones in the transition areas of the confined alluvial aquifer because the lateral recharge from rivers penetrates into the aquifer only by tens of meters. The high iron anomaly, which is nearly constant in space and time, is a result of groundwater/surface-water interactions and related groundwater flow dynamics.  相似文献   

3.
The groundwater flow system and the flow velocity in the alluvial fan plain of the Hutuo River, China, have been studied, with an emphasis on relating geochemical characteristics and isotopes factors. Seven stretches of one river, six springs and 31 wells, with depths ranging from 0 m (river waters) to 150 m, were surveyed. The groundwater has a vertical two-layer structure with a boundary at about 80–100 m depth, yielding an upper and a lower groundwater layer. The δ18O and δD values range from ?10.56 to ?7.05‰ and ?81.83 to ?59‰, respectively. The groundwater has been recharged by precipitation, and has not been subjected to significant evaporation during infiltration into the aquifer in the upper layer. Using a tritium model, the groundwater flow in the alluvial fan plain showed horizontal flow velocity to be greater than vertical velocity. Groundwater in the upper layer is characterized by Ca–HCO3 type. From the spatial distribution characteristics of the stable isotope and chemical composition of the groundwater, agricultural irrigation was considered to have an influence on the aquifer by causing excessive groundwater abstraction and irrigation return.  相似文献   

4.
Using a three-dimensional finite element model, this study characterizes groundwater flow in a costal plain of the Seto Inland Sea, Japan. The model characterization involved taking field data describing the aquifer system and translating this information into input variables that the model code uses to solve governing equations of flow. Geological geometry and the number of aquifers have been analyzed based on a large amount of geological, hydrogeological and topographical data. Results of study demonstrate a high correlation between the ground surface elevation and the groundwater level in the shallow coastal aquifer. For calibrating the numerical groundwater model, the groundwater flow was simulated in steady state. In addition, the groundwater level and trend in the transient state has also been elucidated. The numerical result provides excellent visual representations of groundwater flow, presenting resource managers and decision makers with a clear understanding of the nature of the types of groundwater flow pathways. Results build a base for further analysis under different future scenarios.  相似文献   

5.
 Hydrogeological research is in progress, utilizing GIS methods, with the principal aim of modelling the Olocenic alluvial aquifer of the River Cornia coastal plain (southern Tuscany, Italy), which has been exploited for drinking water, irrigation, and industrial uses. A consequence of exploitation has been the appearance of wide seawater intrusion. The alluvial aquifer has recently been subjected to new well fields for the supply of drinking water, with an increase of total average discharge of about 4×106 m3/year. This paper presents results obtained from updating and integrating basic knowledge and structuring the database. The hydrogeological study allowed the recognition of the extension of areas that are characterized by a hydraulic head under the sea level, the progressive salinization of the aquifer, and the increase of water deficit in the aquifer which is produced by a progressive extraction of water superior to the natural recharge. In addition, benefits and disadvantages resulting from the location of new well fields in a hydrogeologically favourable zone, and the boundary conditions for much of the area studied have been defined. The GIS was used as support for making and updating the tabular and spatial database with the aim of integrating the local and regional hydrogeological knowledge. This study will permit the realization of a numerical simulation of the groundwater flow of the aquifer aimed at correcting the management of water resources, by means of the GIS-modelling integration. Received: 23 June 1998 · Accepted: 16 November 1998  相似文献   

6.
地下水年龄结构是了解一个地区地下水资源开采可持续性的重要基础。穆兴平原地下水开采量增加以及地下水环境恶化,对该地区可持续发展有一定制约,为此在2016年采集CFCs样品31组和3H样品60组,估算了研究区地下水年龄。结果表明,穆兴平原北部地下水年龄为21年到大于65年,由西北部和穆棱河向平原中部及乌苏里江逐渐变老,更新性变差,主要受到大气降水和地表河水补给,但是由于地表覆盖一层黏性土,地下水中缺失小于10年的水;不同井深样品中二者及NO_3~-浓度的变化,表明在60 m以上地下水的防污性能较差,而在100 m以下则较好,饮用水源井深需超过100 m。  相似文献   

7.
Seawater intrusion in the Salalah plain aquifer,Oman   总被引:2,自引:0,他引:2  
Salalah is situated on a fresh water aquifer that is replenished during the annual monsoon season. The aquifer is the only source of water in Salalah city. The rainfall and mist precipitation in the Jabal AlQara recharges the plain with significant renewable fresh groundwater that has allowed agricultural and industrial development to occur. In Salalah city where groundwater has been used extensively since the early 1980s for agricultural, industrial and municipal purposes, the groundwater has been withdrawn from the aquifer more rapidly than it can be replenished by natural recharge. The heavy withdrawal of large quantities of the groundwater from the aquifer has led to the intrusion of seawater. Agricultural activities utilize over 70% of the groundwater. For the study of the saltwater intrusion, the area has been divided into four strips, A, B, C and D, on the basis of land-use in the area. Water samples were collected from 18 water wells. Chemical analysis of major ions and pollution parameters in the groundwater was carried out and compared to the previous observed values. The electrical conductivity and chloride concentrations were highest in the agricultural and residential strips and Garziz grass farm. Before 1992 the aquifer was in a steady state, but presently (2005) the groundwater quality in most of the agricultural and residential strips does not meet drinking water standards. In addition, model simulations were developed with the computer code MODFLOW and MT3DMS for solute transport to determine the movement of the freshwater/saltwater interface. The study proposes the protection of the groundwater in Salalah plain aquifer from further encroachment by artificial recharge with reclaimed water, preferably along the Salalah coastal agricultural strip. This scheme can also be applied to other regions with similar conditions.  相似文献   

8.
The Holocene geological evolution of the Belgian coastal plain is dominated by a transgression of the North Sea, silting up of the coastal plain and human intervention (impoldering). This has led to a typical pattern in groundwater quality which is discussed here for the central part of the coastal plain. Therefore, a database with available groundwater samples is composed. Water type according to the Stuyfzand classification is determined and different hydrosomes and their hydrochemical facies are identified. Based on this, the origin and evolution of the water types is explained using Piper plots and geochemical calculations with PHREEQC. Before the impoldering, salinising and freshening conditions alternated with a general salinisation of the aquifer after about 3400 BP. This results in a dominance of brackish and salt NaCl subtypes which are still found in the deeper part of the aquifer. The subsequent impoldering resulted in an major freshening of the aquifer leading to NaHCO3, MgHCO3 and CaHCO3 subtypes. Overall, mixing, cation exchange, carbonate mineral dissolution and oxidation of organic matter are identified as the major processes determining the general water quality. The close link between geological evolution, water quality and what is still observable today is illustrated with this example of the Belgian coastal plain.  相似文献   

9.
利用新疆阿克苏台兰河流域冲洪积平原区非稳定流抽水试验资料,以辐射井为研究对象,结合辐射管内的水头损失及流态,建立粗颗粒潜水含水层渗流和水平管流耦合的地下水流数值模型。利用数值模型,分析在粗颗粒含水层中辐射管不同根数、不同长度、等效渗透系数、辐射井的井径以及不同含水层的渗透系数、不同降深对辐射井出水量的影响,并且根据各参数的相互关系,提出冲洪积平原辐射井的出水量的经验公式。为优化设计辐射井结构及辐射井布置提供依据,对台兰河地下水库的建设及后期运行管理提供了技术支撑。  相似文献   

10.
浊水溪冲积扇是台湾水资源最为丰富但也是地面沉降最严重地区。近年来该区域的地面沉降因有可能威胁高铁行车安全而备受关注。本文整合历年累积的地下水位及地面沉降等相关监测数据,验证了地下水位变化与含水层补给之机制,探讨了地下水周期性波降条件下土层压缩特性以及高铁路堤与桩基础工程结构的沉降行为。认为对于设置桩基础的线型高架结构而言,区域性地下水位波降不致增加桥墩间的差异沉降,但桩基础若承受邻近局部的额外载重,则可能伴随地下水位波降产生持续性的差异沉降,其长期效应将对线型交通结构物的平整度及安全性造成负面影响。  相似文献   

11.
A point count index method using a well drillers log and field measurements has been developed following the DRASTIC and SINTACS procedures to map and evaluate the vulnerability of a coastal plain aquifer to surface and near surface contamination. The input parameters with the acronym CALOD include clay layer thickness (C), aquifer media character (A), lateritic layer thickness (L), overlying layer character (O) and the depth to groundwater level (D). The CALOD vulnerability potential index (CALOD index) is computed as the sum of the products of weights and ratings assigned to each of the input parameters. The CALOD index, varying between 15 and 75, is divided into four classes: high (>60), high-medium, (40–60), low-medium (20–40) and low (<20). The CALOD index is then used to produce a vulnerability potential map for the area. From the map, areas of high, high-medium and medium-low are consistent with the upper gravelly aquiferous zone while areas of medium-low and low are restricted to the deeper lower sandy aquiferous layer. The most important parameters affecting groundwater vulnerability to pollution in coastal areas include saturated thickness of the aquifer, depth to groundwater level, lateritic layer thickness and the aquifer media character. The concentration of some chemical pollution indicators (electrical conductivity, K, NO3, Cl and metal load) are relatively higher for the highly vulnerable shallower upper gravelly unit in comparison to the less vulnerable deeper sandy unit. This method is very suitable for coastal plain sand aquifers especially, where data is scare.  相似文献   

12.
Optimal Groundwater Development in Coastal Aquifers Near Beihai, China   总被引:1,自引:0,他引:1  
INTRODUCTIONThe city of Beihai,located on the south coast ofGuangxi,China,relies heavily on groundwater for its potablewater supply and agricultural irrigation.With rapid increasein population (for instance,from 134 0 0 0 in 1987to 47930 0in1995 ) and in developm ent program s,the demand for freshwater has been growing. Approxim ately 170 0 0 0 m3/ d ofgroundwater has been pumped from the productive coastalaquifers in recent years.Contamination of the fresh water inthe coastal aquifers b…  相似文献   

13.
赵辉  陈文芳  崔亚莉 《地学前缘》2010,17(6):159-165
研究采用理论分析和实践成果相结合、区域宏观分析与典型地区深入剖析相结合的研究方法,从地下水不合理开发利用引起的环境问题出发,选取华北地区、西北地区以及沿海地区作为典型区,分析地下水位对环境的控制作用,提出了具有针对性的地下水位控制阈值。华北平原有利于山前调蓄的地下水位埋深为10m、中东部平原浅层控制土壤盐渍化水位埋深为2~3 m、防止地裂缝的水位埋深为7 m、深层控制地面沉降水位埋深为50 m、浅埋岩溶区地下水位应控制在岩溶含水层上覆的松散岩类的底板高程(2 m)之上;西北地区控制天然植被衰败的地下水位埋深为2.0~4.5 m和人工绿洲灌溉期控制土壤盐渍化的地下水位埋深为1.2~1.5 m,非灌溉期中冻结期地下水位埋深1.3~1.5 m,冻融期为2.2~2.7 m;沿海地区防止海水入侵的地下水位阈值应控制在漏斗中心水位高程-5~-6 m,最大不超过-8 m。上述地下水位控制阈值的确定,为实施地下水总量控制和水位控制管理提供了科学依据。  相似文献   

14.
The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW–SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW–SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW–SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW–SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.  相似文献   

15.
Irrigation in low-lying coastal plains may enhance the formation of fresh groundwater lenses, which counteract salinization of groundwater and soil. This study presents seasonal dynamics of such a freshwater lens and discusses its influence on the salinity distribution of the unconfined aquifer in the coastal plain of Ravenna, Italy, combining field observations with numerical modeling (SEAWAT). The lens originates from an irrigation ditch used as a water reservoir for spray irrigation. The geometry of the freshwater lens shows seasonal differences because of freshwater infiltration during the irrigation season and upconing of deeper saltwater for the remainder of the year. The extent of the freshwater lens is controlled by the presence of nearby drainage ditches. Irrigation also results in a temperature anomaly in the aquifer because of the infiltration of warm water during the irrigation season. The surficial zone in the vicinity of the irrigation ditch is increased considerably in thickness. Finally, different irrigation alternatives and the influence of sea-level rise are simulated. This shows that it is necessary to integrate irrigation planning into the water management strategy of the coastal zone to have maximum benefits for freshening of the aquifer and to make optimal use of the existing infrastructure.  相似文献   

16.
The Wadi Watir delta, in the arid Sinai Peninsula, Egypt, contains an alluvial aquifer underlain by impermeable Precambrian basement rock. The scarcity of rainfall during the last decade, combined with high pumping rates, resulted in degradation of water quality in the main supply wells along the mountain front, which has resulted in reduced groundwater pumping. Additionally, seawater intrusion along the coast has increased salinity in some wells. A three-dimensional (3D) groundwater flow model (MODFLOW) was calibrated using groundwater-level changes and pumping rates from 1982 to 2009; the groundwater recharge rate was estimated to be 1.58?×?106 m3/year. A variable-density flow model (SEAWAT) was used to evaluate seawater intrusion for different pumping rates and well-field locations. Water chemistry and stable isotope data were used to calculate seawater mixing with groundwater along the coast. Geochemical modeling (NETPATH) determined the sources and mixing of different groundwaters from the mountainous recharge areas and within the delta aquifers; results showed that the groundwater salinity is controlled by dissolution of minerals and salts in the aquifers along flow paths and mixing of chemically different waters, including upwelling of saline groundwater and seawater intrusion. Future groundwater pumping must be closely monitored to limit these effects.  相似文献   

17.
北京平原区地下水位预警初步研究   总被引:5,自引:0,他引:5       下载免费PDF全文
借鉴美国地质调查局在宾夕法尼亚的地下水位预警方法,从统计学的角度,探索了北京平原区地下水预警方法。对监测井多年长期监测资料进行百分位统计分析,把同一时间(月平均、旬平均、日平均)地下水水位(头)标高值的最小值至百分位5、百分位5至百分位10、百分位10至百分位25、百分位25至百分位75范围内的地下水位分别定义为红色、橙色、黄色和蓝色预警,形成地下水位预警判据。根据地下水水位实时监测数据,实时判定监测井代表区域的地下水预警等级,同时修正和完善地下水位预警判据,称之为监测井单点预警,监测井代表的同一层位的区域的集合,构成不同含水层的地下水位区域预警。对北京平原区2009年12月的地下水位预警结果为:潮白河冲洪积扇顶部和中部潜水含水层地下水位为红色预警,前缘为黄色预警,冲洪积平原为蓝色预警区;城区以南地区为红色预警,海淀山后的西北部地区为红色预警,永定河冲积扇和冲积平原大部分地区黄色和蓝色预警,大石河冲洪积扇地区均为蓝色预警;承压水含水层在潮白河冲洪积扇的前缘为红色预警,冲洪积平原为蓝色预警,北运河山前地带均为橙色预警,城区东、东南地区为橙色和黄色预警,少数地区为橙色预警,除上述地区以外,承压水均为蓝色预警。北京市平原区主要地下水开采地区地下水位已经处于历史的较低水位处,特别是潮白河冲积扇中上部地区以及平谷盆地,地下水位几乎全部处于红色预警区。该预警方法原理明确,方法简便,有望在地下水主要开采区推广应用。  相似文献   

18.
The Yinchuan plain is located in the arid climate zone of NW China. The western margin of the plain is the Helan mountain connecting a series of normal slip faults. The eastern margin of the plain connects with the Yellow River and adjacents with the Ordos platform. The south of the plain is bordered by the EN fault of the Niushou mountain. The bottom of the plain is the Carboniferous, Permian, or Ordovician rocks. Based on the analysis of groundwater hydrochemical and isotopic indicators, this study aims to identify the groundwater recharge and discharge in the Yinchuan plain, China. The hydrochemical types of the groundwater are HCO3–SO4 in the west, HCO3–Cl in the middle, and Cl–SO4 in the east. The hydrochemical types are HCO3–SO4 in the south, HCO3–Cl and SO4–HCO3 in the middle. The hydrochemical types are complex in the north, mainly SO4–HCO3 and Cl–SO4. Deuterium, 18O, and tritium values of groundwater indicate that groundwater recharge sources include precipitation, bedrock fissure water, and irrigation return water. Groundwater discharges include evaporation, abstraction, and discharge to surface water. According to the EW isotopic profile, the groundwater flow system (GFS) in the Yinchuan plain can be divided into local flow systems (LFS) and regional flow systems (RFS). Groundwater has lower TDS and higher tritium in the southern Yellow River alluvial plain and groundwater age ranges from 6 to 25 years. The range of groundwater renewal rates is from 11 to 15 % a?1. The depth of the water cycle is small, and groundwater circulates fast and has high renewal rates. Groundwater has higher TDS and lower tritium in the northern Yellow River alluvial plain. The range of groundwater age is from 45 to 57 years, and renewal rate is from 6 to 0.1 % a?1. The depth of the water cycle is larger. Groundwater circulates slowly and has low renewal rates.  相似文献   

19.
北京市永定河流域地下水^14C年龄的初步分析   总被引:1,自引:0,他引:1  
王新娟  周训 《地质论评》2006,52(2):283-288
应用同位素方法初步分析北京郊区永定河流域地下水的演化特点。沿永定河冲洪积扇地下水流动方向布置取样剖面,共有取样点14个,对采集的水样进行^14C和氚含量分析,并确定地下水同位素年龄。浅层孔隙水的^14C年龄的变化范围为730~4900a,深层孔隙水为13420-22480a;^14C年龄在垂直方向上由浅部至深部逐渐增大,最大变化幅度为从3010a增至22480a;浅层孔隙水的氚含量都在14.99~30.56TU之间,深层孔隙水大部分在0.51~4.71TU之间。运用地下水^14C和氚年龄在垂向和水平方向变化的结果,验证了地下水的流向并计算了地下水的流速变化范围为5.02~62.63m/a,从山前至平原浅层地下水径流速度逐渐变小,反映了地下水水平径流强度逐渐减弱,地下水交替逐渐变差,浅层孔隙水以垂向交替为主,深层孔隙水以水平径流为主。  相似文献   

20.
Control of sea-water intrusion by salt-water pumping: Coast of Oman   总被引:2,自引:1,他引:1  
A shallow alluvial coastal aquifer in the Batinah area of Oman, with sea-water intrusion that extends several kilometres inland, has been studied experimentally, analytically and numerically. The water table is proved to have a trough caused by intensive pumping from a fresh groundwater zone and evaporation from the saline phreatic surface. Resistivity traverses perpendicular to the shoreline indicated no fresh groundwater recharge into the sea. Using an analytical Dupuit-Forchheimer model, developed for the plain part of the catchment, explicit expressions for the water table, sharp interface location and stored volume of fresh water are obtained. It is shown that by the pumping of salt water from the intruded part of the aquifer, this intrusion can be mitigated. Different catchment sizes, intensities of fresh groundwater pumping, evaporation rates, water densities, sea level, incident fresh water level in the mountains and hydraulic conductivity are considered. SUTRA code is applied to a hypothetical case of a leaky aquifer with line sinks modeling fresh water withdrawal and evaporation. The numerical code also shows that pumping of saline water can pull the dispersion zone back to the shoreline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号