首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
基于海洋环流模式POP和生物地球化学模型OCMIP-2,建立了全球海洋碳循环模式,并用于对全球海洋碳循环的模拟研究。该模式在大气CO2为283×10-6条件下,积分3 100 a,达到工业革命前的平衡态。在此基础上,用历史时期观测的大气CO2浓度进行强迫,模拟了历史时期的海洋碳循环。模拟的无机碳浓度、总碱度与基于观测得到的结果基本一致,模式能够较好地模拟全球碳循环过程。模拟结果表明,在北半球中高纬度和南半球的中纬度,海洋是大气CO2的主要汇区;在赤道南北纬20°之间和南大洋50°S以南,海洋表现为大气CO2的源区。在1980s海洋吸收CO2速率(以C计)为1.38 Pg/a,1990s为1.55 Pg/a。海洋中人为碳在北大西洋含量最大,向下到达海底并向南输运到30°N附近;在南极附近,浓度较小,深度达到3 000 m;在中纬度,人为碳被限制在温跃层以上。  相似文献   

2.
工业革命以来,人类活动导致的以二氧化碳为代表的温室气体持续排放,被认为与全球气候变化密切相关,引发诸多极端气候事件,导致海平面上升、海水酸化、海水暖化等一系列环境负面效应。海洋是地球最大的活跃碳库,增汇潜力巨大。为应对全球气候变化,人为干预海洋生态系统、促进其对大气二氧化碳额外吸收封存的海洋负排放技术体系成为国际研究热点。根据负排放技术的应用场景,目前海洋负排放技术体系涵盖侧重于生态保护和修复的滨海湿地蓝碳、侧重于环境友好型养殖产业的海水养殖环境碳汇和借助生态工程技术手段的负排放工程增汇。海洋负排放技术在实现人为增汇的同时,有望通过促进海洋生物的生长和繁殖、提高海洋生态系统的稳定性和抗干扰能力、促进海洋生态系统内部及其与陆地生态系统之间的资源循环利用,发挥其生态治理功能,从而应对海洋环流改变、海水酸化脱氧等全球海洋环境恶化以及人类活动污染的局部胁迫。  相似文献   

3.
4.
付翔  韩博平 《海洋科学》2001,25(12):9-14
通过数学模型模拟的方法,分析了蓝藻CO2浓缩机制(简称CCM)对光强变化的响应规律。CCM运转时的关键步骤--无机碳(简称Ci)转运所需的能量来自于光系统,其活动强度与光强密切相关,以此为基础,本文建立了具外部Ci浓度和光强两个变量的数学模型,计算表明:(1)光合速率和浓缩效率随着光强的增加而增加;(2)Ci泵的特征光能利用率的变化对CCM的行为有显著的影响。  相似文献   

5.
北黄海夏季pCO2分布及海-气CO2通量   总被引:1,自引:0,他引:1  
基于在2006年夏季北黄海收集的的高分辨率的表层CO2分压(pCO2)数据,结合水文和生物地球化学同步观测参数,探讨了夏季北黄海pCO2空间分布的控制因素。结果表明,夏季北黄海与大多数中低纬度陆架海类似,由于水温较高,表层pCO2较高(平均值为(463±41)μatm),整个海域相对大气CO2过饱和。表层pCO2分布具有明显的区域差异,辽南和鲁北近岸海域pCO2明显高于中部区域,辽南近岸的高pCO2主要与河流输入和水产养殖引起的生物好氧呼吸有关,而鲁北沿岸的高pCO2主要与烟台近岸的底层冷水涌升及由混合引起的高碳酸盐含量的黄河泥沙的再悬浮有关;在海区中部大部分水域,pCO2与温度之间有较好的相关性,说明温度是这一区域pCO2分布较为重要的控制因子。另外,采用Wannikhof的海-气气体交换系数估计了北黄海夏季海-气CO2通量,结果表明整个北黄海是大气CO2的源,平均释放速率为(4.00±0.57)mmol.m-2.d-1,高于南黄海夏季海-气CO2通量。  相似文献   

6.
本工作采用2.4mV/s动态电位扫描极化、控制电位极化、电偶电流和高压釜挂片失重法研究了X60钢在含Ca~(2+)36.26mg/L,Mg~(2+)12.66mg/L和Cl~-3624mg/L的模拟氯化钠盐水中,CO_2引起腐蚀的电化学行为,以及含氮、硫的有机缓蚀剂和(或)Me~(2+)对腐蚀的抑制作用。结果表明:溶有CO_2的盐水腐蚀性强,盐浓度及温度会影响钢的腐蚀速度和阴极极化行为;75mg/L缓蚀剂的缓蚀率达90%,服从Langmuir吸附等温式;50mg/L缓蚀剂与127mg/LMe~(2+)复配,缓蚀率达91%以上,不服从Langmuir吸附等温式。  相似文献   

7.
碳中和是应对气候变化的必由之路,海洋负排放是实现碳中和的重要途经。海洋作为地球最大碳库,研究发现越来越多的海洋和海岸带生物参与碳循环,并对海洋碳汇产生重要贡献。鱼类作为海洋生态系统中最重要组成部分之一,其在海洋碳循环中的作用还没有引起足够的重视。最新研究表明海洋鱼类在无机碳循环中发挥了重要作用,深化对鱼类参与碳循环过程的认识、量化其固碳潜力将有助于丰富海洋碳循环研究。本文首先系统梳理了鱼类参与碳循环的过程和机制等研究进展。鱼类通过产生碳酸盐粪便、水平和垂直迁移运输、生物扰动、生物碳和“尸体”碳以及食物网消耗与传输等方式参与海洋碳循环。鱼类参与碳循环的证据和参与海洋碳循环的重要性逐渐凸显。其次,本文提出目前鱼类参与碳循环研究存在的问题与挑战,包括渔业捕捞源汇之争、水产养殖业的机遇和挑战以及准确量化鱼源碳酸盐的困难,仍有待理论和方法学的深化研究和技术的革新去解决。最后本文提出鱼类参与碳循环的研究展望,及其在全球气候变化背景下的潜在机遇,同时结合当前渔业碳汇的发展进程以及行业需求,提出渔业减排固碳发展路径建议。本文旨在提升鱼类在海洋碳循环贡献和服务生态系统的潜力的认识,为海洋碳汇和渔业碳汇研究提供新的视角。  相似文献   

8.
为应对全球性气候变化,提高对海洋碳汇的科学认知,文章介绍海洋碳汇及其碳循环模式,分析海洋碳汇面临的困境,并提出相关建议。研究结果表明:碳分为黑碳、褐碳、绿碳和蓝碳4种类型,其中蓝碳即海洋碳汇,即通过海洋固定和储存二氧化碳,是全球碳循环的重要机制;海洋碳汇由溶解度泵、生物泵和微型生物泵3种碳泵共同完成,其中依赖海洋微生物的微型生物泵储碳效率最高;海洋碳汇正面临生境基础退化和海洋酸化加剧的问题,未来应针对问题加强政策性管理和保护以及加强科学技术研究和实践。  相似文献   

9.
CO2的海气通量对于研究全球气候变化具有重要的意义。海洋微表层作为CO2在海洋和大气之间传输的重要通道,对于准确估算全球海气CO2通量的大小非常重要。本文主要从微表层中表面活性物质的富集,温度的偏低和与CO2的化学反应3个方面,综述了近年来与微表层相关的CO2通量研究进展,并对未来的相关研究进行了展望。  相似文献   

10.
刘敬圃 《海洋科学》1995,19(1):26-28
众所周知,大气中CO_(2)的浓度的变化直接影响着全球气候的变化。近些年来,地球的温室效应引起了众多的科学家以及政府首脑的普遍关注。我们知道,作为温室气体之一的CO_(2),对于全球温度及环境的变化起了比较重要的作用,而且就目前的种种迹象表明,地球正在逐渐变暖。温室效应正在发挥作用,极地冰川在融化,山地冰雪在消融,海平面在上升,环境在恶化。气候模拟显示,如果下世纪CO2含量增加一倍的话,全球气温将上升1.5至4.SC[3],而在高纬度的地区可能变得更暖。通过对最近极地冰盖的跟踪分析,从末次冰期到全新世,…  相似文献   

11.
天然气水合物具有资源储量大、分布范围广等特点,是一种潜力巨大的替代能源,经济、高效、安全地开发天然气水合物是目前研究的热点。CO2-CH4置换水合物开采法既可以置换出水合物储层中的甲烷,同时还将CO2封存其中以保持地层稳定,受到了广泛的关注。本文从CO2-CH4置换的可行性、实验模拟与数值模拟的角度综述了近些年CO2-CH4置换水合物开采法的最新研究进展,并针对置换过程效率低、速度慢等缺点,探讨了改变CO2注入相态、CO2协同小分子气体以及CO2置换联合开采法等强化置换技术,指出了不同强化方法的技术壁垒及应用局限,展望了CO2-CH4置换水合物开采技术的研究方向和发展前景。  相似文献   

12.
使用World Ocean Altas 2009提供的气候态月平均温度、盐度和磷酸盐浓度资料,以及Globalview和NCEP的大气资料,借助较为可靠的经验公式,估算了东海海表CO2分压(pCO2)和海-气CO2通量的平均分布特征和季节变化。结果表明,pCO2的空间分布形态四季大体相同,但其强度随季节变化,春、冬季低,夏、秋季高。CO2通量在东海陆架区为汇,汇的强度从NW向SE逐渐减弱;在黑潮区为源,强度从SW向NE逐渐减弱。东海整体于春、冬季为CO2的汇,夏、秋季为CO2的源。进一步分析东海pCO2和CO2通量季节变化的主要影响因子表明,东海海表pCO2变化主要受温度控制,而在陆架区,盐度和磷酸盐的作用不可忽略。东海整体CO2通量变化在4至10月由风速主导,11月至翌年3月由海表pCO2控制;陆架区CO2通量的季节变化主要由风速决定;黑潮区CO2通量的变化在夏季由风速主导,秋季由风速和pCO2共同影响。  相似文献   

13.
全球变化与海岸海洋科学发展   总被引:7,自引:0,他引:7  
研究海陆过渡带的表层系统作用过程、环境资源特性及发展变化规律,与人类生存发展关系密切。全球气候与海平面自然变化、全球性频繁的地震、火山构造活动研究及国际海洋权益之重新组合,促进海岸海洋科学的新发展。  相似文献   

14.
15.
通过对阳江东凹高含CO2油气藏的流体组分组成、P-T相图、原油生物标志化合物、天然气组分及同位素、流体包裹体进行研究,分析了高含CO2油气藏的类型、成因及成藏过程。结果表明,阳江东凹高含CO2的油气藏分为3类:第一类为含CO2溶解气的常规油藏,第二类为含CO2溶解气的挥发性油藏,第三类为含溶解烃的CO2气藏。油气藏中原油主要为浅湖-半深湖相及半深湖-深湖相烃源岩成熟阶段的产物,烃类气均为原油伴生气,CO2属于幔源型无机成因气。EP20-A井原油的充注时期为12~10.7 Ma,CO2充注时期为5.6~1.7 Ma。EP20-C井存在两期原油充注及两期CO2充注,第一期原油充注时期为14~6 Ma,为主要充注期,第二期原油充注时期为4~0 Ma,第一期CO2的充注时期为11~10 Ma,第二期CO2的充注时期为5~1.5 Ma。根据CO2充注强度的相对大小,分别形成了EP20-C井含溶解烃的CO2气藏,EP20-A井含CO2溶解气的挥发性油藏,EP20-B井含CO2溶解气的常规油藏。  相似文献   

16.
利用海-气界面浮标观测得到的高频数据,分析了春季青岛近岸海域海表二氧化碳分压(pCO2)的变化规律及驱动因素,并对海-气CO2通量进行了估算。观测期间该海域由大气的碳汇转变为碳源,主要是由海表pCO2的不断增长所致。对海表pCO2控制因素进行分析,发现温度升高是pCO2增长的主要驱动因素,生物过程起到一定的抑制作用。海表pCO2呈现出日变化特征,温度和生物因素对海表pCO2日变化的作用均与太阳辐射相关,但两者的作用相反。此外,分析发现浮标的不同采样频率会对海-气CO2通量估算产生影响,缩短采样间隔能有效降低海-气CO2通量估算的偏差,提高估算的准确性。  相似文献   

17.
海-气CO2通量估算模型中参数的可靠性是决定模型可靠性的重要因素, 也决定了模型估算结果的可靠性, 因此开展海-气CO2通量计算模型中误差传递规律与敏感性分析, 对模型参数端元因子的误差控制, 提高模型预测精度和降低不确定性十分重要。但由于模型中参数众多, 且各种参数间彼此相互影响, 使得误差传递过程与敏感性分析十分复杂困难。本文在海-气界面CO2通量观测建模过程详细分析的基础上, 以海-气界面CO2分压差的经典通量计算模型为基础, 以实测数据通量计算过程为例, 针对模型中的参数变量, 在假设参数变量的误差正态分布的前提下, 利用Monte Carlo手段分析各参数变量的误差在模型中的传递规律, 并将单因子扰动试验法用于海-气界面CO2通量建模的参数敏感性分析。模拟和分析结果表明:CO2通量计算过程中误差经模型传递后的分布规律存在正态分布、指数分布等多种形式;气体交换系数对通量计算结果的敏感性最大, 通量估算中的风速和表层海水温度是必须进行精度控制的关键参数。  相似文献   

18.
彭鹏飞  马媛  史荣君  王迪  许欣  颜彬 《海洋科学》2022,46(10):140-149
根据2018年7月、11月和2019年1月、4月对广东考洲洋牡蛎养殖海域进行4个季节调查获得的p H、溶解无机碳(DIC)、水温、盐度、溶解氧(DO)及叶绿素a(Chla)等数据,估算该区域表层海水溶解无机碳体系各分量的浓度、初级生产力(PP)、表层海水CO2分压[p(CO2)]和海-气界面CO2交换通量(FCO2),分析牡蛎养殖活动对养殖区碳循环的影响。结果表明:牡蛎养殖区表层海水中Chl a、DIC、HCO3和PP显著低于非养殖区;养殖淡季表层海水中pH、DO、DIC、HCO3、和CO32–显著大于养殖旺季,养殖旺季的p(CO2)和FCO2显著大于养殖淡季。牡蛎养殖区表层海水夏季、秋季、冬季和春季的海-气界面CO2交换通量FCO2平均值分别是(42.04±9.56)、(276...  相似文献   

19.
高CO2浓度对石莼光合作用及营养盐吸收的影响   总被引:1,自引:0,他引:1  
在室外自然条件下用高CO  相似文献   

20.
探究海气CO2交换有助于解析全球碳循环和全球气候变化。由于海水和大气的直接接触,研究表层海水碳酸盐系统变化成为探究海气碳交换的关键。基于已有热带西太平洋表层海水碳酸盐系统研究成果,本文总结了有孔虫壳体B/Ca和δ11B指标重建碳酸盐系统参数的原理、方法及优缺点。然后,从厄尔尼诺-南方涛动(El Ni?o-Southern Oscillation, ENSO)、东亚季风以及大气桥梁和海洋隧道三方面综述了晚第四纪热带西太平洋海气CO2交换影响因素的研究现状。结果显示,类ENSO通过横向平流和垂向变化分别影响热带西太平洋东端和西端的海气碳交换。东亚夏季风对热带西太平洋海气碳交换具有较强的调控作用,而东亚冬季风的调控作用较弱或不明显。冰消期南大洋深部流通状况增强,可通过大气桥梁(大气CO2)和海洋隧道(南极中层水)影响热带西太平洋海气碳交换。然而,为了更准确清晰地了解全球碳循环变化,还需针对指标记录的可靠性、覆盖范围以及海气碳交换在更长时间尺度的变化机理等方面开展更多研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号