首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Lunar meteorite Dar al Gani 262 (DG 262)—found in the Libyan part of the Sahara—is a mature, anorthositic regolith breccia with highland affinities. The origin from the Moon is undoubtedly indicated by its bulk chemical composition; radionuclide concentrations; noble gas, N, and O isotopic compositions; and petrographic features. Dar al Gani 262 is a typical anorthositic highland breccia similar in mineralogy and chemical composition to Queen Alexandra Range (QUE) 93069. About 52 vol% of the studied thin sections of Dar al Gani 262 consist of fine-grained(100 μm) constituents, and 48 vol% is mineral and lithic clasts and impact-melt veins. The most abundant clast types are feldspathic fine-grained to microporphyritic crystalline melt breccias (50.2 vol%; includes recrystallized melt breccias), whereas mafic crystalline melt breccias are extremely rare (1.4 vol%). Granulitic lithologies are 12.8 vol%, intragranularly recrystallized anorthosites and cataclastic anorthosites are 8.8 and 8.2 vol%, respectively, and (devitrified) glasses are 2.7 vol%. Impact-melt veins (5.5 vol% of the whole thin sections) cutting across the entire thin section were probably formed subsequent to the lithification process of the bulk rock at pressures below 20 GPa, because the bulk rock never experienced a higher peak shock pressure. Mafic crystalline melt breccias are very rare in Dar al Gani 262 and are similar in abundance to those in QUE 93069. The extremely low abundance of mafic components and the bulk composition may constrain possible areas of the Moon from which the breccia was derived. The source area of Dar al Gani 262 must be a highland terrain lacking significant mafic impact melts or mare components. On the basis of radionuclide activities, an irradiation position of DG 262 on the Moon at a depth of 55–85 g/cm3and a maximum transit time to Earth <0.15 Ma is suggested. Dar al Gani 262 contains high concentrations of solar-wind-implanted noble gases. The isotopic abundance ratio 40Ar/36Ar < 3 is characteristic of lunar soils. The terrestrial weathering of DG 262 is reflected by the occurrence of fractures filled with calcite and by high concentrations of Ca, Ba, Cs, Br, and As. There is also a large amount of terrestrial C and some N in the sample, which was released at low temperatures during stepped heating. High concentrations of Ni, Co, and Ir indicate a significant meteoritic component in the lunar surface regolith from which DG 262 was derived.  相似文献   

2.
Abstract— We derived the cosmic‐ray and solar particle exposure history for the two lunar meteorites Elephant Moraine (EET) 96008 and Dar al Gani (DaG) 262 on the basis of the noble gas isotopic abundances including the radionuclide 81Kr. For EET 96008, we propose a model for the exposure to cosmic rays and solar particles in three stages on the Moon: an early stage ~500 Ma ago, lasting less than 9 Ma at a shallow shielding depth of 20 g/cm2, followed by a stage when the material was buried, without exposure, until it was exposed in a recent stage. This recent stage, at a shielding depth in a range of 200–600 g/cm2, lasted for ~26 Ma until ejection. This model is essentially the same as that previously found for lunar meteorite EET 87521; thus, pairing of the two Elephant Moraine lunar meteorites that were recovered on the same icefield in Antarctica is confirmed by our data. The cosmic‐ray‐produced isotopes, the trapped solar and lunar atmospheric noble gases, as well as the radionuclide 81Kr observed for the DaG 262 lunar meteorite are consistent with a one‐stage lunar exposure history. The average burial depth of the Dar al Gani material before ejection was within a range of 50–80 g/cm2. The exposure to cosmic rays at this depth lasted 500–1000 Ma. This long residence time for Dar al Gani at relatively shallow depth explains the high concentrations of implanted solar noble gases.  相似文献   

3.
Abstract— We present the results of a combined mineralogic‐petrologic and ion microprobe study of two martian meteorites recently recovered in the Lybian Sahara, Dar al Gani 476 (DaG 476) and Dar al Gani 489 (DaG 489). Having resided in a hot desert environment for an extended time, DaG 476 and DaG 489 were subjected to terrestrial weathering that significantly altered their chemical composition. In particular, analyses of some of the silicates show light rare earth element (LREE)‐enrichment resulting from terrestrial alteration. In situ measurement of trace element abundances in minerals allows us to identify areas unaffected by this contamination and, thereby, to infer the petrogenesis of these meteorites. No significant compositional differences between DaG 476 and DaG 489 were found, supporting the hypothesis that they belong to the same fall. These meteorites have characteristics in common with both basaltic and lherzolitic shergottites, possibly suggesting spatial and petrogenetic associations of these two types of lithologies on Mars. However, the compositions of Fe‐Ti oxides and the size of Eu anomalies in the earliest‐formed pyroxenes indicate that the two Saharan meteorites probably experienced more reducing crystallization conditions than other shergottites (with the exception of Queen Alexandra Range (QUE) 94201). As is the case for other shergottites, trace element microdistributions in minerals of the DaG martian meteorites indicate that closed‐system crystal fractionation from a LREE‐depleted parent magma dominated their crystallization history. Furthermore, rare earth element abundances in the orthopyroxene megacrysts are consistent with their origin as xenocrysts rather than phenocrysts.  相似文献   

4.
Abstract— The lunar meteorite Dhofar 081, found as a single fragment of 174 g in the Dhofar region of Oman, is a shocked feldspathic fragmental highland breccia dominated by anorthosite‐rich lithic and mineral clasts embedded into a fine‐grained mostly shock melted clastic matrix. Major mineral phases in the bulk rock are Ca‐rich plagioclase (An96.5–99.5), pyroxene (FS21.9–46.2Wo3.0–41.4), and olivine (Fa29.3–47.8); accessory phases include Fe‐Ni metal, ilmenite, and Ti‐Cr‐rich spinel. Dhofar 081 contains subordinate crystalline fragments of large anorthosites, intersertal impact‐melt rocks, microporphyritic impact‐melt breccias, dark fine‐grained impact‐melt breccias, large cataclastic feldspars, and irregularly shaped brown glass clasts. Mafic components are rare and no genuine regolith components were found in the sections studied. Minerals in Dhofar 081 show homogeneously distributed shock features: intergranular recrystallization, strong fracturing and mosaicism in feldspar as well as a high density of mostly irregular fractures in pyroxene and olivine. Localized impact melting caused by one or several impacts led to a strong lithification. Based on these effects an equilibration shock pressure of about 15–20 GPa is estimated for the strongest shock event in Dhofar 081. Devitrification of the “glassy” material in the rock indicates thermal annealing after shock melting suggesting that the 15–20 GPa shock event predated the ejection event. According to the concentrations of implanted solar noble gases Dhofar 081 represents a polymict clastic breccia deposit with possibly a minor regolith component. A similar noble gas record of Dhofar 081 and MacAlpine Hills 88104/05 suggests the possibility of a source crater pairing of both meteorites. As indicated by noble gas measurements pairing of Dhofar 081 with the other lunar meteorites found in Oman, Dhofar 025 and Dhofar 026, is unlikely.  相似文献   

5.
Abstract— The laser 40Ar‐39Ar dating technique has been applied to the Dar al Gani (DaG) 262 lunar meteorite, a polymict highland regolith breccia, to determine the crystallisation age and timing of shock events experienced by this meteorite. Laser stepped‐heating analyses of three dominantly feldspathic fragments (DaG‐1, DaG‐2, and DaG‐3) revealed the presence of trapped Ar, mostly released at intermediate and high temperatures, with an 40Ar/36Ar value of ~2.8. Trapped Ar is most likely released from melt glass present as small veins within the fragments. The 40Ar‐39Ar ages determined for the three fragments are ~3.0 Ga for DaG‐1 and DaG‐2 and 2.0 Ga for DaG‐3 and probably relate to major impact events. Laser spot analyses were performed on a feldspathic clast, an impact crystalline melt basalt (ICMB), and the matrix in a polished section of DaG 262. The feldspathic and ICMB clasts have low contents of trapped Ar compared with that in the matrix. The feldspathic clast shows a wide range of ages from 3.0 to 1.7 Ga similar to those obtained by stepped heating. The younger age is interpreted as a minimum age for the last major event that assembled this meteorite. The ICMB shows two age clusters at 3.37 and 3.07 Ga, where the older age may be that of the impact event that formed the impact melt. Several cosmic‐ray exposure (CRE) ages were obtained as expected for a polymict regolith breccia. The CRE ages are 106 and 141 Ma for the feldspathic clast and the ICMB, respectively. One of the feldspathic fragments, DaG‐2, shows a range between 200–400 Ma. These CRE ages, which are similar to those determined for returned samples of the lunar regolith, indicate that the different components of DaG 262 experienced preexposure prior to assemblage of the meteorite.  相似文献   

6.
Abstract— As of July 2001, 1238 Libyan meteorites have been reported. Most were found in two areas called Dar al Gani and Hamadah al Hamra. Dar al Gani is located on a plateau of marine carbonate rocks with marly components. Eight‐hundred and sixty‐nine meteorites between 6 g and 95 kg totalling 687 kg have been found here but the calculated mean recovery density is comparatively low with one meteorite on 6.5 km2. Dar al Gani is a perfect site for the recognition and preservation of meteorites. The existence of meteorites is the result of a combination of specific geological and geomorphological conditions: there is a bright‐colored, old limestone plateau (<2 Ma), under arid weather conditions over long periods of time, with rapid elimination of surface water if present and low erosion rates. The preservation of meteorites is guaranteed through the absence of quartz sand on the plateau, strongly reducing wind erosion and a basic environment emerging from the carbonate ground retards rusting of metallic meteorite components. A supposed soil cover during pluvial times has probably protected older meteorites and led to a concentration of meteorites of different periods. An evaluation of Dar al Gani meteorites suggests the existence of at least 26 strewnfields and 26 meteorite pairs reducing the number of falls to, at most, 534. Shock and weathering grades as a tool for the recognition of pairings turned out to be problematic, as several strewnfields showed paired meteorites which had been classified to different shock and weathering grades.  相似文献   

7.
About half of the lunar meteorites in our collections are feldspathic breccias. Acquiring geochronologic information from these breccias is challenging due to their low radioactive-element contents and their often polymict nature. We used high-spatial-resolution (5 μm) NanoSIMS (nanoscale secondary ion mass spectrometry) U-Pb dating technique to date micro-zircons in the lunar feldspathic meteorites Dhofar 1528 and Dhofar 1627. Three NanoSIMS dating spots of two zircon grains from Dhofar 1528 show a discordia with an upper intercept at 4354 ± 76 Ma and a lower intercept at 332 ± 1407 Ma (2σ, MSWD = 0.01, p = 0.91). Three spots of two zircon grains in Dhofar 1627 define a discordia with an upper intercept at 3948 ± 30 Ma and a lower intercept at 691 ± 831 Ma (2σ, MSWD = 0.40, p = 0.53). Both samples likely experienced shock metamorphism caused by impacts. Based on the clastic nature, lack of recrystallization and the consistent U-Pb and Pb-Pb dates of the zircons in Dhofar 1528, the U-Pb date of 4354 Ma is interpreted as the crystallization age of its Mg-suite igneous precursor. Some of the Dhofar 1627 zircons show poikilitic texture, a crystallization from the matrix impact melt, so the U-Pb date of 3948 Ma corresponds to an impact event, likely the Imbrium basin-forming event. These data are the first radiometric ages for these two meteorites and demonstrate that in situ (high spatial resolution) U-Pb dating has potential for extracting geochronological information about igneous activities and impact events from lunar feldspathic and polymict breccias.  相似文献   

8.
Abstract— We report on major and trace element analyses obtained by, respectively, inductively coupled plasma‐atomic emission spectrometry (ICP‐AES) and inductively coupled plasma‐mass spectrometry (ICP‐MS) of three different aliquots of the new Saharan shergottite Dar al Gani (DaG) 476. The new analyses are in excellent agreement with previous data (Zipfel et al., 2000). Ba, Sr and U abundances, together with the presence of carbonate, suggest that the sample has been significantly weathered. Three rare earth element (REE) patterns (normalized to CI) determined on three different aliquots of the sample all show similar shapes. The heavy REEs are flat with a slight depletion at the heavy end and a strong depletion from Dy to Pr. All of the patterns display an upturn to La which we interpret as being caused by the introduction of a terrestrial component. Taking the terrestrial contamination into account, this study demonstrates that DaG 476 is one of the most depleted of the shergottites, and, just like Queen Alexandra Range (QUE) 94201 (Dreibus et al., 1996), displays very low Zr/Hf ratios. It appears that the Zr/Hf ratios of shergottites are not uniform, and have been significantly fractionated by martian mantle processes.  相似文献   

9.
The Dhofar 1673, Dhofar 1983, and Dhofar 1984 meteorites are three lunar regolith breccias classified based on their petrography, mineralogy, oxygen isotopes, and bulk chemistry. All three meteorites are dominated by feldspathic lithic clasts; however, impact melt rock clasts and spherules are also found in each meteorite. The bulk chemistry of these samples is similar to other feldspathic highland meteorites with the Al2O3 content only slightly lower than average. Within the lithic clasts, the Mg # of mafic phases versus the anorthite content of feldspars is similar to other highland meteorites and is found to plot intermediate of the ferroan‐anorthositic suite and magnesian suite. The samples lack any KREEPy signature and have only minor indications of a mare basalt component, suggesting that the source region of all three meteorites would have been distal from the Procellarum KREEP Terrane and could have possibly been the Feldspathic Highland Terrane. All three meteorites were found within 500 m of each other in the Dhofar region of Oman. This, together with their similar petrography, stable isotope chemistry, and geochemistry indicates the possibility of a pairing.  相似文献   

10.
Abstract— Dar al Gani 872 (DaG 872) is a new meteorite from Libya that we classified by means of Instrumental Neutron Activation Analysis (INAA), electron microprobe, and optical microscopy. According to our results, DaG 872 is a Mg‐rich main group eucrite, i.e., a monomict noncumulate basaltic eucrite displaying a predominant coarse‐grained relict subophitic and a fine‐grained granulitic texture. The meteorite also shows pockets of late‐stage mesostasis and is penetrated by several calcite veins due to terrestrial weathering. Finally, it exhibits shock phenomena of stage 1–2 including heavily fractured mineral components, undulose extinction of plagioclase, kinked lamellae, and mosaicism in pyroxenes corresponding to peak pressures of ?20 GPa. In view of petrographic criteria as well as compositional and exsolution characteristics of its pyroxenes, the sample represents a metamorphic type 5 eucrite. Assuming the metamorphic type to be a function of burial depth on the parent body and taking into account the relatively high shock stage, the excavation of DaG 872 was likely induced by a major impact event. Prior to this point, DaG 872 apparently underwent a 4‐stage geological evolution that is reflected by intricate textural and mineralogical features.  相似文献   

11.
Abstract— In 1998, Dar al Gani (DaG) 476 was found in the Libyan desert. The meteorite is classified as a basaltic shergottite and is only the 13th martian meteorite known to date. It has a porphyritic texture consisting of a fine‐grained groundmass and larger olivines. The groundmass consists of pyroxene and feldspathic glass. Minor phases are oxides and sulfides as well as phosphates. The presence of olivine, orthopyroxene, and chromite is a feature that DaG 476 has in common with lithology A of Elephant Moraine (EET) A79001. However, in DaG 476, these phases appear to be early phenocrysts rather than xenocrysts. Shock features, such as twinning, mosaicism, and impact‐melt pockets, are ubiquitous. Terrestrial weathering was severe and led to formation of carbonate veins following grain boundaries and cracks. With a molar MgO/(MgO + FeO) of 0.68, DaG 476 is the most magnesian member among the basaltic shergottites. Compositions of augite and pigeonite and some of the bulk element concentrations are intermediate between those of lherzolitic and basaltic shergottites. However, major elements, such as Fe and Ti, as well as LREE concentrations are considerably lower than in other shergottites. Noble gas concentrations are low and dominated by the mantle component previously found in Chassigny. A component, similar to that representing martian atmosphere, is virtually absent. The ejection age of 1.35 ± 0.10 Ma is older than that of EETA79001 and could possibly mark a distinct ejection. Dar al Gani 476 is classified as a basaltic shergottite based on its mineralogy. It has a fine‐grained groundmass consisting of clinopyroxene, pigeonite and augite, feldspathic glass and chromite, Ti‐chromite, ilmenite, sulfides, and whitlockite. Isolated olivine and single chromite grains occur in the groundmass. Orthopyroxene forms cores of some pigeonite grains. Shock‐features, such as shock‐twinning, mosaicism, cracks, and impact‐melt pockets, are abundant. Severe weathering in the Sahara led to significant formation of carbonate veins crosscutting the entire meteorite. Dar al Gani 476 is distinct from other known shergottites. Chemically, it is the most magnesian member among known basaltic shergottites and intermediate in composition for most trace and major elements between Iherzolitic and basaltic shergottites. Unique are the very low bulk REE element abundances. The CI‐normalized abundances of LREEs are even lower than those of Iherzolitic shergottites. The overall abundance pattern, however, is similar to that of QUE 94201. Textural evidence indicates that orthopyroxene, as well as olivine and chromite, crystallized as phenocrysts from a magma similar in composition to that of bulk DaG 476. Whether such a magma composition can be a shergottite parent melt or was formed by impact melting needs to be explored further. At this time, it cannot entirely be ruled out that these phases represent relics of disaggregated xenoliths that were incorporated and partially assimilated by a basaltic melt, although the texture does not support this possibility. Trapped noble gas concentrations are low and dominated by a Chassigny‐like mantle component. Virtually no martian atmosphere was trapped in DaG 476 whole‐rock splits. The exposure age of 1.26 ± 0.09 Ma is younger than that of most shergottites and closer to that of EETA79001. The ejection age of 1.35 ± 0.1 Ma could mark another distinct impact event.  相似文献   

12.
Abstract— We measured the concentrations of noble gases in 32 ordinary chondrites from the Dar al Gani (DaG) region, Libya, as well as concentrations of the cosmogenic radionuclides 14C, 10Be, 26Al, 36Cl, and 41Ca in 18 of these samples. Although the trapped noble gases in five DaG samples show ratios typical of solar or planetary gases, in all other DaG samples, they are dominated by atmospheric contamination, which increases with the degree of weathering. Cosmic ray exposure (CRE) ages of DaG chondrites range from ?1 Myr to 53 Myr. The CRE age distribution of 10 DaG L chondrites shows a cluster around 40 Myr due to four members of a large L6 chondrite shower. The CRE age distribution of 19 DaG H chondrites shows only three ages coinciding with the main H chondrite peak at ?7 Myr, while seven ages are <5 Myr. Two of these H chondrites with short CRE ages (DaG 904 and 908) show evidence of a complex exposure history. Five of the H chondrites show evidence of high shielding conditions, including low 22Ne/21Ne ratios and large contributions of neutron‐capture 36Cl and 41Ca. These samples represent fragments of two or more large pre‐atmospheric objects, which supports the hypothesis that the high H/L chondrite ratio at DaG is due to one or more large unrecognized showers. The 14C concentrations correspond to terrestrial ages <35 kyr, similar to terrestrial ages of chondrites from other regions in the Sahara but younger than two DaG achondrites. Despite the loss of cosmogenic 36Cl and 41Ca during oxidation of metal and troilite, concentrations of 36Cl and 41Ca in the silicates are also consistent with 14C ages <35 kyr. The only exception is DaG 343 (H4), which has a 41Ca terrestrial age of 150 ± 40 kyr. This old age shows that not only iron meteorites and achondrites but also chondrites can survive the hot desert environment for more than 50 kyr. A possible explanation is that older meteorites were covered by soils during wetter periods and were recently exhumed by removal of these soils due to deflation during more arid periods, such as the current one, which started ?3000 years ago. Finally, based on the 26Al/21Ne and 10Be/21Ne systematics in 16 DaG meteorites, we derived more reliable estimates of the 10Be/21Ne production rate ratio, which seems more sensitive to shielding than was predicted by the semi‐empirical model of Graf et al. (1990) but less sensitive than was predicted by the purely physical model of Leya et al. (2000).  相似文献   

13.
Abstract— Dar al Gani 489 (DaG 489) is a meteorite fragment of 2146 g found in the Libyan Sahara by a meteorite finder during one of his search campaigns in 1997–98. It is a porphyritic rock with millimetersized olivine crystals (Fo79–59) set in a fine‐grained groundmass (average grain size 0.1 mm) consisting of pigeonite (En75–57 Wo5–15) crystals and interstitial feldspathic glass (An67–56 Or0–1). Minor phases include enstatite (En82–71 Wo2–4), augite (En48–52 Wo29–32), chromite, Ti‐chromite, ilmenite, pyrrhotite, merrillite, and secondary calcite and iron oxides. On the basis of mineralogical, petrographic, bulk chemical, O‐isotopic, and noble gas data, DaG 489 can be classified as a highly shocked martian meteorite (e.g., Fe/Mn(bulk) = 42.1, Ni/Mg(bulk) = 0.002; δ17O = 2.89, δ18O = 4.98, and Δ17O = 0.305), belonging to the basaltic shergottite subgroup. The texture and modal composition of DaG 489 are indeed those of basalts; nonetheless, the bulk chemistry, the abundance of large olivine and chromite crystals, and enstatitic pyroxene suggest some relationship with lherzolitic shergottites. As such, DaG 489 is similar to the hybrid shergottite Elephant Moraine (EET) A79001 lithology A; however, there are some relevant differences including a higher olivine content (20 vol%), the lack of orthopyroxene megacrysts, a higher molar Mg/(Mg + Fe)(molar) = 0.68, and a lower rare earth element content in the bulk sample. Therefore, DaG 489 has the potential of providing us with a further petrogenetic link between the basaltic and lherzolitic shergottites. Noble gases data show that DaG 489 has an ejection age of ~1.3 Ma. This young age lends support to the requirement of several ejection events to produce the current population of shergottites, nakhlites, and chassignites (SNC) meteorites. In terms of texture, mineral and bulk compositions, shock level, and weathering features, DaG 489 is essentially identical to DaG 476, another basaltic shergottite independently found ~25 km due northnortheast of DaG 489. Because DaG 489 also has the same exposure history as DaG 476, it is very likely that both meteorites are fragments of the same fall. In addition to the existing hypotheses on the petrogenesis of the similar EETA79001 lithology A and the identical DaG 476, we propose that DaG 489 could have formed through high‐degree partial melting of a lherzolite‐like material.  相似文献   

14.
Abstract— Magmatic inclusions occur in type II ureilite clasts (olivine‐orthopyroxene‐augite assemblages with essentially no carbon) and in a large isolated plagioclase clast in the Dar al Gani (DaG) 319 polymict ureilite. Type I ureilite clasts (olivine‐pigeonite assemblages with carbon), as well as other lithic and mineral clasts in this meteorite, are described in Ikeda et al.(2000). The magmatic inclusions in the type II ureilite clasts consist mainly of magnesian augite and glass. They metastably crystallized euhedral pyroxenes, resulting in feldspar component‐enriched glass. On the other hand, the magmatic inclusions in the large plagioclase clast consist mainly of pyroxene and plagioclase, with a mesostasis. They crystallized with a composition along the cotectic line between the pyroxene and plagioclase liquidus fields. DaG 319 also contains felsic lithic clasts that represent various types of igneous lithologies. These are the rare components not found in the common monomict ureilites. Porphyritic felsic clasts, the main type, contain phenocrysts of plagioclase and pyroxene, and their groundmass consists mainly of plagioclase, pyroxene, and minor phosphate, ilmenite, chromite, and/or glass. Crystallization of these porphyritic clasts took place along the cotectic line between the pyroxene and plagioclase fields. Pilotaxitic felsic clasts crystallized plagioclase laths and minor interstitial pyroxene under metastable conditions, and the mesostasis is extremely enriched in plagioclase component in spite of the ubiquitous crystallization of plagioclase laths in the clasts. We suggest that there are two crystallization trends, pyroxene‐metal and pyroxene‐plagioclase trends, for the magmatic inclusions and felsic lithic clasts in DaG 319. The pyroxene‐metal crystallization trend corresponds to the magmatic inclusions in the type II ureilite clasts and the pilotaxitic felsic clasts, where crystallization took place under reducing and metastable conditions, suppressing precipitation of plagioclase. The pyroxene‐plagioclase crystallization trend corresponds to the magmatic inclusions in the isolated plagioclase clast and the porphyritic felsic clasts. This trend developed under oxidizing conditions in magma chambers within the ureilite parent body. The felsic clasts may have formed mainly from albite component‐rich silicate melts produced by fractional partial melting of chondritic precursors. The common monomict ureilites, type I ureilites, may have formed by the fractional partial melting of alkali‐bearing chondritic precursors. However, type II ureilites may have formed as cumulates from a basaltic melt.  相似文献   

15.
Dar al Gani (DaG) 978 is an ungrouped type 3 carbonaceous chondrite. In this study, we report the petrography and mineralogy of Ca,Al‐rich inclusions (CAI), amoeboid olivine aggregates (AOAs), chondrules, mineral fragments, and the matrix in DaG 978. Twenty‐seven CAIs were found: 13 spinel‐diopside‐rich inclusions, 2 anorthite‐rich inclusions, 11 spinel‐troilite‐rich inclusions, and 1 spinel‐melilite‐rich inclusion. Most CAIs have a layered texture that indicates a condensation origin and are most similar to those in R chondrites. Compound chondrules represent a high proportion (approximately 8%) of chondrules in DaG 978, which indicates a local dusty chondrule‐forming region and multiple heating events. Most spinel and olivine in DaG 978 are highly Fe‐rich, which corresponds to a petrologic type of >3.5 and a maximum metamorphic temperature of approximately 850–950 K. This conclusion is also supported by other observations in DaG 978: the presence of coarse inclusions of silicate and phosphate in Fe‐Ni metal, restricted Ni‐Co distributions in kamacite and taenite, and low S concentrations in the matrix. Mineralogic records of iron‐alkali‐halogen metasomatism, such as platy and porous olivine, magnetite, hedenbergite, nepheline, Na‐rich in CAIs, and chlorapatite, are present, but relatively limited, in DaG 978. The fine‐grained, intergrowth texture of spinel‐troilite‐rich inclusions was probably formed by reaction between pre‐existing Al‐rich silicates and shock‐induced, high‐temperature S‐rich gas on the surface of the parent body of DaG 978. A shock‐induced vein is present in the matrix of DaG 978, which indicates that the parent body of DaG 978 at least experienced a shock event with a shock stage up to S3.  相似文献   

16.
Abstract— Mineralogical and chemical studies of Dar al Gani 983 show that this meteorite is a eucrite. Its texture is that of an impact breccia. It contains cumulate pyroxene and feldspar megacrysts, a variety of recrystallized melt clasts, clasts of subophitic basalt, and mesostasis. These components are embedded in a matrix of fragmental pyroxene and plagioclase. In addition, the entire rock is penetrated by glassy melt veins and patches, and displays features of strong shock. The mineralogical and chemical evidence obtained for DaG 983 indicates that this meteorite experienced a complex evolutionary history. The presence of cumulate silicate crystals implies substantial, large scale cratering events on the HED asteroid. As a result of these impacts, rocks from different intrusive bodies to extrusive surface layers were laterally and vertically transported to form a thoroughly mixed megaregolith. DaG 983 represents a sample of this megabreccia.  相似文献   

17.
Abstract— Microbeam studies of Martian meteorites Dar al Gani (DaG) 476 and Allan Hills (ALH) 77005 have been conducted to identify potential causes of disequilibrium exhibited in their Sm‐Nd isotopic systematics. Olivine and maskelynite mineral fractions on the DaG 476 isochron are displaced relative to their positions as dictated by measured mineral compositions. The olivine mineral fractions from ALH 77005 not only have a relatively low Sm/Nd ratio, but appear to contain an unradiogenic component that shifts the olivine mineral fraction off the isochron defined by the pyroxene and maskelynite mineral fractions. Trace components such as melt inclusions, impact melt, high‐Si mesostasis, and altered olivine were analyzed using scanning electron microscopy, quantitative electron microscopy, and secondary ion mass spectrometry to determine their potential for disturbing the isotopic systematics of the mineral fractions, assuming that the mineral fractions were not completely pure. Mixing models indicate that the presence of melt inclusions in the DaG 476 olivine mineral fraction lowered its Sm/Nd ratio. The maskelynite mineral fraction contains a related but more evolved mesostasis component that raised the Sm/Nd ratio of the fraction. The position of two olivine mineral fractions below the ALH 77005 isochron is interpreted to reflect small additions of impact melt with a light rare earth element enriched pattern and a non‐indigenous, unradiogenic Nd component. Furthermore, the presence of rare earth elements in olivine and maskelynite from both igneous and non‐igneous components such as melt inclusions, mesostasis, and impact melt is observed on a fine (<30 μm) scale. Despite the addition of this material, the Sm‐Nd ages are not affected. This study demonstrates that detailed mineral separation procedures as employed by modern geochronology laboratories permit reliable ages to be derived from shocked and altered samples.  相似文献   

18.
Abstract– Fragments of magnesian anorthositic granulite are found in the lunar highlands meteorites Allan Hills (ALH) A81005 and Dhofar (Dho) 309. Five analyzed clasts of meteoritic magnesian anorthositic granulite have Mg′ [molar Mg/(Mg + Fe)] = 81–87; FeO ≈ 5% wt; Al2O3 ≈ 22% wt; rare earth elements abundances ≈ 0.5–2 × CI (except Eu ≈ 10 × CI); and low Ni and Co in a non‐chondritic ratio. The clasts have nearly identical chemical compositions, even though their host meteorites formed at different places on the Moon. These magnesian anorthositic granulites are distinct from other highlands materials in their unique combination of mineral proportions, Mg′, REE abundances and patterns, Ti/Sm ratio, and Sc/Sm ratio. Their Mg′ is too high for a close relationship to ferroan anorthosites, or to have formed as flotation cumulates from the lunar magma ocean. Compositions of these magnesian anorthositic granulites cannot be modeled as mixtures of, or fractionates from, known lunar rocks. However, compositions of lunar highlands meteorites can be represented as mixtures of magnesian anorthositic granulite, ferroan anorthosite, mare basalt, and KREEP. Meteoritic magnesian anorthositic granulite is a good candidate for the magnesian highlands component inferred from Apollo highland impactites: magnesian, feldspathic, and REE‐poor. Bulk compositions of meteorite magnesian anorthositic granulites are comparable to those inferred for parts of the lunar farside (the Feldspathic Highlands Terrane): ~4.5 wt% FeO; ~28 wt% Al2O3; and Th <1 ppm. Thus, magnesian anorthositic granulite may be a widespread and abundant component of the lunar highlands.  相似文献   

19.
Abstract— Dar al Gani 476, the 13th martian meteorite, was recovered from the Sahara in 1998. It is a basaltic shergottitic rock composed of olivine megacrysts reaching 5 mm (24 vol%) set in a finegrained groundmass of pyroxene (59 vol%) and maskelynitized plagioclase (12 vol%) with minor amounts of accessory phases (spinel, merrillite, ilmenite). Dar al Gani 476 is similar to lithology A of Elephant Moraine A79001 (EETA79001) in petrography and mineralogy, but is distinct in several aspects. Low‐Ca pyroxenes in the Dar al Gani 476 groundmass are more magnesian (En76Fs21 Wo3~En58Fs30Wo12) than those in lithology A of EETA79001 (En73Fs22Wo5~En45Fs43Wo12), rather similar to pyroxenes in lherzolitic martian meteorites (En76Fs21 Wo3~En63Fs22Wo15). Dar al Gani 476 olivine is less magnesian and shows a narrower compositional range (Fo76‐58) than EETA79001 olivine (Fo81‐53), and is also similar to olivines in lherzolitic martian meteorites (Fo74‐65). The orthopyroxene‐olivine‐chromite xenolith typical in the lithology A of EETA79001 is absent in Dar al Gani 476. It seems that Dar al Gani 476 crystallized from a slightly more primitive mafic magma than lithology A of EETA79001 and several phases (olivine, pyroxene, chromite, and ilmenite) in Dar al Gani 476 may have petrogenetic similarities to those of lherzolitic martian meteorites. Olivine megacrysts in Dar al Gani 476 are in disequilibrium with the bulk composition. The presence of fractured olivine grains in which the most Mg‐rich parts are in contact with the groundmass suggests that little diffusive modification of original olivine compositions occurred during cooling. This observation enabled us to estimate the cooling rates of Dar al Gani 476 and EETA79001 olivines, giving similar cooling rates of 0.03‐3 °C/h for Dar al Gani 476 and 0.05‐5 °C/h for EETA79001. This suggests that they were cooled near the surface (burial depth shallower than about 3 m at most), probably in lava flows during crystallization of groundmass. As is proposed for lithology A of EETA79001, it may be possible to consider that Dar al Gani 476 has an impact melt origin, a mixture of martian lherzolite and other martian rock (Queen Alexandra Range 94201, nakhlites?).  相似文献   

20.
Dhofar 280 recorded a complex history on the Moon revealed by high‐resolution 40Ar‐39Ar dating. Thermal resetting occurred less than 1 Ga ago, and the rock was exposed to several impact events before and afterwards. The cosmic ray exposure (CRE) age spectrum indicates a 400 ± 40 Ma CRE on the lunar surface. A unique feature of this lunar sample is a partial loss of cosmogenic 38Ar, resulting in a (low‐temperature) CRE age plateau of about 1 Ma. This was likely caused by the same recent impact event that reset the (low‐temperature) 40Ar‐39Ar age spectrum and preceded the short transit phase to Earth of ≤1 Ma. Dhofar 280 may be derived from KREEP‐rich lunar frontside terrains, possibly associated with the Copernicus crater or with a recent impact event on the deposits of the South Pole–Aitken basin. Although Dhofar 280 is paired with Dhofar 081, their irradiation and thermal histories on the Moon were different. An important trapped Ar component in Dhofar 280 is “orphan” Ar with a low 40Ar/36Ar ratio. It is apparently a mixture of two components, one endmember with 40Ar/36Ar = 17.5 ± 0.2 and a second less well‐constrained endmember with 40Ar/36Ar ≤10. The presence of two endmembers of trapped Ar, their compositions, and the breccia ages seem to be incompatible with a previously suggested correlation between age or antiquity and the (40Ar/36Ar)trapped ratio (Eugster et al. 2001; Joy et al. 2011a). Alternatively, “orphan” Ar of this impact melt breccia may have an impact origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号