首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G. Notesco 《Icarus》2005,175(2):546-550
Following the observations of ice grains in cometary comae and their size distributions, we reexamined experimentally our previous conclusion that the ice grains which agglomerated to form comet nuclei were formed at ∼25 K. The suggestion of a ∼25 K formation temperature was confirmed experimentally. Moreover, we suggest that these ice grains had to be of submicron size.  相似文献   

2.
The mechanism and the rate of formation of H2 molecules from adsorbed H atoms on interstellar ice grains (or on ice coated non-icy grains) are investigated assuming that the ice is not crystalline but amorphous. Using the available theory and experimental data it is concluded that, in contrast to crystalline grains, the mobility of the adsorbed atoms on amorphous grains at temperatures of 10–20 K is exceedingly low so that the controlling factor is the probability that two H atoms are accidentally adsorbed within a site or two of each other. The rate of H2 formation on ice grains per unit volume is much lower than previously estimated and is very sensitive to temperature. This conclusion applies not only to pure amorphous ice investigated here, but also to impure ice and to other grains (carbon or silicates) which would not be crystalline, such as graphite, but may be highly imperfect or actually amorphous aggregates of atoms or molecules.It is further shown that the presence of amorphous ice and clathrate grains in the early solar system would play a significant role in our understanding of the compositional anomalies in the Earth's atmosphere. The lifetime of these grains would be strongly affected by the absence of crystallinity.Invited contribution to the Proceedings of a Workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.  相似文献   

3.
We have used 3-mm Saturn observations, obtained from 1965 through 1977 and with Jupiter as a reference, to derive a ring brightness temperature of 18 ± 8°K. Thebrightness temperature of the disk of Saturn is 156 ± 9° K. Part of the ring brightness (≈62K) may be accounted for as disk emission which is scattered from the rings; the remainder (12 ± 8° K we attributed to ring particle thermal emission. Because this thermal component brightness temperatures is so much less than the particle physical temperature, limits are placed on the mean size and composition of the ring particles. In particular, as found by others, the particles cannot be rocky, but must be either metallic or composed of extremely low-loss dielectric material such as water ice. If the particles are pure water ice, for example, then a simple slab model and a multiple-scattering model both give upper limits to the particle sizes of ≈ 1 m, a value three times smaller than previously available. The multiple-scattering model gives a particle single-scattering albedo at 3 mm of 0.83±0.13.  相似文献   

4.
The rate of formation of molecular hydrogen from hydrogen atoms adsorbed on grains is analyzed, assuming that the grains are single crystals, polycrystalline or amorphous. On polycrystalline grains, and on graphite platelets, this rate could be orders of magnitude lower than on single crystal grains. The same is true for amorphous grains because there, at low temperatures, only atoms absorbed on neighboring sites can form molecules. Suitable formulae are derived and compared with the classical results for single crystal grains. Quantitative results are given for crystalline and amorphous ice, but with small changes these should also be valid for other solids. The rates for amorphous grains can approximate, within a factor of 10 or so, those for crystalline grains if the density of H atoms is high and the density of H2 molecules is low and only when the temperature of the grains satisfies a relation which for ice and graphite leads to a value in the proximity of 15–17 K. This maximum rate occurs only a degree or so above the temperature at which the grains are totally covered by an H2 layer and the reaction ceases. Furthermore, for a constant number density of grains, the rates on amorphous grains are second order while those on crystalline grains are first order. Both these circumstances predict amorphous grains to lead to H2 clouds with irregular and sharply delineated features in contrast to more uniform clouds formed on crystalline grains.  相似文献   

5.
Abstract— Collision experiments and measurements of viscoelastic properties were performed involving an interstellar organic material analogue to investigate the growth of organic grains in the protosolar nebula. The organic material was found to be stickiest at a radius of between 2.3 and 3.0 AU, with a maximum sticking velocity of 5 m s?1 for millimeter‐size organic grains. This stickiness is considered to have resulted in the very rapid coagulation of organic grain aggregates and subsequent formation of planetesimals in the early stage of the turbulent accretion disk. The planetesimals formed in this region appear to be represent achondrite parent bodies. In contrast, the formation of planetesimals at <2.1 and >3.0 AU begins with the establishment of a passive disk because silicate and ice grains are not as sticky as organic grains.  相似文献   

6.
We have calculated the opacity of interstellar grains in the temperature range 10–1500 K. Two composite grain models have been considered. One of them consists of silicate coated with an ice mantle and the second has a graphite core coated also with an ice mantle. These models are compared with isolated grain models. An exact analytical and computational development of Güttler's formulae for composite grain models has been used to calculate the extinction coefficient.It has been found that the thickness of the mantle affects the opacity of the interstellar grains. The opacity of composite models differs from that of the isolated models. The effect of the different species (ice, silicate, and graphite) is also clear.  相似文献   

7.
Gaps and rings are commonly seen in recent high-resolution ALMA observations of protoplanetary disks. Ice lines of volatiles are one of the mechanisms proposed to explain the origin for these substructures. To examine the ice line hypothesis, literature studies usually parameterize the midplane temperature with the analytic formula of a passively heated, flared disk. The temperature in this simplified expression is basically dependent on the stellar luminosity. I have built a grid of self-consistent radiative transfer models that feature the same stellar properties, but different disk parameters. The midplane temperature of these models shows a large dispersion over a wide range of radii, indicating that besides the stellar luminosity, the disk parameters also play an important role in determining the thermal structure.Comparing the mid-plane temperature from radiative transfer simulation with the analytic solution shows a large difference between both approaches. This result suggests that special care on the assumed temperature profile has to be taken in the analysis of gap/ring origins, and conclusions drawn in previous works on the basis of the analytic temperature should be revisited. I further took the AS 209 disk as an example, and conducted a detailed radiative transfer modeling of the spectral energy distribution and the ALMA Band 6 image. The D137, D24 and D9 gaps are associated with the ice lines of major volatiles in the disk according to such a thorough analysis. However, if the temperature profile simply follows the analytic formula, none of these gaps matches the ice lines of the species considered here.  相似文献   

8.
《Icarus》1986,67(1):51-62
We present 2.2-, 10-, and 20-μm photometry of Comet Bowell (1982 I) taken on 24 June 1982 when the comet was at 3.5 AU postperihelion. From these and earlier thermal emission measurements we conclude that the OH production in 1981 was probably supplied by large dirty-ice grains in the coma, as proposed by A'Hearn et al. (1984). The temperature of the grains must have been 140–155°K. Amorphous ice and the phase change from amorphous to cubic ice may have supplied much of the energy for sublimation. The much lower OH production in 1982 could have arisen from icy grains or from the nucleus. There is no evidence for an extremely low geometric albedo of the grains (<1%); in fact, much of the scattered light may have come froman additional component of cold icy grains.  相似文献   

9.
We present observational data for two long-period and three dynamically new comets observed at heliocentric distances between 5.8 to 14.0 AU. All of the comets exhibited activity beyond the distance at which water ice sublimation can be significant. We have conducted experiments on gas-laden amorphous ice samples and show that considerable gas emission occurs when the ice is heated below the temperature of the amorphous-crystalline ice phase transition (T∼137 K). We propose that annealing of amorphous water ice is the driver of activity in comets as they first enter the inner Solar System. Experimental data show that large grains can be ejected at low velocity during annealing and that the rate of brightening of the comet should decrease as the heliocentric distance decreases. These results are consistent with both historical observations of distant comet activity and with the data presented here. If observations of the onset of activity in a dynamically new comet are ever made, the distance at which this occurs would be a sensitive indicator of the temperature at which the comet had formed or represents the maximum temperature that it has experienced. New surveys such as Pan STARRS, may be able to detect these comets while they are still inactive.  相似文献   

10.
Martha S. Hanner 《Icarus》1981,47(3):342-350
Evaporation of icy grains over the distance scale of the visible cometary coma sets very specific limits on their temperature. Unless the grains are very pure water ice, the maximum size of an icy grain halo will be limited to a few hundred kilometers at heliocentric distances ?2.5 AU. It is unlikely that the 1.5- or 2-μm ice band could be detected in the scattering by icy grains. Detection of the 3?μm ice band might be possible in comets which display a coma at large heliocentric distances.  相似文献   

11.
The trapping and release of H2, CO, CO2, CH4, Ar, Ne, and N2 by amorphous water ice was studied experimentally under dynamic conditions, at low temperatures starting at 16°K, with gas pressure of 5 × 10?8?10?6 Torr. CO, CH4, Ar, and N2 were found to be released in three or four distinct temperature ranges, each resulting from a different trapping mechanism: (a) 30–55°K, where the gas frozen on the water ice evaporates; (b) 135–155°K, where gas is squeezed out of the water ice during the transformation of amorphous ice to cubic ice; (c) 165–190°K, where gas and water are released simultaneously, probably by the evaporation of a clathrate hydrate, and, occasionally (d) 160–175°K, where deeply buried gas is released during the transformation of cubic ice to hexagonal ice. If the third range is indeed due to clathrate formation, CO was found to form this compound. CO2 did not form a clathrate under the experimental conditions. Excess hydrogen did not affect the occlusion of other gases. Hydrogen itself was trapped only at 16°K. Neon was not trapped at 25°K. With cubic ice, the only trapping mechanism is freezing of gas on the ice surface. No fractionation between the gas phase and the ice was observed with a mixture of CO and Ar. Massive ejection of ice grains was observed during the evaporation of the gas in three (a,c,d) out of the four ranges. The experimental results are used to explain several cometary phenomena, especially those occurring at large heliocentric distances, and are applied also to Titan's atmospheric composition and to the possible ejection of ice grains from Enceladus.  相似文献   

12.
We present 20–110 µm absorbance spectra of H2O ice, deposited on amorphous carbon and silicate substrates, obtained over the 10–140 K temperature range. The measurements have been carried out in a manner that simulates the deposition, warming and cooling of H2O ice mantles on interstellar and circumstellar grains. For H2O ice films deposited on these substrates we find (i) similar 44-µm-band peak wavelength temperature dependences, (ii) no bandshape differences in the respective spectra, and (iii) a structural phase transition occurring between 120 and 130 K. In comparison with published data obtained using a polyethylene substrate, the 52-µm feature (the longitudinal optical mode) observed in our spectra is less prominent. This suggests the presence of material-dependent substrate effects that can alter the appearance of the H2O far-infrared spectrum. The crystallization temperature of H2O ice films deposited on our amorphous silicate substrate is significantly different from that reported by Moore et al. (1994) , who found crystallization temperatures down to < 20 K for ice also deposited on an amorphous silicate substrate. This is attributed to differences in the surface structures of the respective substrates. This may indicate that, at least in the context of laboratory measurements, substrate material composition is not as significant as substrate surface structure.  相似文献   

13.
The existence of Uranus and Neptune presents severe difficulties for the core accretion model for the formation of ice giant planets. We suggest an alternative mechanism, namely disk instability leading to the formation of gas giant protoplanets, coagulation and settling of dust grains to form ice-rock cores at their centers, and photoevaporation of their gaseous envelopes by a nearby OB star, as a possible means of forming ice giant planets.  相似文献   

14.
Uwe Fink  Harold P. Larson 《Icarus》1975,24(4):411-420
Reflection spectra of water ice from 1 to 4 μm are presented as a function of temperature. It is found that a feature at 6056 cm?1 changes its intensity sufficiently that it can be used as a spectroscopic measure of the ice temperature. A temperature calibration curve of this feature down to 55 K is developed and is used to determine ice temperatures for the Galilean satellites Europa (95±10 K), Ganymede (103±10 K), and the rings of Saturn (80±5 K). The ice temperatures for the Galilean satellites are lower than their measured brightness temperatures, which can be explained by a higher albedo of the ice covered regions relative to the rest of the satellite and possibly a concentration of the ice near the polar caps.  相似文献   

15.
An observational test--the detection of a hydrogen coma around comets at large heliocentric distances--is proposed for determining whether comets were formed by the agglomeration of unaltered, ice-coated, interstellar grains. Laboratory experiments showed that amorphous water ice traps H2, D2, and Ne below 20 K and does not release them completely until the ice is heated to 150 K. Gas/ice ratios as high as 0.63 are obtainable. Thus, if the ice-coated interstellar grains were not heated above approximately 110 K, prior to their agglomeration into cometary nuclei, the inward propagating heat waves should release from the comets a continuous flux of molecular hydrogen. This flux would exceed that of water molecules at approximately 3 AU preperihelion and approximately 4 AU postperihelion.  相似文献   

16.
We present the IR photometry of the X-ray binary XTE J1118+480 performed during seven nights in April and two nights in May–June 2000. A significant IR excess has been detected in the object, which may be due to the thermal radiation from a dust envelope/cloud. The observed energy distribution in the range 1.25–3.5 μm can be interpreted in terms of the sum of the fluxes from an accretion disk with a temperature of ~20 000 K and a dust envelope with grains heated to ~900 K. The distance to the X-ray binary estimated from the total flux from the dust envelope is no less than 0.6–3 kpc. The mean optical depth of the dust envelope for the accretion-disk radiation is about 0.06.  相似文献   

17.
Both laboratory measurements and theory indicate that CO2 should be a common component in interstellar ices. We show that the exact band position, width, and profile of the solid-state 12CO2 infrared bands near 3705, 3600, 2340, and 660 cm-1 (2.70, 2.78, 4.27, and 15.2 micrometers) and the 13CO2 band near 2280 cm-1 (4.39 micrometers) are dependent on the matrix in which the CO2 is frozen. Measurements of these bands in astronomical spectra can be used to determine column densities of solid-state CO2 and provide important information on the physical conditions present in the ice grains of which the CO2 is a part. Depending on the composition of the ice, the CO2 asymmetric stretching band was observed to vary from 2328.7 to 2346.0 cm-1 and have full widths at half-maxima (FWHMs) ranging from 4.7 to 29.9 cm-1. The other CO2 bands showed similar variations. Both position and width are also concentration dependent. Absorption coefficients were determined for the five CO2 bands. These were found to be temperature independent for CO2 in CO and CO2 matrices but varied slightly with temperature for CO2 in H2O-rich ices. For all five bands this variation was found to be less than 15% from 10 to 150 K, the temperature at which H2O ice sublimes. A number of parameters associated with the physical behavior of CO2 in CO2- and H2O-rich ices were also determined. The CO2-CO2 surface binding energy in pure CO2 ices is found to be (delta Hs/k) = 2690 +/- 50 K. CO2-H2O and CO-H2O surface binding energies were determined to be (delta Hs/k) = 2860 +/- 200 K and 1740 +/- 100 K, respectively. Under our experimental conditions, CO2 condenses in measurable quantities into H2O-rich ices at temperatures up to 100 K, only slightly higher than the temperature at which pure CO2 condenses. Once frozen into an H2O-rich ice, the subsequent loss of CO2 upon warming is highly dependent on concentration. For ices with H2O/CO2 > 20, the CO is physically trapped within the H2O lattice, and little CO2 is lost until the sublimation temperature of the H2O matrix is reached. In contrast, in ices having H2O/CO2 < 5, the CO2 remains only to temperatures of about 90 K. Above this point the CO2 readily diffuses out of the H2O matrix. These results suggest that two different forms of H2O lattice are produced. The implications of these data for cometary models and our understanding of cometary formation are considered.  相似文献   

18.
We consider the problem of dust grain survival in the disk winds from T Tauri and Herbig Ae stars. For our analysis, we have chosen a disk wind model in which the gas component of the wind is heated through ambipolar diffusion to a temperature of ~104 K. We show that the heating of dust grains through their collisions with gas atoms is inefficient compared to their heating by stellar radiation and, hence, the grains survive even in the hot wind component. As a result, the disk wind can be opaque to the ultraviolet and optical stellar radiation and is capable of absorbing an appreciable fraction of it. Calculations show that the fraction of the wind-absorbed radiation for T Tauri stars can be from 20 to 40% of the total stellar luminosity at an accretion rate ? a = 10?8-10?6 M yr?1. This means that the disk winds from T Tauri stars can play the same role as the puffed-up inner rim in current accretion disk models. In Herbig Ae stars, the inner layers of the disk wind (r ≤ 0.5 AU) are dust-free, since the dust in this region sublimates under the effect of stellar radiation. Therefore, the fraction of the radiation absorbed by the disk wind in this case is considerably smaller and can be comparable to the effect from the puffed-up inner rim only at an accretion rate of the order of or higher than 10?6 M yr?1. Since the disk wind is structurally inhomogeneous, its optical depth toward the observer can be variable, which should be reflected in the photometric activity of young stars. For the same reason, moving shadows from gas and dust streams with a spiral-like shape can be observed in high-angular-resolution circumstellar disk images.  相似文献   

19.
We have developed a two-dimensional model of a flared protoplanetary disk (PPD) incorporating a self-consistent treatment of gas and dust temperature, and a detailed treatment of the gas-phase chemistry as well as the freeze-out and desorption of material from dust grains. The results show that, in the inner 10 AU of the disk, the gas-phase abundances are dominated by material evaporated from dust grains. The surface layer of the disk shows many of the characteristics of photon-dominated regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Recent 3-mm observations of Saturn at low ring inclinations are combined with previous observations of E. E. Epstein, M. A. Janssen, J. N. Cuzzi, W. G. Fogarty, and J. Mottmann (Icarus41, 103–118) to determine a much more precise brightness temperature for Saturn's rings. Allowing for uncertainties in the optical depth and uniformity of the A and B rings and for ambiguities due to the C ring, but assuming the ring brightness to remain approximately constant with inclination, a mean brightness temperature for the A and B rings of 17 ± 4°K was determined. The portion of this brightness attributed to ring particle thermal emission is 11 ± 5°K. The disk temperature of Saturn without the rings would be 156 ± 6°K, relative to B. L. Ulich, J. H. Davis, P. J. Rhodes, and J. M. Hollis' (1980, IEEE Trans. Antennas Propag.AP-28, 367–376) absolutely calibrated disk temperature for Jupiter. Assuming that the ring particles are pure water ice, a simple slab emission model leads to an estimate of typical particle sizes of ≈0.3 m. A multiple-scattering model gives a ring particle effective isotropic single-scattering albedo of 0.85 ± 0.05. This albedo has been compared with theoretical Mie calculations of average albedo for various combinations of particle size distribution and refractive indices. If the maximum particle radius (≈5 m) deduced from Voyager bistatic radar observations (E. A. Marouf, G. L. Tyler, H. A. Zebker, V. R. Eshleman, 1983, Icarus54, 189–211) is correct, our results indicate either (a) a particle distribution between 1 cm and several meters radius of the form r?s with 3.3 ? s ? 3.6, or (b) a material absorption coefficient between 3 and 10 times lower than that of pure water ice Ih at 85°K, or both. Merely decreasing the density of the ice Ih particles by increasing their porosity will not produce the observed particle albedo. The low ring brightness temperature allows an upper limit on the ring particle silicate content of ≈10% by mass if the rocky material is uniformly distributed; however, there could be considerably more silicate material if it is segregated from the icy material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号