首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Abstract— Mokoia is a CV3 chondrite that contains abundant phyllosilicate mineralization. We present a detailed petrographic and scanning electron microscopic study of 24 dark inclusions (DIs) that we found in Mokoia. The overall texture and constituent minerals of the DIs resemble those in the host meteorite. Fe‐bearing saponite and Na‐rich phlogopite, the same phyllosilicates as in the host meteorite, occur in the DIs, which strongly suggests that the DIs have a similar alteration history to the host meteorite. However, the DIs show several distinct differences from the host meteorite. Olivine grains in the DI matrices are more homogeneous in Fe/(Fe + Mg) ratio than those in the host meteorite matrix. Phyllosilicates in the DIs are less abundant than in the host meteorite, and they have been dehydrated to various extents. These characteristics suggest that the DIs have experienced higher degree of thermal metamorphism than the host meteorite. In addition, the matrices in the DIs are more compacted than those in the host meteorite. Most olivine grains in the DIs show undulatory extinction in transmitted crossed‐polarized light and some show planar fractures, while such olivine grains are rare in the host meteorite. Two of the DIs contain Si‐, Mg‐, Fe‐ and O‐rich melt veins. These characteristics indicate that most DIs have been shocked to shock stage S3‐S4, while the host meteorite is shock stage S1 (virtually unshocked). Thermal metamorphism of the DIs was likely caused by shock heating. These results are consistent with the contention previously proposed for the DIs in CV3 chondrites (i.e., the DIs have experienced aqueous alteration and subsequent dehydration on the CV parent body). We suggest that thermal and shock metamorphism occurred locally to various extents after pervasive aqueous alteration in the Mokoia parent body.  相似文献   

2.
Abstract– We report the use of Doppler weather radar as a tool for locating meteorites, both at the time of a fall and from archived radar data. This asset is especially useful for meteorite recovery as it can provide information on the whereabouts of falling meteorites in “dark flight” portion of their descent where information on their flight paths cannot be discerned from more traditional meteorite location techniques such as eyewitness accounts. Weather radar data can provide information from detection in three distinct regimes: (A) direct detection of the rapidly moving, optically bright fireball by distant radars, (B) detection of falling debris to include hand‐sample sized rocks, and (C) detection of dust produced by detonation events that can occur tens of minutes and many kilometers laterally removed from the actual fireball locality. We present examples of each, as well as comparisons against man‐made debris from a re‐entering Soyuz rocket and the Stardust Sample Return Capsule. The use of Doppler weather radar as a supplement to traditional meteorite recovery methods holds the promise of improving both the speed and total number of meteorite recoveries, thereby increasing the number of freshly fallen meteorites for scientific study.  相似文献   

3.
Abstract— In this paper we describe the recovery, handling and preliminary mineralogical investigation of the Tagish Lake meteorite. Tagish Lake is a type 2 carbonaceous chondrite which bears similarities to CI1 and CM chondrite groups, but is distinct from both. Abundant phyllosilicates as well as chondrules (however sparse) and common olivine grains in the matrix preclude any other classification. The bulk density of Tagish Lake (1.67 g/cc) is far lower than CI or CM chondrites (2.2‐2.3 and 2.6‐2.9 g/cc, respectively), or any other meteorite for that matter. We have identified two lithologies: a dominant carbonate‐poor lithology and a less‐abundant carbonate‐rich lithology. The meteorite is a breccia at all scales. We have noted similarities between Tagish Lake and some clasts within the enigmatic meteorite Kaidun; possibly there are genetic relationships here worth exploring. In the paper we describe a clast of CM1 material within Tagish Lake which is very similar to a major lithology in Kaidun.  相似文献   

4.
Abstract— High‐performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated from a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P‐ or D‐type asteroids. If the Tagish Lake meteorite was indeed derived from these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds.  相似文献   

5.
Abstract— We studied 42 impact‐melt clasts from lunar feldspathic regolith breccias MacAlpine Hills (MAC) 88105, Queen Alexandra Range (QUE) 93069, Dar al Gani (DaG) 262, and DaG 400 for texture, chemical composition, and/or chronology. Although the textures are similar to the impactmelt clasts identified in mafic Apollo and Luna samples, the meteorite clasts are chemically distinct from them, having lower Fe, Ti, K, and P, thus representing previously unsampled impacts. The 40Ar‐39Ar ages on 31 of the impact melts, the first ages on impact‐melt samples from outside the region of the Apollo and Luna sampling sites, range from ~4 to ~2.5 Ga. We interpret these samples to have been created in at least six, and possibly nine or more, different impact events. One inferred impact event may be consistent with the Apollo impact‐melt rock age cluster at 3.9 Ga, but the meteorite impact‐melt clasts with this age are different in chemistry from the Apollo samples, suggesting that the mechanism responsible for the 3.9 Ga peak in lunar impact‐melt clast ages is a lunar‐wide phenomenon. No meteorite impact melts have ages more than 1s? older than 4.0 Ga. This observation is consistent with, but does not require, a lunar cataclysm.  相似文献   

6.
Abstract— Portales Valley (PV) is an unusual metal‐veined meteorite that has been classified as an H6 chondrite. It has been regarded either as an annealed impact melt breccia, as a primitive achondrite, or as a meteorite with affinities to silicated iron meteorites. We studied the petrology of PV using a variety of geochemical‐mineralogical techniques. Our results suggest that PV is the first well‐documented metallic‐melt meteorite breccia. Mineral‐chemical and other data suggest that the protolith to PV was an H chondrite. The composition of FeNi metal in PV is somewhat fractionated compared to H chondrites and varies between coarse vein and silicate‐rich portions. It is best modeled as having formed by partial melting at temperatures of ?940–1150 °C, with incomplete separation of solid from liquid metal. Solid metal concentrated in the coarse vein areas and S‐bearing liquid metal concentrated in the silicate‐rich areas, possibly as a result of a surface energy effect. Both carbon and phosphorus must have been scavenged from large volumes and concentrated in metallic liquid. Graphite nodules formed by crystallization from this liquid, whereas phosphate formed by reaction between P‐bearing metal and clinopyroxene components, depleting clinopyroxene throughout much of the meteorite and growing coarse phosphate at metal‐silicate interfaces. Some phosphate probably crystallized from P‐bearing liquids, but most probably formed by solid‐state reaction at ?975‐725 °C. Phosphate‐forming and FeO‐reduction reactions were widespread in PV and entailed a change in the mineralogy of the stony portion on a large scale. Portales Valley experienced protracted annealing from supersolidus to subsolidus temperatures, probably by cooling at depth within its parent body, but the main differences between PV and H chondrites arose because maximum temperatures were higher in PV. A combination of a relatively weak shock event and elevated pre‐shock temperatures probably produced the vein‐and‐breccia texture, with endogenic heating being the main heat source for melting, and with stress waves from an impact event being an essential trigger for mobilizing metal. Portales Valley is best classified as an H7 metallic‐melt breccia of shock stage S1. The meteorite is transitional between more primitive (chondritic) and evolved (achondrite, iron) meteorite types and offers clues as to how differentiation could have occurred in some asteroidal bodies.  相似文献   

7.
Abstract— Biological processes can alter the chemistry and mineralogy of meteorites in a very short time, even in cold or hot deserts. It is thus important to assess the diversity of microorganisms that colonize meteorites in order to better understand their physiological capabilities. Microscopy observations of Tatahouine meteorite fragments that were exposed for 70 years in the Sahara desert showed that they were colonized by morphologically diverse biomorphs. A molecular diversity study based on 16S rRNA gene amplification of DNA supported the conclusion that a huge taxonomic diversity of prokaryotes colonized the Tatahouine meteorite in less than 70 years in the Tatahouine sand. Eleven different bacterial divisions were evidenced, among which Cytophaga‐Flexibacter‐Bacteroides (CFB), Cyanobacteria, and Alpha‐Proteobacteria were dominantly represented. Crenarcheota were also detected. Most of the Tatahouine meteorite phylotypes were related to sequences identified in the surrounding Tatahouine more generally to sequences detected in soils. Some of them, in particular many of the archaeal phylotypes, were detected in arid regions in association with desert varnish. The results suggest that the diversity of the clone library generated from the meteorite fraction was reduced compared with that of the Tatahouine sand clone library, which can be explained as the result of partial colonization of the meteorite and/or a specific selection of colonizing bacteria by the substrate. We discuss the possibility that several groups detected in this study may play a prominent role in the various alteration processes detected at the surface of the Tatahouine meteorite.  相似文献   

8.
Abstract— A meteorite fall on 2000 January 18 was detected by U.S. Defense Department satellites which established its pre‐impact orbit. Fresh samples were collected from frozen Tagish Lake in British Columbia a week later and some properties of these samples reveal it to be a unique meteorite. We characterized Tagish Lake and 8 other samples using inductively‐coupled plasma mass spectrometry and radiochemical neutron activation analysis: data for 47 elements reveal that each of 9 carbonaceous chondrites of different type exhibit the Orgueil‐normalized plateaus expected for members of such types. Trends evident in Tagish Lake differ from all other carbonaceous chondrites, including CI and CM. Samples of Tagish Lake collected later show similar patterns affected by weathering.  相似文献   

9.
Abstract— We have studied the petrography, reflectance spectra, and Ar‐Ar systematics of the Orivinio meteorite. Orvinio is an H chondrite not an L chondrite as sometimes reported. The material in the meteorite was involved in several impact events. One impact event produced large swaths of impact melt from H chondrite material surrounding relict clasts of chondrule‐bearing material. Not only were portions of a bulk H chondrite planestesimal melted during the impact event, but shock redistribution of metal and sulfide phases in the meteorite dramatically altered its reflectance spectra. Both the melt and relict clasts are darker than unshocked H chondrite material, bearing spectral similarities to some C‐class asteroids. Such shock metamorphism, which lowers the albedo of an object without increasing its spectral slope, may partially explain some of the variation among S‐class asteroids and some of the trends seen on asteroid 433 Eros. Noble gases record the evidence of at least two, and perhaps three, impact events in the meteorite and its predecessor rocks. The most significant evidence is for an event that occurred 600 Ma ago or less, perhaps ?325 Ma ago or less. There is also a signature of 4.2 Ga in the Ar‐Ar systematics, which could either reflect complete degassing of the rock at that time or partial degassing of even the most retentive sites in the more recent event.  相似文献   

10.
Queen Alexandra Range (QUE) meteorite 94204 is an anomalous enstatite meteorite whose petrogenesis has been ascribed to either partial melting or impact melting. We studied the meteorite pairs QUE 94204, 97289/97348, 99059/99122/99157/99158/99387, and Yamato (Y)‐793225; these were previously suggested to represent a new grouplet. We present new data for mineral abundances, mineral chemistries, and siderophile trace element compositions (of Fe,Ni metal) in these meteorites. We find that the texture and composition of Y‐793225 are related to EL6, and that this meteorite is unrelated to the QUEs. The mineralogy and siderophile element compositions of the QUEs are consistent with petrogenesis from an enstatite chondrite precursor. We caution that potential re‐equilibration during melting and recrystallization of enstatite chondrite melt‐rocks make it unreliable to use mineral chemistries to assign a specific parent body affinity (i.e., EH or EL). The QUEs have similar mineral chemistries among themselves, while slight variations in texture and modal abundances exist between them. They are dominated by inclusion‐bearing millimeter‐sized enstatite (average En99.1–99.5) with interstitial spaces filled predominantly by oligoclase feldspar (sometimes zoned), kamacite (Si approximately 2.4 wt%), troilite (≤2.4 wt% Ti), and cristobalite. Siderophile elements that partition compatibly between solid metal and liquid metal are not enriched like in partial melt residues Itqiy and Northwest Africa (NWA) 2526. We find that the modal compositions of the QUEs are broadly unfractionated with respect to enstatite chondrites. We conclude that a petrogenesis by impact melting, not partial melting, is most consistent with our observations.  相似文献   

11.
We report on the first meteorite search campaign in the United Arab Emirates (UAE). The geology and proximity of our search region suggest that it is the north‐western extension of the Oman meteorite fields. We found 26 ordinary chondrites, bringing the total number of official meteorites from the UAE to 28. The campaign was organized and conducted in close cooperation with the UAE government and the main masses of the meteorites remained in the country where they will become part of an exhibition. The bulk composition of five meteorite and three soil samples indicates an uptake of U, Mo, Sr, Ba, Li, and Pb from the soil into the meteorites during terrestrial weathering. Terrestrial ages determined from 14C decay of 21 meteorites range from recent falls to 24.4 ka, with two meteorites having >37 ka and approximately 39 ka, respectively. Weak correlations between weathering degree, meteorite bulk chemical composition, and terrestrial age suggest highly localized weathering conditions, possibly related to abundant occurrences of sabkhas in the search region.  相似文献   

12.
Abstract— The objective of this study was to identify and map possible source regions for all 5 known martian meteorite lithologies (basalt, lherzolite, clinopyroxenite, orthopyroxenite, and dunite) using data from the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). We deconvolved the TES data set using laboratory spectra of 6 martian meteorites (Los Angeles, Zagami, ALH A77005, Nakhla, ALH 84001, and Chassigny) as end members, along with atmospheric and surface spectra previously derived from TES data. Global maps (16 pixels/degree) of the distribution of each meteorite end member show that meteorite‐like compositions are not present at or above TES detectability limits over most of the planet's dust‐free regions. However, we have confidently identified local‐scale (100s‐1000s km2) concentrations of olivine‐ and orthopyroxene‐bearing materials similar to ALH A77005, Chassigny, and ALH 84001 in Nili Fossae, in and near Ganges Chasma, in the Argyre and Hellas basin rims, and in Eos Chasma. Nakhla‐like materials are identified near the detection limit throughout the eastern Valles Marineris region and portions of Syrtis Major. Basaltic shergottites were not detected in any spatially coherent areas at the scale of this study. Martian meteorite‐like lithologies represent only a minor portion of the dust‐free surface and, thus, are not representative of the bulk composition of the ancient crust. Meteorite‐like spectral signatures identified above TES detectability limits in more spatially restricted areas (<tens of km) are targets of ongoing analysis.  相似文献   

13.
14.
Abstract– The feldspathic lunar meteorites contain rare fragments of crystalline basalts. We analyzed 16 basalt fragments from four feldspathic lunar meteorites (Allan Hills [ALHA] 81005, MacAlpine Hills [MAC] 88104/88105, Queen Alexandra Range [QUE] 93069, Miller Range [MIL] 07006) and utilized literature data for another (Dhofar [Dho] 1180). We compositionally classify basalt fragments according to their magma’s estimated TiO2 contents, which we derive for crystalline basalts from pyroxene TiO2 and the mineral‐melt Ti distribution coefficient. Overall, most of the basalt fragments are low‐Ti basalts (1–6% TiO2), with a significant proportion of very‐low‐Ti basalts (<1% TiO2). Only a few basalt clasts were high‐Ti or intermediate Ti types (>10% TiO2 and 6–10% TiO2, respectively). This distribution of basalt TiO2 abundances is nearly identical to that obtained from orbital remote sensing of the moon (both UV‐Vis from Clementine, and gamma ray from Lunar Prospector). However, the distribution of TiO2 abundances is unlike those of the Apollo and Luna returned samples: we observe a paucity of high‐Ti basalts. The compositional types of basalt differs from meteorite to meteorite, which implies that all basalt subtypes are not randomly distributed on the Moon, i.e., the basalt fragments in each meteorite probably represent basalts in the neighborhood of the meteorite launch site. These differences in basalt chemistry and classifications may be useful in identifying the source regions of some feldspathic meteorites. Some of the basalt fragments probably originate from ancient cryptomaria, and so may hold clues to the petrogenesis of the Moon’s oldest volcanism.  相似文献   

15.
Abstract— We present noble gas analyses of sediment‐dispersed extraterrestrial chromite grains recovered from ?470 Myr old sediments from two quarries (Hällekis and Thorsberg) and of relict chromites in a coeval fossil meteorite from the Gullhögen quarry, all located in southern Sweden. Both the sediment‐dispersed grains and the meteorite Gullhögen 001 were generated in the L‐chondrite parent body breakup about 470 Myr ago, which was also the event responsible for the abundant fossil meteorites previously found in the Thorsberg quarry. Trapped solar noble gases in the sediment‐dispersed chromite grains have partly been retained during ?470 Myr of terrestrial residence and despite harsh chemical treatment in the laboratory. This shows that chromite is highly retentive for solar noble gases. The solar noble gases imply that a sizeable fraction of the sediment‐dispersed chromite grains are micrometeorites or fragments thereof rather than remnants of larger meteorites. The grains in the oldest sediment beds were rapidly delivered to Earth likely by direct injection into an orbital resonance in the inner asteroid belt, whereas grains in younger sediments arrived by orbital decay due to Poynting‐Robertson (P‐R) drag. The fossil meteorite Gullhögen 001 has a low cosmic‐ray exposure age of ?0.9 Myr, based on new He and Ne production rates in chromite determined experimentally. This age is comparable to the ages of the fossil meteorites from Thorsberg, providing additional evidence for very rapid transfer times of material after the L‐chondrite parent body breakup.  相似文献   

16.
The matching of asteroids and meteorites is a significant step toward a better understanding of the origin, structure, and history of the solar system. We propose a data‐driven approach for investigating common taxonomic structure between asteroids and meteorites; C‐, S‐, and V‐type for the former, and carbonaceous chondrite, ordinary chondrite, and howardite‐eucrite‐diogenite (HED) meteorite for the latter. In the numerical experiments, by checking whether the taxonomy information of meteorites improves classification for asteroid data, we examine the existence of common structure over the two domains. For this purpose, we compare the resultant accuracies of two clustering methods which are with/without the guidance of meteorite data. We observe that the guidance of meteorite taxonomy improves the accuracy for classifying asteroids, either with the reflectance spectra or major chemical compositions of meteorites. This fact serves as a piece of evidence that there is a common taxonomic structure and links between meteorites and asteroids, supporting a long‐standing hypothesis.  相似文献   

17.
Abstract– Bulk density is an important intrinsic property of meteorites, but the necessary bulk volume measurement is difficult to do in a truly nondestructive way. Archimedean methods involving the displacement of a 40–100 μm beads “fluid” are commonly applied, but can encounter systematic errors. Herein, we report a visible light laser imaging technique for the nondestructive measurement of meteorite surface features, allowing for the subsequent assembly of 3‐D volumetric models; the method is particularly applicable to small meteorite fragments and to fragile specimens. We have acquired laser image data for 24 fragments from 18 ordinary chondrites, carbonaceous chondrites, and achondrites, with masses ranging from 265.0 to 1.2 g. Laser imaging bulk density is consistent between sister fragments of meteorites down to sizes of about 0.5 cm3, an order of magnitude smaller than can be reliably measured with Archimedean beads techniques. Uncertainty is less than 2% for fragments >4 cm3, and typically between 2 and 4% for small fragments <4 cm3. For 10 fragments, 3‐D laser imaging volumes are on average 1.3% smaller than those obtained with Archimedean beads. In a wider comparison using 21 meteorite fragments, 3‐D laser imaging bulk densities are on average 2.14 ± 2.36% greater than the corresponding Archimedean method literature values for these meteorites. Difficulties in the procedure of 3‐D image alignment may lead to a slight overestimation of meteorite bulk density, and so laser imaging‐based bulk densities are maximum estimates that can be viewed as being complementary to the minimum bulk density estimates obtained using Archimedean beads methods.  相似文献   

18.
Abstract— The Tagish Lake carbonaceous chondrite consists of heavily aqueously altered chondrules, CAIs, and larger mineral fragments in a fine‐grained, phyllosilicate‐dominated matrix. The vast majority of the coarse‐grained components in this meteorite are surrounded by continuous, 1.5 to >200 μm wide, fine‐grained, accretionary rims, which are well known from meteorites belonging to petrological types 2 and 3 and whose origin and modification is still a matter of debate. Texturally, the fine‐grained rims in Tagish Lake are very similar throughout the entire meteorite and independent of the nature of the enclosed object. They typically display sharp boundaries to the core object and more gradational contacts to the meteorite matrix. Compared to the matrix, the rims are much more finegrained and characterized by a significantly lower porosity. The rims consist of an unequilibrated assemblage of phyllosilicates, Fe,Ni sulfides, magnetites, low‐Ca pyroxenes, and forsteritic olivines, and are, except for a much lower abundance of carbonates, very similar to the Tagish Lake matrix. Electron microprobe and synchrotron X‐ray microprobe analyses show that matrix and rims are also very similar in composition and that the rims differ significantly from matrix and bulk meteorite only by being depleted in Ca. X‐ray elemental mapping and mineralogical observations indicate that Ca was lost during aqueous alteration from the enclosed objects and preferentially crystallized as carbonates in the porous matrix. The analyses also show that Ca is strongly fractionated from Al in the rims, whereas there is no fractionation of the Ti/Al‐ratios. Our data suggest that the fine‐grained rims in Tagish Lake initially formed by accretion in the solar nebula and were subsequently modified by in situ alteration on the parent body. This pervasive alteration removed any potential evidence for pre‐accretionary alteration but did not change the overall texture of the Tagish Lake meteorite.  相似文献   

19.
Abstract— The visible, near‐infrared, and mid‐infrared (0.3–25 μm) real and imaginary indices of refraction are derived from reflectance measurements of the Tagish Lake meteorite. These are compared to some real and imaginary indices of refraction of the individual minerals composing the Tagish Lake meteorite. From this comparison, it is clear that the imaginary indices of several individual minerals contribute to the estimated imaginary index of this meteorite.  相似文献   

20.
Abstract— This forensic work aims to authenticate the recovery location of Castenaso, a 120 g ordinary chondritic (L5) meteorite reportedly found in 2003 along the sandy bank of the Idice Stream, near the village of Castenaso (Bologna, Emilia‐Romagna, Italy). Using the hypothesis that Castenaso was instead a hot‐desert meteorite, we conducted a comparative mineralogical and geochemical study of major weathering effects on European and Saharan ordinary chondrites as potential markers of the environment where Castenaso resided during its terrestrial lifetime. Inductively coupled plasma‐mass spectrometry (ICP‐MS) data reveals that Castenaso is significantly enriched in Sr, Ba, Tl, and U, and suggests geochemical alteration in a hot‐desert environment. The alteration is minor: Castenaso is not coated by desert varnish and does not show significant light rare earth element (LREE) enrichment or loss of Ni and Co. The apparent contrast in size, morphology, and composition between the soil particles filling the external fractures of Castenaso and those from the bank of the Idice Stream observed under the scanning electron microscope (SEM) suggests that Castenaso did not reside at the reported find location. Abraded quartz grains (up to 1 mm in size) in Castenaso are undoubtedly from a hot‐desert eolian environment: they are well‐rounded and show external surfaces characterized by the presence of dish‐shaped concavities and upturned silica plates that have been subject to solution‐precipitation and subsequent smoothing. We therefore conclude that Castenaso is one of the many hot‐desert ordinary chondrite finds, probably from the Sahara, that is currently available on the market. This forensic work provides the scientific grounds for changing the name of this meteorite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号