首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Comparisons between the chemistry of impact debris, especially spherical droplets of impact-formed material, are made for lunar samples and for soil samples taken from terrestrial impact sites. Differences are assigned to differences in the chemistry of impacting bodies and in the surface rocks, and to the influence of the atmosphere in the terrestrial cases.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

2.
3.
Abstract— The structural, topographic and other characteristics of the Vredefort, Sudbury, and Chicxulub impact structures are described. Assuming that the structures originally had the same morphology, the observations/interpretations for each structure are compared and extended to the other structures. This does not result in any major inconsistencies but requires that the observations be scaled spatially. In the case of Vredefort and Sudbury, this is accomplished by scaling the outer limit of particular shock metamorphic features. In the case of Chicxulub, scaling requires a reasoned assumption as to the formation mechanism of an interior peak ring. The observations/interpretations are then used to construct an integrated, empirical kinematic model for a terrestrial peak‐ring basin. The major attributes of the model include: a set of outward‐directed thrusts in the parautochthonous rocks of the outermost environs of the crater floor, some of which are pre‐existing structures that have been reactivated during transient cavity formation; inward‐directed motions along the same outermost structures and along a set of structures, at intermediate radial distances, during transient cavity collapse; structural uplift in the center followed by a final set of radially outward‐directed thrusts at the outer edges of the structural uplift, during uplift collapse. The rock displacements on the intermediate, inward and innermost, outward sets of structures are consistent with the assumption that a peak ring will result from the convergence of the collapse of the transient cavity rim area and the collapse of the structural uplift.  相似文献   

4.
Abstract— The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near‐surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3–50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5–2.0 times deeper (≥5s?o difference) with >50% larger cavities (≥2s?o) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ?6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45–70% of their transient cavity volumes, while highland craters preserve only 25–50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9–12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ?1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.  相似文献   

5.
Abstract— The recent Carancas meteorite impact event caused a worldwide sensation. An H4–5 chondrite struck the Earth south of Lake Titicaca in Peru on September 15, 2007, and formed a crater 14.2 m across. It is the smallest, youngest, and one of two eye‐witnessed impact crater events on Earth. The impact violated the hitherto existing view that stony meteorites below a size of 100 m undergo major disruption and deceleration during their passage through the atmosphere and are not capable of producing craters. Fragmentation occurs if the strength of the meteoroid is less than the aerodynamic stresses that occur in flight. The small fragments that result from a breakup rain down at terminal velocity and are not capable of producing impact craters. The Carancas cratering event, however, demonstrates that meter‐sized stony meteoroids indeed can survive the atmospheric passage under specific circumstances. We present results of a detailed geologic survey of the crater and its ejecta. To constrain the possible range of impact parameters we carried out numerical models of crater formation with the iSALE hydrocode in two and three dimensions. Depending on the strength properties of the target, the impact energies range between approximately 100–1000 MJ (0.024–0.24 t TNT). By modeling the atmospheric traverse we demonstrate that low cosmic velocities (12–14 kms?1) and shallow entry angles (<20 °) are prerequisites to keep aerodynamic stresses low (<10 MPa) and thus to prevent fragmentation of stony meteoroids with standard strength properties. This scenario results in a strong meteoroid deceleration, a deflection of the trajectory to a steeper impact angle (40–60 °), and an impact velocity of 350–600 ms?1, which is insufficient to produce a shock wave and significant shock effects in target minerals. Aerodynamic and crater modeling are consistent with field data and our microscopic inspection. However, these data are in conflict with trajectories inferred from the analysis of infrasound signals.  相似文献   

6.
7.
Abstract— The late Eocene Chesapeake Bay impact structure (CBIS) on the Atlantic margin of Virginia is one of the largest and best‐preserved “wet‐target” craters on Earth. It provides an accessible analog for studying impact processes in layered and wet targets on volatile‐rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ?85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the “inverted sombrero” morphology observed at some craters in layered targets. The distribution of crater‐fill materials in the CBIS is related to the morphology. Suevitic breccia, including pre‐resurge fallback deposits, is found in the central crater. Impact‐modified sediments, formed by fluidization and collapse of water‐saturated sand and silt‐clay, occur in the annular trough. Allogenic sediment‐clast breccia, interpreted as ocean‐resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat‐floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar‐sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles.  相似文献   

8.
Abstract— A small area littered with loose decimeter-sized fragments of glass and melt fragment-bearing suevite has been discovered on the western rim of the Roter Kamm impact crater in southern Namibia. The clast population and results of major and trace element chemical analyses are consistent with this breccia having been formed from granitoid basement lithologies only, without contribution from the metasedimentary Gariep and Cenozoic cover sequences. It is assumed that the limited amount of impact melt observed in the Roter Kamm structure could be the result of melt dissipation due to explosive shock-induced devolatilization of the significant marble component of the Gariep supracrustal cover. Preservation of very limited remnants of impact breccia on the rim of the Roter Kamm crater suggests a relatively deep level of erosion of the crater rim.  相似文献   

9.
Abstract— Given that the Earth's surface is covered in around two‐thirds water, the majority of impact events should have occurred in marine environments. However, with the presence of a water layer, crater formation may be prohibited. Indeed, formation is greatly controlled by the water depth to projectile diameter ratio, as discussed in this paper. Previous work has shown that the underlying target material also influences crater formation (e.g., Gault and Sonett 1982; Baldwin et al. 2007). In addition to the above parameters we also show the influence of impact angle, impact velocity and projectile density for a variety of water depths on crater formation and projectile survivability. The limiting ratio of water depth to projectile diameter on cratering represents the point at which the projectile is significantly slowed by transit through the water layer to reduce the impact energy to that which prohibits cratering. We therefore study the velocity decay produced by a water layer using laboratory, analytical and numerical modelling techniques, and determine the peak pressures endured by the projectile. For an impact into a water depth five times the projectile diameter, the velocity of the projectile is found to be reduced to 26–32% its original value. For deep water impacts we find that up to 60% of the original mass of the projectile survives in an oblique impact, where survivability is defined as the solid or melted mass fraction of the projectile that could be collected after impact.  相似文献   

10.
Abstract— Crater‐ejecta correlation is an important element in the analysis of crater formation and its influence on the geological evolution. In this study, both the ejecta distribution and the internal crater development of the Jurassic/Cretaceous Mjølnir crater (40 km in diameter; located in the Barents Sea) are investigated through numerical simulations. The simulations show a highly asymmetrical ejecta distribution, and underscore the importance of a layer of surface water in ejecta distribution. As expected, the ejecta asymmetry increases as the angle of impact decreases. The simulation also displays an uneven aerial distribution of ejecta. The generation of the central high is a crucial part of crater formation. In this study, peak generation is shown to have a skewed development, from approximately 50–90 sec after impact, when the peak reaches its maximum height of 1‐1.5 km. During this stage, the peak crest is moved about 5 km from an uprange to a downrange position, ending with a final central position which has a symmetrical appearance that contrasts with its asymmetrical development.  相似文献   

11.
R.A.F. Grieve  M.R. Dence 《Icarus》1979,38(2):230-242
The terrestrial cratering record for the Phanerozoic has a size-frequency distribution of NαD?2.05 for D > 22.6 km and NαD?0.24 for D < 11.3 km. This shallowing of the distribution slope at D > 22.6 km reflects the removal of small terrestrial craters by erosion. The number of large craters on the North American and East European cratons provide estimated terrestrial crater production rates for D > 20 km of 0.36 ± 0.1 and 0.33 ± 0.2 × 10?14 km?2 year?1, respectively. These rates are in good agreement with previous estimates and astronomical observations on Apollo bodies. Comparisons with the lunar rate, taking account of the effects of variations in impact velocity, surface gravity, and gravitational cross section, indicate that the lunar and terrestrial rates overlap, if the cratering flux has been constant during the last 3.4 by. If the early (pre 4.0 by) high-flux rate did not decay to a constant value until 3.0 to 2.5 by then the rates differ by a factor of 2 and the Phanerozoic can be interpreted as a period of higher than normal cratering.  相似文献   

12.
We report results of an interdisciplinary project devoted to the 26 km‐diameter Ries crater and to the genesis of suevite. Recent laboratory analyses of “crater suevite” occurring within the central crater basin and of “outer suevite” on top of the continuous ejecta blanket, as well as data accumulated during the past 50 years, are interpreted within the boundary conditions imposed by a comprehensive new effort to model the crater formation and its ejecta deposits by computer code calculations (Artemieva et al. 2013). The properties of suevite are considered on all scales from megascopic to submicroscopic in the context of its geological setting. In a new approach, we reconstruct the minimum/maximum volumes of all allochthonous impact formations (108/116 km3), of suevite (14/22 km3), and the total volume of impact melt (4.9/8.0 km3) produced by the Ries impact event prior to erosion. These volumes are reasonably compatible with corresponding values obtained by numerical modeling. Taking all data on modal composition, texture, chemistry, and shock metamorphism of suevite, and the results of modeling into account, we arrive at a new empirical model implying five main consecutive phases of crater formation and ejecta emplacement. Numerical modeling indicates that only a very small fraction of suevite can be derived from the “primary ejecta plume,” which is possibly represented by the fine‐grained basal layer of outer suevite. The main mass of suevite was deposited from a “secondary plume” induced by an explosive reaction (“fuel‐coolant interaction”) of impact melt with water and volatile‐rich sedimentary rocks within a clast‐laden temporary melt pool. Both melt pool and plume appear to be heterogeneous in space and time. Outer suevite appears to be derived from an early formed, melt‐rich and clast‐poor plume region rich in strongly shocked components (melt ? clasts) and originating from an upper, more marginal zone of the melt pool. Crater suevite is obviously deposited from later formed, clast‐rich and melt‐poor plumes dominated by unshocked and weakly shocked clasts and derived from a deeper, central zone of the melt pool. Genetically, we distinguish between “primary suevite” which includes dike suevite, the lower sublayer of crater suevite, and possibly a basal layer of outer suevite, and “secondary suevite” represented by the massive upper sublayer of crater suevite and the main mass of outer suevite.  相似文献   

13.
The presence of central peak craters and the absence of central pit craters on Triton implies a surface rigidity similar to the Saturnian and Uranian satellites and stronger than that of the Jupiter satellites Ganymede and Callisto. Tectonically degraded terrain may exist at the antipode of the large impact structure on 1989N1. Dome craters on Triton may represent a form of solid state volcanism.  相似文献   

14.
Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock‐metamorphosed quartz‐bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block‐model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35–40 km and has since experienced up to ~2 km of differential erosion.  相似文献   

15.
An important cause of the activation and development of active processes on the surface of a cometary nucleus is direct solar radiation illuminating a part of the surface that is not shielded by dust. The intensity of solar radiation near the surface of a cometary nucleus depends on the thickness of the dust cloud above the active area. If the size of the dust cloud noticeably changes, the intensity considerably depends on time. In the present paper, we consider the nonlinear equation of radiative transfer in a dust cloud growing towards the incident wave front with a constant velocity. The change in the intensity of direct solar radiation along the dust jet originating from the active surface area of a cometary nucleus has been found. For the sake of comparison, the linear equation of radiative transfer was solved in the framework of this task. It turns out that the linear approach to the solution of the considered problem suggests a noticeable loss in the amount of direct radiation participating in the dust-jet formation. This loss is comparable with the intensity of solar radiation incident to the active area of a cometary nucleus after scattering in the cometary atmosphere.  相似文献   

16.
Scott C. Mest  David A. Crown 《Icarus》2005,175(2):335-359
The geology and stratigraphy of Millochau crater (21.4° S, 275° W), located in the highlands of Tyrrhena Terra, Mars, are documented through geomorphic analyses and geologic mapping. Crater size-frequency distributions and superposition relationships are used to constrain relative ages of geologic units and determine the timing and duration of the geologic processes that modified Millochau rim materials and emplaced deposits on Millochau's floor. Crater size-frequency distributions show a Middle Noachian age for rim materials and Middle Noachian to Early Hesperian ages for most of the interior deposits. Valley networks and gullies incised within Millochau's rim materials and interior wall, respectively, indicate fluvial activity was an important erosional process. Millochau contains an interior plateau, offset northeast of Millochau's center, which rises up to 400 m above the surrounding crater floor and slopes downward to the south and west. Layers exposed along the northern and eastern scarp boundaries of the plateau are tens to hundreds of meters thick and laterally continuous in MOC images. These layers suggest most materials within Millochau were emplaced by sedimentary processes (e.g., fluvial or eolian), with the potential for lacustrine deposition in shallow transient bodies of water and contributions of volcanic airfall. Mass wasting may have also contributed significant quantities of material to Millochau's interior, especially to the deposits surrounding the plateau. Superposition relationships combined with impact crater statistics indicate that most deposition and erosion of Millochau's interior deposits is ancient, which implies that fluvial activity in this part of Tyrrhena Terra is much older than in the eastern Hellas region. Eolian processes mobilized sediment to form complicated patterns of long- and short-wavelength dunes, whose emplacement is controlled by local topography. These deposits are some of the youngest within Millochau (Amazonian) and eolian modification may be ongoing.  相似文献   

17.
It is generally supposed that the atmospheres of the terrestrial planets were formed by secondary degassing processes. We propose, instead, that they are of primary origin, forming as an immediate and necessary consequence of the final stages of planetary accretion. Once the planetary embryo reached a critical size, the impacting material began to vaporize. The atmosphere, so created, then decelerated other impacting material, thus limiting the rate of atmospheric growth. We show that, given reasonable assumptions concerning the chemical composition of the impacting material, an acceptable model for the early atmosphere of the Earth, and the present atmospheres of Venus and Mars results.A discussion of the noble gas data for the terrestrial atmosphere indicates that these can be readily reconciled with an impact origin.  相似文献   

18.
For impact craters with dimensions such as the Ries crater (corresponding to a 1 km meteorite) it has become a standard reference in textbooks on planetary science that under terrestrial conditions distal transfer of boulders may reach as far as 200 km. In order to test this assumption we simulated the impact-induced ballistic transfer of limestone boulders ejected out of the Ries crater and have come to the conclusion that “Reutersche Blöcke” and “Ries-Brockhorizonte,” found at distances of up to 130 km away, are distal Ries ejecta. Boulders alleged to be Ries components found in Northern Switzerland at distances of up to 200 km away can be related to the Ries event, if the parameters of our numerical simulation are stretched to its limits. Our simulation includes the following assumptions and variables: (1) boulders are ejected from the interference zone at a very early stage of impact; (2) starting conditions may range between velocities of 1 and 4 km/s and 35° to 65° for the flight path angle; (3) drag-free and transitional conditions at the impact site have been incorporated into the density model of the atmosphere; (4) a typical boulder is represented by an suitable aerodynamic drag model; (5) an aerothermal heat model was used to determine heat load.  相似文献   

19.
20.
We model the fluids involved in the alteration processes recorded in the Sheepbed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si; had low Mg, Fe, and Al concentrations—relative to terrestrial groundwaters such as the Deccan Traps and other modeled Mars fluids; and had near neutral to alkaline pH. Ca and S species were present in the 10?3 to 10?2 concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this groundwater‐type fluid formed impure sulfate‐ and silica‐rich deposits—veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate‐rich layer in Yellowknife Bay, or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号