首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Four different implementations of Stokes' formula are employed for the estimation of geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. (1962) models, which use a high-degree reference gravity field and modification of Stokes' kernel; and a least-squares (LS) spectral weighting proposed by Sj?berg (1991). Classical topographic correction formulae are improved to consider long-wavelength contributions. The effect of a Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after fitting also show the best consistency for the LS method, with the standard deviation of differences reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, through a simple error propagation of standard errors of mean anomalies, are also computed. They range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other estimation of the accuracy of the final geoid, and is computed to be ±28.6 cm. Received: 15 September 1999 / Accepted: 6 November 2000  相似文献   

2.
 The analytical continuation of the surface gravity anomaly to sea level is a necessary correction in the application of Stokes' formula for geoid estimation. This process is frequently performed by the inversion of Poisson's integral formula for a sphere. Unfortunately, this integral equation corresponds to an improperly posed problem, and the solution is both numerically unstable, unless it is well smoothed, and tedious to compute. A solution that avoids the intermediate step of downward continuation of the gravity anomaly is presented. Instead the effect on the geoid as provided by Stokes' formula is studied directly. The practical solution is partly presented in terms of a truncated Taylor series and partly as a truncated series of spherical harmonics. Some simple numerical estimates show that the solution mostly meets the requests of a 1-cm geoid model, but the truncation error of the far zone must be studied more precisely for high altitudes of the computation point. In addition, it should be emphasized that the derived solution is more computer efficient than the detour by Poisson's integral. Received: 6 February 2002 / Accepted: 18 November 2002 Acknowledgements. Jonas ?gren carried out the numerical calculations and gave some critical and constructive remarks on a draft version of the paper. This support is cordially acknowledged. Also, the thorough work performed by one unknown reviewer is very much appreciated.  相似文献   

3.
 When Stokes's integral is used over a spherical cap to compute a gravimetric estimate of the geoid, a truncation error results due to the neglect of gravity data over the remainder of the Earth. Associated with the truncation error is an error kernel defined over these two complementary regions. An important observation is that the rate of decay of the coefficients of the series expansion for the truncation error in terms of Legendre polynomials is determined by the smoothness properties of the error kernel. Previously published deterministic modifications of Stokes's integration kernel involve either a discontinuity in the error kernel or its first derivative at the spherical cap radius. These kernels are generalised and extended by constructing error kernels whose derivatives at the spherical cap radius are continuous up to an arbitrary order. This construction is achieved by smoothly continuing the error kernel function into the spherical cap using a suitable degree polynomial. Accordingly, an improved rate of convergence of the spectral series representation of the truncation error is obtained. Received: 21 April 1998 / Accepted: 4 October 1999  相似文献   

4.
 This paper generalizes the Stokes formula from the spherical boundary surface to the ellipsoidal boundary surface. The resulting solution (ellipsoidal geoidal height), consisting of two parts, i.e. the spherical geoidal height N 0 evaluated from Stokes's formula and the ellipsoidal correction N 1, makes the relative geoidal height error decrease from O(e 2) to O(e 4), which can be neglected for most practical purposes. The ellipsoidal correction N 1 is expressed as a sum of an integral about the spherical geoidal height N 0 and a simple analytical function of N 0 and the first three geopotential coefficients. The kernel function in the integral has the same degree of singularity at the origin as the original Stokes function. A brief comparison among this and other solutions shows that this solution is more effective than the solutions of Molodensky et al. and Moritz and, when the evaluation of the ellipsoidal correction N 1 is done in an area where the spherical geoidal height N 0 has already been evaluated, it is also more effective than the solution of Martinec and Grafarend. Received: 27 January 1999 / Accepted: 4 October 1999  相似文献   

5.
The topographic potential and the direct topographic effect on the geoid are presented as surface integrals, and the direct gravity effect is derived as a rigorous surface integral on the unit sphere. By Taylor-expanding the integrals at sea level with respect to topographic elevation (H) the power series of the effects is derived to arbitrary orders. This study is primarily limited to terms of order H 2. The limitations of the various effects in the frequently used planar approximations are demonstrated. In contrast, it is shown that the spherical approximation to power H 2 leads to a combined topographic effect on the geoid (direct plus indirect effect) proportional to H˜2 (where terms of degrees 0 and 1 are missing) of the order of several metres, while the combined topographic effect on the height anomaly vanishes, implying that current frequent efforts to determine the direct effect to this order are not needed. The last result is in total agreement with Bjerhammar's method in physical geodesy. It is shown that the most frequently applied remove–restore technique of topographic masses in the application of Stokes' formula suffers from significant errors both in the terrain correction C (representing the sum of the direct topographic effect on gravity anomaly and the effect of continuing the anomaly to sea level) and in the term t (mainly representing the indirect effect on the geoidal or quasi-geoidal height). Received: 18 August 1998 / Accepted: 4 October 1999  相似文献   

6.
A deterministic modification of Stokes's integration kernel is presented which reduces the truncation error when regional gravity data are used in conjunction with a global geopotential model to compute a gravimetric geoid. The modification makes use of a combination of two existing modifications from Vaníček and Kleusberg and Meissl. The former modification applies a root mean square minimisation to the upper bound of the truncation error, whilst the latter causes the Fourier series expansion of the truncation error to coverage to zero more rapidly by setting the kernel to zero at the truncation radius. Green's second identity is used to demonstrate that the truncation error converges to zero faster when a Meissl-type modification is made to the Vaníček and Kleusberg kernel. A special case of this modification is proposed by choosing the degree of modification and integration cap-size such that the Vaníček and Kleusberg kernel passes through zero at the truncation radius. Received: 14 October 1996 / Accepted: 20 October 1997  相似文献   

7.
The northern European geoid: a case study on long-wavelength geoid errors   总被引:1,自引:1,他引:1  
 The long-wavelength geoid errors on large-scale geoid solutions, and the use of modified kernels to mitigate these effects, are studied. The geoid around the Nordic area, from Greenland to the Ural mountains, is considered. The effect of including additional gravity data around the Nordic/Baltic land area, originating from both marine, satellite and ground-based measurements, is studied. It is found that additional data appear to increase the noise level in computations, indicating the presence of systematic errors. Therefore, the Wong–Gore modification to the Stokes kernel is applied. This method of removing lower-order terms in the Stokes kernel appears to improve the geoid. The best fit to the global positioning system (GPS) leveling points is obtained with a degree of modification of approximately 30. In addition to the study of modification errors, the results of different methods of combining satellite altimetry gravity and other gravimetry are presented. They all gave comparable results, at the 6-cm level, when evaluated for the Nordic GPS networks. One dimensional (1-D) and 2-D fast Fourier transform (FFT) methods are also compared. It is shown that even though methods differ by up to 6 cm, the fit to the GPS is essentially the same. A surprising conclusion is that the addition of more data does not always produce a better geoid, illustrating the danger of systematic errors in data. Received: 4 July 2001 / Accepted: 21 February 2002  相似文献   

8.
Neglecting distant zones in the computation of geoidal height using Stokes' formula gives rise to some truncation error. This truncation error is expressible as a weighted summation of the zonal harmonic components of the gravity anomaly. Making use of the well-known properties of Legendre polynomials, a compact method of computing these theoretical coefficients has been developed in this paper.  相似文献   

9.
 It is suggested that a spherical harmonic representation of the geoidal heights using global Earth gravity models (EGM) might be accurate enough for many applications, although we know that some short-wavelength signals are missing in a potential coefficient model. A `direct' method of geoidal height determination from a global Earth gravity model coefficient alone and an `indirect' approach of geoidal height determination through height anomaly computed from a global gravity model are investigated. In both methods, suitable correction terms are applied. The results of computations in two test areas show that the direct and indirect approaches of geoid height determination yield good agreement with the classical gravimetric geoidal heights which are determined from Stokes' formula. Surprisingly, the results of the indirect method of geoidal height determination yield better agreement with the global positioning system (GPS)-levelling derived geoid heights, which are used to demonstrate such improvements, than the results of gravimetric geoid heights at to the same GPS stations. It has been demonstrated that the application of correction terms in both methods improves the agreement of geoidal heights at GPS-levelling stations. It is also found that the correction terms in the direct method of geoidal height determination are mostly similar to the correction terms used for the indirect determination of geoidal heights from height anomalies. Received: 26 July 2001 / Accepted: 21 February 2002  相似文献   

10.
Fast spherical collocation: theory and examples   总被引:2,自引:4,他引:2  
 It has long been known that a spherical harmonic analysis of gridded (and noisy) data on a sphere (with uniform error for a fixed latitude) gives rise to simple systems of equations. This idea has been generalized for the method of least-squares collocation, when using an isotropic covariance function or reproducing kernel. The data only need to be at the same altitude and of the same kind for each latitude. This permits, for example, the combination of gravity data at the surface of the Earth and data at satellite altitude, when the orbit is circular. Suppose that data are associated with the points of a grid with N values in latitude and M values in longitude. The latitudes do not need to be spaced uniformly. Also suppose that it is required to determine the spherical harmonic coefficients to a maximal degree and order K. Then the method will require that we solve K systems of equations each having a symmetric positive definite matrix of only N × N. Results of simulation studies using the method are described. Received: 18 October 2001 / Accepted: 4 October 2002 Correspondence to: F. Sansò  相似文献   

11.
 One of the most basic and important tools in optimal spectral gravity field modelling is the method of Wiener filtering. Originally developed for applications in analogue signal analysis and communication engineering, Wiener filtering has become a standard linear estimation technique of modern operational geodesy, either as an independent practical tool for data de-noising in the frequency domain or as an integral component of a more general signal estimation methodology (input–output systems theory). Its theoretical framework is based on the Wiener–Kolmogorov linear prediction theory for stationary random fields in the presence of additive external noise, and thus it is closely related to the (more familiar to geodesists) method of least-squares collocation with random observation errors. The main drawback of Wiener filtering that makes its use in many geodetic applications problematic stems from the stationarity assumption for both the signal and the noise involved in the approximation problem. A modified Wiener-type linear estimation filter is introduced that can be used with noisy data obtained from an arbitrary deterministic field under the masking of non-stationary random observation errors. In addition, the sampling resolution of the input data is explicitly taken into account within the estimation algorithm, resulting in a resolution-dependent optimal noise filter. This provides a more insightful approach to spectral filtering techniques for noise reduction, since the data resolution parameter has not been directly incorporated in previous formulations of frequency-domain estimation problems for gravity field signals with discrete noisy data. Received: 1 November 2000 / Accepted: 19 June 2001  相似文献   

12.
 Global positioning system (GPS) carrier phase measurements are used in all precise static relative positioning applications. The GPS carrier phase measurements are generally processed using the least-squares method, for which both functional and stochastic models need to be carefully defined. Whilst the functional model for precise GPS positioning is well documented in the literature, realistic stochastic modelling for the GPS carrier phase measurements is still both a controversial topic and a difficult task to accomplish in practice. The common practice of assuming that the raw GPS measurements are statistically independent in space and time, and have the same accuracy, is certainly not realistic. Any mis-specification in the stochastic model will inevitably lead to unreliable positioning results. A stochastic assessment procedure has been developed to take into account the heteroscedastic, space- and time-correlated error structure of the GPS measurements. Test results indicate that the reliability of the estimated positioning results is improved by applying the developed stochastic assessment procedure. In addition, the quality of ambiguity resolution can be more realistically evaluated. Received: 13 February 2001 / Accepted: 3 September 2001  相似文献   

13.
Six sources of error in the use of Fourier methods for the conversion of geoid heights to gravity anomalies are considered. The errors due to spherical approximation are unimportant. The errors due to approximations in Stokes' integral may be eliminated by use of the gravity coating rather than the gravity anomaly. The chord-to-arc error and the truncation error may be reduced by using a reference field. Tapering of the edges of the measurement window reduces the truncation error. The long-wavelength components of the high degree spherical harmonics cause small offsets in the resulting gravity anomalies. The errors due to the plane approximation can be reduced by appropriate choice of map projection and area of integration.  相似文献   

14.
Summary The application of combined data (satellite and terrestrial data) to the practical computation of height anomalies or the deflections of the vertical was originally suggested by (Molodensky et al. 1962). This idea usually leads to the modification of Stokes' or Vening-Meinesz' functions in the integration procedure. In the recent decade there were various suggestions in this regard especially for the computation of height anomalies. For example, a considerable mathematical insight into the modification of Stokes' function and the truncation of its integral has been provided by (Meissl 1971, Houtze et al. 1979, Rapp 1980, Jekeli 1980). Five different methods for computing deflections of the vertical by modifying Vening-Meinesz' function are studied and compared with each other. The corresponding formulae, the values of the coefficients in each method and the estimations of their corresponding potential coefficient error and truncation error are given in this article. This paper was written at the Institut f. Angewandte Geod?sie, Technische Universit?t Graz, Austria.  相似文献   

15.
Two modifications of the Hotine formula using the truncation theory and marine gravity disturbances with altimetry data are developed and used to compute a marine gravimetric geoid in the Gulf Stream area. The purpose of the geoid computation from marine gravity information is to derive the absolute dynamic ocean topography based on the best estimate of the mean surface height from recent altimetry missions such as Geosat, ERS-1, and Topex. This paper also tries to overcome difficulties of using Fast Fourier Transformation (FFT) techniques to the geoid computation when the Hotine kernel is modified according to the truncation theory. The derived absolute dynamic ocean topography is compared with that from global circulation models such as POCM4B and POP96. The RMS difference between altimetry-derived and global circulation model dynamic ocean topography is at the level of 25cm. The corresponding mean difference for POCM4B and POP96 is only a few centimeters. This study also shows that the POP96 model is in slightly better agreement with the results derived from the Hotine formula and altimetry data than POCM4B in the Gulf Stream area. In addition, Hotine formula with modification (II) gives the better agreement with the results from the two global circulation models than the other techniques discussed in this paper. Received: 10 October 1996 / Accepted: 16 January 1998  相似文献   

16.
 When standard boundary element methods (BEM) are used in order to solve the linearized vector Molodensky problem we are confronted with two problems: (1) the absence of O(|x|−2) terms in the decay condition is not taken into account, since the single-layer ansatz, which is commonly used as representation of the disturbing potential, is of the order O(|x|−1) as x→∞. This implies that the standard theory of Galerkin BEM is not applicable since the injectivity of the integral operator fails; (2) the N×N stiffness matrix is dense, with N typically of the order 105. Without fast algorithms, which provide suitable approximations to the stiffness matrix by a sparse one with O(N(logN) s ), s≥0, non-zero elements, high-resolution global gravity field recovery is not feasible. Solutions to both problems are proposed. (1) A proper variational formulation taking the decay condition into account is based on some closed subspace of co-dimension 3 of the space of square integrable functions on the boundary surface. Instead of imposing the constraints directly on the boundary element trial space, they are incorporated into a variational formulation by penalization with a Lagrange multiplier. The conforming discretization yields an augmented linear system of equations of dimension N+3×N+3. The penalty term guarantees the well-posedness of the problem, and gives precise information about the incompatibility of the data. (2) Since the upper left submatrix of dimension N×N of the augmented system is the stiffness matrix of the standard BEM, the approach allows all techniques to be used to generate sparse approximations to the stiffness matrix, such as wavelets, fast multipole methods, panel clustering etc., without any modification. A combination of panel clustering and fast multipole method is used in order to solve the augmented linear system of equations in O(N) operations. The method is based on an approximation of the kernel function of the integral operator by a degenerate kernel in the far field, which is provided by a multipole expansion of the kernel function. Numerical experiments show that the fast algorithm is superior to the standard BEM algorithm in terms of CPU time by about three orders of magnitude for N=65 538 unknowns. Similar holds for the storage requirements. About 30 iterations are necessary in order to solve the linear system of equations using the generalized minimum residual method (GMRES). The number of iterations is almost independent of the number of unknowns, which indicates good conditioning of the system matrix. Received: 16 October 1999 / Accepted: 28 February 2001  相似文献   

17.
P. Moore 《Journal of Geodesy》2001,75(5-6):241-254
 Dual satellite crossovers (DXO) between the two European Remote Sensing satellites ERS-1 and ERS-2 and TOPEX/Poseidon are used to (1) refine the Earth's gravity field and (2) extend the study of the ERS-2 altimetric range stability to cover the first four years of its operation. The enhanced gravity field model, AGM-98, is validated by several methodologies and will be shown to provide, in particular, low geographically correlated orbital error for ERS-2. For the ERS-2 altimetric range study, TOPEX/Poseidon is first calibrated through comparison against in situ tide gauge data. A time series of the ERS-2 altimeter bias has been recovered along with other geophysical correction terms using tables for bias jumps in the range measurements at the single point target response (SPTR) events. On utilising the original version of the SPTR tables the overall bias drift is seen to be 2.6±1.0 mm/yr with an RMS of fit of 12.2 mm but with discontinuities at the centimetre level at the SPTR events. On utilising the recently released revised tables, SPTR2000, the drift is better defined at 2.4±0.6 mm/yr with the RMS of fit reduced to 3.7 mm. Investigations identify the sea-state bias as a source of error with corrections affecting the overall drift by close to 1.2 mm/yr. Received: 25 May 2000 / Accepted: 24 January 2001  相似文献   

18.
 The use of GPS for height control in an area with existing levelling data requires the determination of a local geoid and the bias between the local levelling datum and the one implicitly defined when computing the local geoid. If only scarse gravity data are available, the heights of new data may be collected rapidly by determining the ellipsoidal height by GPS and not using orthometric heights. Hence the geoid determination has to be based on gravity disturbances contingently combined with gravity anomalies. Furthermore, existing GPS/levelling data may also be used in the geoid determination if a suitable general gravity field modelling method (such as least-squares collocation, LSC) is applied. A comparison has been made in the Aswan Dam area between geoids determined using fast Fourier transform (FFT) with gravity disturbances exclusively and LSC using only the gravity disturbances and the disturbances combined with GPS/levelling data. The EGM96 spherical harmonic model was in all cases used in a remove–restore mode. A total of 198 gravity disturbances spaced approximately 3 km apart were used, as well as 35 GPS/levelling points in the vicinity and on the Aswan Dam. No data on the Nasser Lake were available. This gave difficulties when using FFT, which requires the use of gridded data. When using exclusively the gravity disturbances, the agreement between the GPS/levelling data were 0.71 ± 0.17 m for FFT and 0.63 ± 0.15 for LSC. When combining gravity disturbances and GPS/levelling, the LSC error estimate was ±0.10 m. In the latter case two bias parameters had to be introduced to account for a possible levelling datum difference between the levelling on the dam and that on the adjacent roads. Received: 14 August 2000 / Accepted: 28 February 2001  相似文献   

19.
R. Lehmann 《Journal of Geodesy》2000,74(3-4):327-334
 The definition and connection of vertical datums in geodetic height networks is a fundamental problem in geodesy. Today, the standard approach to solve it is based on the joint processing of terrestrial and satellite geodetic data. It is generalized to cases where the coverage with terrestrial data may change from region to region, typically across coastlines. The principal difficulty is that such problems, so-called altimetry–gravimetry boundary-value problems (AGPs), do not admit analytical solutions such as Stokes' integral. A numerical solution strategy for the free-datum problem is presented. Analysis of AGPs in spherical and constant radius approximation shows that two of them are mathematically well-posed problems, while the classical AGP-I may be ill posed in special situations. Received: 2 December 1998 / Accepted: 30 November 1999  相似文献   

20.
Meissel-Stokes核函数应用于区域大地水准面分析   总被引:1,自引:0,他引:1  
为提高区域大地水准面计算精度,基于EGM2008地球重力场位系数模型分析Meissel-Stokes核函数、截断误差系数以及截断误差。选取实验区,采用移去-恢复法评价Meissel-Stokes核函数计算大地水准面的精度。结果表明:Meissel-Stokes核函数及其截断误差系数收敛速度快;截断误差小且稳定。在积分半径不易扩展的情况下,应用Meissel-Stokes核函数计算区域大地水准面,比标准Stokes计算大地水准面精度略高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号