首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variable-grid atmospheric general circulation model, LMDZ, with a local zoom over southeast China is used to investigate regional climate changes in terms of both means and extremes. Two time slices of 30?years are chosen to represent, respectively, the end of the 20th century and the middle of the 21st century. The lower-boundary conditions (sea-surface temperature and sea-ice extension) are taken from the outputs of three global coupled climate models: Institut Pierre-Simon Laplace (IPSL), Centre National de Recherches Météorologiques (CNRM) and Geophysical Fluid Dynamics Laboratory (GFDL). Results from a two-way nesting system between LMDZ-global and LMDZ-regional are also presented. The evaluation of simulated temperature and precipitation for the current climate shows that LMDZ reproduces generally well the spatial distribution of mean climate and extreme climate events in southeast China, but the model has systematic cold biases in temperature and tends to overestimate the extreme precipitation. The two-way nesting model can reduce the ??cold bias?? to some extent compared to the one-way nesting model. Results with greenhouse gas forcing from the SRES-A2 emission scenario show that there is a significant increase for mean, daily-maximum and minimum temperature in the entire region, associated with a decrease in the number of frost days and an increase in the heat wave duration. The annual frost days are projected to significantly decrease by 12?C19?days while the heat wave duration to increase by about 7?days. A warming environment gives rise to changes in extreme precipitation events. Except two simulations (LMDZ/GFDL and LMDZ/IPSL2) that project a decrease in maximum 5-day precipitation (R5d) for winter, other precipitation extremes are projected to increase over most of southeast China in all seasons, and among the three global scenarios. The domain-averaged values for annual simple daily intensity index (SDII), R5d and fraction of total rainfall from extreme events (R95t) are projected to increase by 6?C7, 10?C13 and 11?C14%, respectively, relative to their present-day values. However, it is clear that more research will be needed to assess the uncertainties on the projection in future of climate extremes at local scale.  相似文献   

2.
IPCC A2情景下中国区域气候变化的数值模拟   总被引:9,自引:1,他引:8  
在政府间气候变化委员会(IPCC)排放情景特别报告 (SRES)的A2情景下,利用CSIRO Mark3海气耦合模式模拟现代和未来2个10年的模拟结果,驱动MM5区域气候模式进行中国未来区域气候变化的数值模拟试验,研究了IPCC A2情景下未来中国温度、降水和环流等的变化趋势.结果表明,(1)区域气候模式MM5V3能够再现气候平均环流、降水和温度分布的主要特征,具有较好的区域气候变化模拟能力;(2)IPCC A2情景下,未来中国平均地面气温将有明显的升高,特别是中国的东北、西北和西南地区增幅超过了1 ℃.冬季,地面平均气温的增幅由南至北逐渐增加;夏季,在内蒙和中国西南地区有明显的增温.伴随温度的升高,降水也有明显的变化,年平均降水在中国的东北地区、江淮流域及以南大部分地区都有明显的增强,而中国华北部分地区及西南、西北大部分地区降水将呈减少趋势.不同季节不同地区的降水变化也不同,秋季华北、华南和江淮地区降水都增加,而冬季减少.降水的年内变化也有所增强.  相似文献   

3.
A terrestrial ecosystem model (Sim-CYCLE) was driven by multiple climate projections to investigate uncertainties in predicting the interactions between global environmental change and the terrestrial carbon cycle. Sim-CYCLE has a spatial resolution of 0.5°, and mechanistically evaluates photosynthetic and respiratory CO2 exchange. Six scenarios for atmospheric-CO2 concentrations in the twenty-first century, proposed by the Intergovernmental Panel on Climate Change, were considered. For each scenario, climate projections by a coupled atmosphere–ocean general circulation model (AOGCM) were used to assess the uncertainty due to socio-economic predictions. Under a single CO2 scenario, climate projections with seven AOGCMs were used to investigate the uncertainty stemming from uncertainty in the climate simulations. Increases in global photosynthesis and carbon storage differed considerably among scenarios, ranging from 23 to 37% and from 24 to 81 Pg C, respectively. Among the AOGCM projections, increases ranged from 26 to 33% and from 48 to 289 Pg C, respectively. There were regional heterogeneities in both climatic change and carbon budget response, and different carbon-cycle components often responded differently to a given environmental change. Photosynthetic CO2 fixation was more sensitive to atmospheric CO2, whereas soil carbon storage was more sensitive to temperature. Consequently, uncertainties in the CO2 scenarios and climatic projections may create additional uncertainties in projecting atmospheric-CO2 concentrations and climates through the interactive feedbacks between the atmosphere and the terrestrial ecosystem.  相似文献   

4.
Arctic climate change in the Twenty-first century is simulated by the Community Climate System Model version 3.0 (CCSM3). The simulations from three emission scenarios (A2, A1B and B1) are analyzed using eight (A1B and B1) or five (A2) ensemble members. The model simulates a reasonable present-day climate and historical climate trend. The model projects a decline of sea-ice extent in the range of 1.4–3.9% per decade and 4.8–22.2% per decade in winter and summer, respectively, corresponding to the range of forcings that span the scenarios. At the end of the Twenty-first century, the winter and summer Arctic mean surface air temperature increases in a range of 4–14°C (B1 and A2) and 0.7–5°C (B1 and A2) relative to the end of the Twentieth century. The Arctic becomes ice-free during summer at the end of the Twenty-first century in the A2 scenario. Similar to the observations, the Arctic Oscillation (AO) is the dominant factor in explaining the variability of the atmosphere and sea ice in the 1870–1999 historical runs. The AO shifts to the positive phase in response to greenhouse gas forcings in the Twenty-first century. But the simulated trends in both Arctic mean sea-level pressure and the AO index are smaller than what has been observed. The Twenty-first century Arctic warming mainly results from the radiative forcing of greenhouse gases. The 1st empirical orthogonal function (explains 72.2–51.7% of the total variance) of the wintertime surface air temperature during 1870–2099 is characterized by a strong warming trend and a “polar amplification”-type of spatial pattern. The AO, which plays a secondary role, contributes to less than 10% of the total variance in both surface temperature and sea-ice concentration.  相似文献   

5.
6.
利用MM5V3区域气候模式单向嵌套ECHAM5全球环流模式的结果,对中国地区实际温室气体浓度下当代气候(1981—2000年)及IPCC A1B情景下21世纪中期气候(2041—2060年)分别进行了水平分辨率为50 km的模拟试验。首先检验全球和区域模式对当代气候的模拟情况,结果表明:区域模式对中国地区地面温度和降水空间分布的模拟能力优于全球模式;与实际观测相比,区域模式模拟的地面温度在中国大部分地区偏低,模拟的降水量偏多,降水位置偏北。IPCCA1B情景下中国地区21世纪中期气候变化的模式结果显示:各季节地面温度在全国范围内都将比当代升高1.2~3.9℃,且升温幅度具有北方大于南方、冬季大于夏季的时空分布特征;降水变化具有一定的区域性和季节性,秋季和冬季降水在全国大部分地区都将增加10%~30%,春季和夏季降水则呈现"北方减少、南方增多"的趋势,变化幅度在-10%~10%之间。21世纪中期地面温度和降水变化还具有一定的年际特征:地面温度在中国地区各子区域均表现为上升趋势,升温速率在0.7~0.9℃/10a之间,温度变率也比当代有所增大;降水在西北地区略呈下降趋势,在其它子区域均为上升,降水变率的变化具有区域性特征。  相似文献   

7.
The response of the South Pacific Convergence Zone (SPCZ) to climate change is examined using simulations from 16 coupled climate models under the A2 emission scenario carried out for the Intergovernmental Panel on Climate Change Fourth Assessment Report. Characteristics of the austral summer SPCZ in the late twenty-first century are compared with the late twentieth century: the orientation and latitude of the SPCZ precipitation band; the area and intensity of precipitation within the SPCZ; and the eastern extent of the SPCZ. Changes in the SPCZ position are examined using a simple linear fit to the band of maximum precipitation and using a “pattern matching” technique. Both techniques find no consistent shift in the slope or mean latitude of the austral summer SPCZ. However, many models simulate a westward shift in the eastern edge of the SPCZ in austral summer, with reduced precipitation to the east of around 150°W. The westward contraction of the SPCZ is associated with a strengthening of the trade winds in the southeast Pacific and an increased zonal sea surface temperature gradient across the South Pacific. The majority of models simulate an increase in the area of the SPCZ and in mean and maximum precipitation within the SPCZ, defined by a 6?mm/day precipitation threshold, consistent with increased moisture convergence in a warmer climate. Changes in the SPCZ response to ENSO are examined using ENSO precipitation composites. The SPCZ has a reduced slope and is shifted towards the equator in the A2 multi-model mean El Ni?o composite.  相似文献   

8.
A scenario of European climate change for the late twenty-first century is described, using a high-resolution state-of-the-art model. A time-slice approach is used, whereby the atmospheric general circulation model, HadAM3P, was integrated for two periods, 1960–1990 and 2070–2100, using the SRES A2 scenario. For the first time an ensemble of such experiments was produced, along with appropriate statistical tests for assessing significance. The focus is on changes to the statistics of seasonal means, and includes analysis of both multi-year means and interannual variance. All four seasons are assessed, and anomalies are mapped for surface air temperature, precipitation and snow mass. Mechanisms are proposed where these are dominated by straightforward local processes. In winter, the largest warming occurs over eastern Europe, up to 7°C, mean snow mass is reduced by at least 80% except over Scandinavia, and precipitation increases over all but the southernmost parts of Europe. In summer, temperatures rise by 6–9°C south of about 50°N, and mean rainfall is substantially reduced over the same area. In spring and autumn, anomalies tend to be weaker, but often display patterns similar to the preceding season, reflecting the inertia of the land surface component of the climate system. Changes in interannual variance are substantial in the solsticial seasons for many regions (note that for precipitation, variance estimates are scaled by the square of the mean). In winter, interannual variability of near-surface air temperature is considerably reduced over much of Europe, and the relative variability of precipitation is reduced north of about 50°N. In summer, the (relative) interannual variance of both variables increases over much of the continent.  相似文献   

9.
四川盆地东部盛夏旱涝气候的形成和变化与太阳活动影响有关 ,它们都具有以11年和33年为基调的变化周期.盆东盛夏旱涝气候变化以33年为主要周期.根据NI功率谱和方差分析,预计:1990年至2022年盛夏气候变化将进入一个新周期,其中,21世纪初(前十年)为伏旱年代;21世纪10年代为轻无伏旱年代.  相似文献   

10.
Decadal potential predictability of twenty-first century climate   总被引:2,自引:1,他引:1  
George J. Boer 《Climate Dynamics》2011,36(5-6):1119-1133
Decadal prediction of the coupled climate system is potentially possible given enough information and knowledge. Predictability will reside in both externally forced and in long timescale internally generated variability. The ??potential predictability?? investigated here is characterized by the fraction of the total variability accounted for by these two components in the presence of short-timescale unpredictable ??noise?? variability. Potential predictability is not a classical measure of predictability nor a measure of forecast skill but it does identify regions where long timescale variability is an appreciable fraction of the total and hence where prediction on these scale may be possible. A multi-model estimate of the potential predictability variance fraction (ppvf) as it evolves through the first part of the twenty-first century is obtained using simulation data from the CMIP3 archive. Two estimates of potential predictability are used which depend on the treatment of the forced component. The multi-decadal estimate considers the magnitude of the forced component as the change from the beginning of the century and so becomes largely a measure of climate change as the century progresses. The next-decade estimate considers the change in the forced component from the past decade and so is more pertinent to an actual forecast for the next decade. Long timescale internally generated variability provides additional potential predictability beyond that of the forced component. The ppvf may be expressed in terms of a signal-to-noise ratio and takes on values between 0 and 1. The largest values of the ppvf for temperature are found over tropical and mid-latitude oceans, with the exception of the equatorial Pacific, and some but not all tropical land areas. Overall the potential predictability for temperature generally declines with latitude and is relatively low over mid- to high-latitude land. Potential predictability for precipitation is generally low and due almost entirely to the forced component and then mainly at high latitudes. To the extent that the multi-model ppvf reflects both the behaviour of the actual climate system and the possibility of decadal prediction, the results give some indication as to where and to what extent decadal forecasts might be possible.  相似文献   

11.
12.
A large component of present-day sea-level rise is due to the melt of glaciers other than the ice sheets. Recent projections of their contribution to global sea-level rise for the twenty-first century range between 70 and 180 mm, but bear significant uncertainty due to poor glacier inventory and lack of hypsometric data. Here, we aim to update the projections and improve quantification of their uncertainties by using a recently released global inventory containing outlines of almost every glacier in the world. We model volume change for each glacier in response to transient spatially-differentiated temperature and precipitation projections from 14 global climate models with two emission scenarios (RCP4.5 and RCP8.5) prepared for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The multi-model mean suggests sea-level rise of 155 ± 41 mm (RCP4.5) and 216 ± 44 mm (RCP8.5) over the period 2006–2100, reducing the current global glacier volume by 29 or 41 %. The largest contributors to projected global volume loss are the glaciers in the Canadian and Russian Arctic, Alaska, and glaciers peripheral to the Antarctic and Greenland ice sheets. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 80 % of their volume by 2100. However, large uncertainties in the projections remain due to the choice of global climate model and emission scenario. With a series of sensitivity tests we quantify additional uncertainties due to the calibration of our model with sparsely observed glacier mass changes. This gives an upper bound for the uncertainty range of ±84 mm sea-level rise by 2100 for each projection.  相似文献   

13.
A scenario of the Mediterranean Sea is performed for the twenty-first century based on an ocean modelling approach. A climate change IPCC-A2 scenario run with an atmosphere regional climate model is used to force a Mediterranean Sea high-resolution ocean model over the 1960–2099 period. For comparison, a control simulation as long as the scenario has also been carried out under present climate fluxes. This control run shows air–sea fluxes in agreement with observations, stable temperature and salinity characteristics and a realistic thermohaline circulation simulating the different intermediate and deep water masses described in the literature. During the scenario, warming and saltening are simulated for the surface (+3.1°C and + 0.48 psu for the Mediterranean Sea at the end of the twenty-first century) and for the deeper layers (+1.5°C and + 0.23 psu on average). These simulated trends are in agreement with observed trends for the Mediterranean Sea over the last decades. In addition, the Mediterranean thermohaline circulation (MTHC) is strongly weakened at the end of the twenty-first century. This behaviour is mainly due to the decrease in surface density and so the decrease in winter deep-water formation. At the end of the twenty-first century, the MTHC weakening can be evaluated as −40% for the intermediate waters and −80% for the deep circulation with respect to present-climate conditions. The characteristics of the Mediterranean Outflow Waters flowing into the Atlantic Ocean are also strongly influenced during the scenario.  相似文献   

14.
Summary South Asian summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models assessed as part of the Intergovernmental Panel on Climate Change Fourth Assessment. Out of the 22 models examined, 19 are able to capture the maximum rainfall during the summer monsoon period (June through September) with varying amplitude. While two models are unable to reproduce the annual cycle well, one model is unable to simulate the summer monsoon season. The simulated inter-annual variability from the 19 models is examined with respect to the mean precipitation, coefficient of variation, long-term trends and the biennial tendency. The model simulated mean precipitation varies from 500 mm to 900 mm and coefficient of variation from 3 to 13%. While seven models exhibit long-term trends, eight are able to simulate the biennial nature of the monsoon rainfall. Six models, which generate the most realistic 20th century monsoon climate over south Asia, are selected to examine future projections under the doubling CO2 scenario. Projections reveal a significant increase in mean monsoon precipitation of 8% and a possible extension of the monsoon period based on the multi-model ensemble technique. Extreme excess and deficient monsoons are projected to intensify. The projected increase in precipitation could be attributed to the projected intensification of the heat low over northwest India, the trough of low pressure over the Indo-Gangetic plains, and the land–ocean pressure gradient during the establishment phase of the monsoon. The intensification of these pressure systems could be attributed to the decline in winter/spring snowfall. Furthermore, a decrease of winter snowfall over western Eurasia is also projected along with an increase of winter snowfall over Siberia/eastern Eurasia. This projected dipole snow configuration during winter could imply changes in mid-latitude circulation conducive to subsequent summer monsoon precipitation activity. An increase in precipitable water of 12–16% is projected over major parts of India. A maximum increase of about 20–24% is found over the Arabian Peninsula, adjoining regions of Pakistan, northwest India and Nepal. Although the projected summer monsoon circulation appears to weaken, the projected anomalous flow over the Bay of Bengal (Arabian Sea) will support oceanic moisture convergence towards the southern parts of India and Sri Lanka (northwest India and adjoining regions). The ENSO-Monsoon relationship is also projected to weaken.  相似文献   

15.
 The potential climatic consequences of increasing atmospheric greenhouse gas (GHG) concentration and sulfate aerosol loading are investigated for the years 1900 to 2100 based on five simulations with the CCCma coupled climate model. The five simulations comprise a control experiment without change in GHG or aerosol amount, three independent simulations with increasing GHG and aerosol forcing, and a simulation with increasing GHG forcing only. Climate warming accelerates from the present with global mean temperatures simulated to increase by 1.7 °C to the year 2050 and by a further 2.7 °C by the year 2100. The warming is non-uniform as to hemisphere, season, and underlying surface. Changes in interannual variability of temperature show considerable structure and seasonal dependence. The effect of the comparatively localized negative radiative forcing associated with the aerosol is to retard and reduce the warming by about 0.9 °C at 2050 and 1.2 °C at 2100. Its primary effect on temperature is to counteract the global pattern of GHG-induced warming and only secondarily to affect local temperatures suggesting that the first order transient climate response of the system is determined by feedback processes and only secondarily by the local pattern of radiative forcing. The warming is accompanied by a more active hydrological cycle with increases in precipitation and evaporation rates that are delayed by comparison with temperature increases. There is an “El Nino-like” shift in precipitation and an overall increase in the interannual variability of precipitation. The effect of the aerosol forcing is again primarily to delay and counteract the GHG-induced increase. Decreases in soil moisture are common but regionally dependent and interannual variability changes show considerable structure. Snow cover and sea-ice retreat. A PNA-like anomaly in mean sea-level pressure with an enhanced Aleutian low in northern winter is associated with the tropical shift in precipitation regime. The interannual variability of mean sea-level pressure generally decreases with largest decreases in the tropical Indian ocean region. Changes to the ocean thermal structure are associated with a spin-down of the Atlantic thermohaline circulation together with a decrease in its variability. The effect of aerosol forcing, although modest, differs from that for most other quantities in that it does not act primarily to counteract the GHG forcing effect. The barotropic stream function in the ocean exhibits modest change in the north Pacific but accelerating changes in much of the Southern Ocean and particularly in the north Atlantic where the gyre spins down in conjunction with the decrease in the thermohaline circulation. The results differ in non-trivial ways from earlier equilibrium 2 × CO2 results with the CCCma model as a consequence of the coupling to a fully three-dimensional ocean model and the evolving nature of the forcing. Received: 24 September 1998 / Accepted: 8 October 1999  相似文献   

16.
Summary The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). Out of the 22 models examined, 14 reproduce the observed shape of the annual cycle well with peak during the boreal summer (June through August), but with varying magnitude. Three models simulate the maximum a month later and with lower magnitudes. Only one model considerably underestimates the magnitude of the annual cycle. The remaining 4 models show some deviations from the observed. Models are unable to simulate the minimum in July with peaks in June and August associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The realistic simulation of the annual cycle does not appear to depend on the model resolution. The inter-model variation is slightly larger during summer, implying larger diversity of the models in simulating summer monsoon precipitation. The spatial rainfall patterns are reasonably well simulated by most of the models, with several models able to simulate the precipitation associated with the Meiyu-Changma-Baiu frontal zone and that associated with the location of the subtropical high over the north Pacific. Simulated spatial distribution could be sensitive to model resolution as evidenced by two versions of MIROC3.2 model. The multi-model ensemble (MME) pattern reveals an underestimation of seasonal precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions. This may be related with the mass-flux based scheme employed for convective parameterization by majority of the models. Further the inter-model variation of precipitation is about 2 times stronger south of 30° N, than north of this latitude, indicating larger diversity of the coupled models in simulating low latitude precipitation. The simulated inter-annual variability is estimated by computing the mean summer monsoon seasonal rainfall and the coefficient of variability (CV). In general the mean observed seasonal precipitation of 542 mm and CV of 6.7% is very well simulated by most of the models. Except for one model mean seasonal precipitation varies from 400 to 650 mm. However the CV varies from 2 to 9%. Future projections under the radiative forcing of doubled CO2 scenario are examined for individual models and by the MME technique. Changes in mean precipitation and variability are tested by the t-test and F-ratio respectively to evaluate their statistical significance. The changes in mean precipitation vary from −0.6% (CNRM-CM3) to about 14% (ECHO-G; UKMO-HadCM3). The MME technique reveals an increase varying from 5 to 10%, with an average of 7.8% (greater than the observed CV of 6.7%) over the East Asian region. However the increases are significant over the Korea-Japan peninsula and the adjoining north China region only. The increases may be attributed to the projected intensification of the subtropical high, Meiyu-Changma-Baiu frontal zone and the associated influx of moist air from the Pacific inland. The projected changes in the amount of precipitation are directly proportional to the projected changes in the strength of the subtropical high. Further the MME suggests a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn. The changes in precipitation could be stabilized by controlling the CO2 emissions.  相似文献   

17.
18.
Changes in indices related to frost and snow in Europe by the end of the twenty-first century were analyzed based on experiments performed with seven regional climate models (RCMs). All the RCMs regionalized information from the same general circulation model (GCM), applying the IPCC-SRES A2 radiative forcing scenario. In addition, some simulations used SRES B2 radiative forcing and/or boundary conditions provided by an alternative GCM. Ice cover over the Baltic Sea was examined using a statistical model that related the annual maximum extent of ice to wintertime coastal temperatures. Fewer days with frost and snow, shorter frost seasons, a smaller liquid water equivalent of snow, and milder sea ice conditions were produced by all model simulations, irrespective of the forcing scenario and the driving GCM. The projected changes have implications across a diverse range of human activities. Details of the projections were subject to differences in RCM design, deviations between the boundary conditions of the driving GCMs, uncertainties in future emissions and random effects due to internal climate variability. A larger number of GCMs as drivers of the RCMs would most likely have resulted in somewhat wider ranges in the frost, snow and sea ice estimates than those presented in this paper.  相似文献   

19.
A mechanism for the multi-decadal climate oscillation in the North Pacific   总被引:1,自引:0,他引:1  
Summary Analysis of both instrumental and proxy climate records indicates the existence of multi-decadal climate variations (about 40–70 years) over the northern hemisphere. A simple model for the midlatitude ocean-atmosphere coupled system is presented to discuss a possible mechanism for this multi-decadal variation. Slow dynamic adjustments of the ocean due to the Rossby wave coupled with the meridional heat exchange through the thermal advection in the upper layer of the ocean play an important role in inducing this multi-decadal oscillation. Authors’ address: Soon-Il An, Department of Atmospheric Sciences/Global Environmental Laboratory, Yonsei University, 134 Shinchon-dong, Seodaemu-gu, Seoul 120-749, Korea.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号