首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is not clear how the frequency and amplitude of droughts have varied over the past 500 years in China, as the instrumental record is too short to identify centennial-scale trends. While the Monsoon Asia Drought Atlas (MADA) provides some insights into past drought patterns, its accuracy in eastern China remains uncertain. A comparison of the MADA and Chinese historical documents indicates that the MADA alone cannot effectively represent dryness and wetness in eastern China, so it is not appropriate to use the MADA in this region.  相似文献   

2.
Various SST indices in the Indo-Pacific region have been proposed in the literature in light of a long-range seasonal forecasting of the Indian Summer Monsoon (ISM). However, the dynamics associated with these different indices have never been compared in detail. To this end, the present work re-examines the variabilities of ISM rainfall, onset and withdrawal dates at interannual timescales and explores their relationships with El Ni?o-Southern Oscillation (ENSO) and various modes of coupled variability in the Indian Ocean. Based on recent findings in the literature, five SST indices are considered here: Ni?o3.4 SST index in December?CJanuary both preceding [Nino(?1)] and following the ISM [Nino(0)], South East Indian Ocean (SEIO) SST in February?CMarch, the Indian Ocean Basin (IOB) mode in April?CMay and, finally, the Indian Ocean Dipole (IOD) averaged from September to November, also, both preceding [IOD(?1)] and following the ISM [IOD(0)]. The respective merits and associated dynamics of the selected indices are compared through various correlation and regression analyses. Our first result is a deceptive one: the statistical relationships with the ISM rainfall at the continental and seasonal scales are modest and only barely significant, particularly for the IOD, IOB and Nino(?1) indices. However, a detailed analysis shows that statistical relationships with the ISM rainfall time series are statistically biased as the ISM rainfall seems to be shaped by much intraseasonal variability, linked in particular to the timing of the onset and withdrawal of the ISM. Surprisingly, analysis within the ISM season shows that Nino(?1), IOB and SEIO indices give rise to prospects of comparatively higher ISM previsibility for both the ISM onset and the amount of rainfall during the second half of the ISM season. The IOD seems to play only a secondary role. Moreover, our work shows that these indices are associated with distinct processes occurring within the Indian Ocean from late boreal winter or early spring onwards. The regression analyses also illustrate that these (local) mechanisms are dynamically and remotely linked to different phases of ENSO in the equatorial Pacific, a result which may have useful implications in terms of forecasting strategies since the choice of the better indices then hinges on the concurrent phasing of the ENSO cycle.  相似文献   

3.
Effects of climate change are frequently claimed to be responsible for widespread civil violence. Yet, scientists remain divided on this issue, and recent studies suggest that conflict risk increases with higher rainfall, loss of rainfall, higher temperatures or none of the above. Lack of scientific consensus is driven by differences in data, methods, and samples, but may also reflect a fragile and inconsistent correlation for the habitual spatiotemporal domain, Sub-Saharan Africa post-1980. This study presents a comprehensive, multi-scale empirical evaluation of climate-conflict connections across Asia, the continent with the highest conflict rate per country. We find little evidence that interannual climate variability and anomalies are linked to historical conflict risk in the simple and general manner proposed by some earlier research. Although a significant parameter coefficient can be obtained under certain specifications, the direction and magnitude of the climate effects are inconsistent and sensitive to research design. Instead, Asian civil wars share central features with violent events elsewhere, proving the main correlates of contemporary armed conflict to be economic and socio-political rather than climatological.  相似文献   

4.
5.
This study examines the variability of the monthly average significant wave height (SWH) field in the Mediterranean Sea, in the period 1958–2001. The analysed data are provided by simulations carried out using the WAM model (WAMDI group, 1988) forced by the wind fields of the ERA-40 (ECMWF Re-Analysis). Comparison with buoy observations, satellite data, and simulations forced by higher resolution wind fields shows that, though results underestimate the actual SWH, they provide a reliable representation of its real space and time variability. Principal component analysis (PCA) shows that the annual cycle is characterised by two main empirical orthogonal functions (EOF) patterns. Most inter-monthly variability is associated with the first EOF, whose positive/negative phase is due to the action of Mistral/Etesian wind regimes. The second EOF is related to the action of southerly winds (Libeccio and Sirocco). The annual cycle presents two main seasons, winter and summer characterised, the first, by the prevalence of eastwards and southeastwards propagating waves all over the basin, and the second, by high southwards propagating waves in the Aegean Sea and Levantin Basin. Spring and fall are transitional seasons, characterised by northwards and northeastwards propagating waves, associated to an intense meridional atmospheric circulation, and by attenuation and amplification, respectively, of the action of Mistral. These wave field variability patterns are associated with consistent sea level pressure (SLP) and surface wind field structures. The intensity of the SWH field shows large inter-annual and inter-decadal variability and a statistically significant decreasing trend of mean winter values. The winter average SWH is anti-correlated with the winter NAO (North Atlantic Oscillation) index, which shows a correspondingly increasing trend. During summer, a minor component of the wave field inter-annual variability (associated to the second EOF) presents a statistically significant correlation with the Indian Monsoon reflecting its influence on the meridional Mediterranean circulation. However, the SLP patterns associated with the SWH inter-annual variability reveal structures different from NAO and Monsoon circulation. In fact, wave field variability is conditioned by regional storminess in combination with the effect of fetch. The latter is likely to be the most important. Therefore, the inter-annual variability of the mean SWH is associated to SLP patterns, which present their most intense features above or close to Mediterranean region, where they are most effective for wave generation.
P. LionelloEmail:
  相似文献   

6.
Regional variability of climate change hot-spots in East Asia   总被引:2,自引:0,他引:2  
The regional climate change index (RCCI) is employed to investigate hot-spots under 21st century global warming over East Asia. The RCCI is calculated on a 1-degree resolution grid from the ensemble of CMIP3 simulations for the B1, A1B, and A2 IPCC emission scenarios. The RCCI over East Asia exhibits marked sub-regional variability. Five sub-regional hot-spots are identified over the area of investigation: three in the northern regions (Northeast China, Mongolia, and Northwest China), one in eastern China, and one over the Tibetan Plateau. Contributions from different factors to the RCCI are discussed for the sub-regions. Analysis of the temporal evolution of the hot-spots throughout the 21st century shows different speeds of response time to global warming for the different sub-regions. Hot-spots firstly emerge in Northwest China and Mongolia. The Northeast China hot-spot becomes evident by the mid of the 21st century and it is the most prominent by the end of the century. While hot-spots are generally evident in all the 5 sub-regions for the A1B and A2 scenarios, only the Tibetan Plateau and Northwest China hot-spots emerge in the B1 scenario, which has the lowest greenhouse gas (GHG) concentrations. Our analysis indicates that sub-regional hot-spots show a rather complex spatial and temporal dependency on the GHG concentration and on the different factors contributing to the RCCI.  相似文献   

7.
东亚夏季风环流与ENSO循环的关系   总被引:9,自引:11,他引:9  
陈月娟  周任君  简俊 《高原气象》2002,21(6):536-545
采用NCEP/NCAR再分析资料和NCAR海温资料 ,对ENSO循环不同阶段东亚夏季风环流的变化进行了分析。计算了各年夏季风环流的强度系数及其与多年平均夏季风环流的相似系数和差异系数 ,分析它们与海温变化的关系。结果表明 :东亚夏季风环流强度有明显的年际变化和年代际变化 ,且与赤道东太平洋SST有较好的负相关关系 ,其中又以与三个月前的海温变化关系最好。在春季 (3~4月 )Nino 1+2区为冷、暖水时 ,当年夏季 (6~ 7月 )东亚季风区中 85 0hPa等压面上 >2m·s-1的经向风北伸纬度和东亚季风区的垂直经圈环流都有明显差异 ,在冷水期 >2m·s-1的经向风北伸纬度比暖水期高 ,季风环流圈的上升支北移 ,东亚夏季风环流较暖水期强。  相似文献   

8.
干旱受气候内部变率和外部强迫共同影响。本文利用地球系统模式CESM对历史时期和RCP8.5下的40个集合模拟的降水资料,并结合实际观测,研究了上述两因子对气象学干旱–标准化降水指数变化的贡献。通过对干旱频率、强度、持续时间、及最长持续时间的变化分析发现:在历史时期,气候内部变率对干旱变化起主要影响,而在未来(RCP8.5)情景下,外部强迫变得更为重要。本文建议,在利用模式模拟结果研究干旱变化时应考虑气候内部变率的影响。  相似文献   

9.
10.
11.
东亚季风区夏季风强度和降水的配置关系   总被引:10,自引:1,他引:10  
1979~2000年东亚地区夏季风强度和夏季总降水之间的关系被分为四种类型:A:强季风、强降水;B:强季风、弱降水;C:弱季风、强降水;D:弱季风、弱降水.通过研究不同关系对应的大气环流特征和SST异常,并分析不同要素在季风和降水关系变化中的作用,发现在季尺度上东亚季风区夏季风强度和地区同期降雨总量的关系具有多面性特征,此关系取决于环流场的整体配置,其中西太平洋副高﹑南亚高压和中高纬阻塞形式为三个起主导作用的因素.另外,海温变化对东亚季风和总降水的关系有明显的影响,尤其是北太平洋﹑印度洋和南海区域海温.合成分析结果表明500 hPa东亚异常波列和东亚夏季风强度密切相关,但波形与东亚季风区夏季总降水强弱没有明显联系.  相似文献   

12.
The atmospheric low frequency variability at a regional or global scale is represented by teleconnection. Using monthly dataset of the Climatic Research Unit (CRU) for the period 1971–2016, the impacts of four large-scale teleconnection patterns on the climate variability over Southwest Asia are investigated. The large-scale features include the El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and the East Atlantic (EA) teleconnection patterns, as well as western tropical Indian Ocean (WTIO) sea surface temperature anomaly index. Results indicate that ENSO and EA are the first leading modes that explain variation of Southwest Asian precipitation, with positive (negative) anomalies during El Niño (La Niña) and the negative (positive) phase of EA. Variation of Southwest Asian near-surface temperature is most strongly related to WTIO index, with above-average (below-average) temperature during the positive (negative) phase of WTIO index, although the negative (positive) phase of NAO also favours the above-average (below-average) temperature. On the other hand, temperature (precipitation) over Southwest Asia shows the least response to ENSO (WTIO). ENSO and EA individually explain 13 percent annual variance of precipitation, while WTIO index explains 36 percent annual variance of near-surface temperature over Southwest Asia. Analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis Interim (ERA-Interim) data indicated establishments of negative (positive) geopotential height anomalies in the middle troposphere over Southwest Asia during El Niño (La Niña) or the negative (positive) phase of NAO, EA and WTIO. The response of precipitation variability over Southwest Asia to NAO is opposite to that expected from the geopotential height anomalies, but the correlation between precipitation and NAO is not statistically significant. Due to predictability of large-scale teleconnections, results of this study are encouraging for improvement of the state-of-the-art seasonal prediction of the climate over Southwest Asia.  相似文献   

13.
东南亚地区夏季风异常对云南2005年初夏干旱的影响   总被引:7,自引:0,他引:7  
刘瑜  赵尔旭  孙丹  琚建华 《气象》2006,32(6):91-96
2005年春末夏初云南大部地区出现了50年一遇的高温干旱天气,通过对东南亚地区的水汽及对流进行诊断分析,发现中南半岛地区夏季风爆发的早迟与云南雨季开始的早迟有显著的正相关关系;前期4月孟加拉湾水汽向北输送强(弱)以及苏门答腊岛附近的对流活动强(弱),则云南雨季开始早(迟)。分析表明造成云南2005年初夏干旱的主要原因是中南半岛地区的夏季风爆发较常年偏晚,前期孟加拉湾地区的经向水汽输送以及苏门答腊岛附近的对流活动较常年偏弱。  相似文献   

14.
In this study, we analysed decadal and long-term steric sea level variations over 1966–2007 period in the Indo-Pacific sector, using an ocean general circulation model forced by reanalysis winds. The simulated steric sea level compares favourably with sea level from satellite altimetry and tide gauges at interannual and decadal timescales. The amplitude of decadal sea level variability (up to ~5 cm standard deviation) is typically nearly half of the interannual variations (up to ~10 cm) and two to three times larger than long-term sea level variations (up to 2 cm). Zonal wind stress varies at decadal timescales in the western Pacific and in the southern Indian Ocean, with coherent signals in ERA-40 (from which the model forcing is derived), NCEP, twentieth century and WASWind products. Contrary to the variability at interannual timescale, for which there is a tendency of El Niño and Indian Ocean Dipole events to co-occur, decadal wind stress variations are relatively independent in the two basins. In the Pacific, those wind stress variations drive Ekman pumping on either side of the equator, and induce low frequency sea level variations in the western Pacific through planetary wave propagation. The equatorial signal from the western Pacific travels southward to the west Australian coast through equatorial and coastal wave guides. In the Indian Ocean, decadal zonal wind stress variations induce sea level fluctuations in the eastern equatorial Indian Ocean and the Bay of Bengal, through equatorial and coastal wave-guides. Wind stress curl in the southern Indian Ocean drives decadal variability in the south-western Indian Ocean through planetary waves. Decadal sea level variations in the south–western Indian Ocean, in the eastern equatorial Indian Ocean and in the Bay of Bengal are weakly correlated to variability in the Pacific Ocean. Even though the wind variability is coherent among various wind products at decadal timescales, they show a large contrast in long-term wind stress changes, suggesting that long-term sea level changes from forced ocean models need to be interpreted with caution.  相似文献   

15.
This paper analyzes the differences in the characteristics and spatio–temporal variabilities of summertime rainfall and water vapor transport between the East Asian summer monsoon(EASM) and South Asian summer monsoon(SASM) systems. The results show obvious differences in summertime rainfall characteristics between these two monsoon systems. The summertime rainfall cloud systems of the EASM show a mixed stratiform and cumulus cloud system, while cumulus cloud dominates the SASM. These differences may be caused by differences in the vertical shear of zonal and meridional circulations and the convergence of water vapor transport fluxes. Moreover, the leading modes of the two systems' summertime rainfall anomalies also differ in terms of their spatiotemporal features on the interannual and interdecadal timescales. Nevertheless, several close links with respect to the spatiotemporal variabilities of summertime rainfall and water vapor transport exist between the two monsoon systems. The first modes of summertime rainfall in the SASM and EASM regions reveal a significant negative correlation on the interannual and the interdecadal timescales. This close relationship may be linked by a meridional teleconnection in the regressed summertime rainfall anomalies from India to North China through the southeastern part over the Tibetan Plateau, which we refer to as the South Asia/East Asia teleconnection pattern of Asian summer monsoon rainfall. The authors wish to dedicate this paper to Prof. Duzheng YE, and commemorate his 100 thanniversary and his great contributions to the development of atmospheric dynamics.  相似文献   

16.
东亚夏季风期间水汽输送与西北干旱的关系   总被引:18,自引:18,他引:18  
利用西北(区)168个测站1961—2000年6~9月月平均降水与温度资料,采用EOF、REOF方法分析了近40年降水异常特征,同时利用同期NCEP/NCAR月平均再分析资料,分析了强(弱)夏季风年西北区水汽通量场的特征及夏季风西北影响区的净水汽通量。结果表明:西北区6~9月降水可分为7个气候异常区;东亚夏季风对我国降水的影响主要位于100°E以东的地区;东亚夏季风西北影响区降水的水汽来源于南风水汽通量;强夏季风年,到达东亚夏季风西北影响区的水汽通量显著增加,该区降水偏多,弱夏季风年则反之。  相似文献   

17.
Climate Dynamics - This study evaluates the influence of various climate modes on sea level. The altimetry record has excellent spatial coverage but the limited length becomes an issue when...  相似文献   

18.
Possible influences of three coupled ocean–atmosphere phenomena in the Indo-Pacific Oceans, El Niño, El Niño Modoki and the Indian Ocean Dipole (IOD), on summer climate in China are studied based on data analysis for the summers of 1951–2007. Partial correlation/regression analysis is used to find the influence paths through the related anomalous mid- and low-level tropospheric circulations over the oceanic region and East Eurasia, including the western North Pacific summer monsoon (WNPSM). Among the three phenomena, El Niño Modoki has the strongest relationship with the WNPSM. When two or three phenomena coexist with either positive or negative phase, the influences exerted by one phenomenon on summer climate in different regions of China may be enhanced or weakened by other phenomena. In 1994 when both El Niño Modoki and IOD are prominent without El Niño, a strong WNPSM is associated with severe flooding in southern China and severe drought in the Yangtze River Valley (YRV). The 500 hPa high systems over China are responsible for heat waves in most parts of China. In 1983 when a strong negative phase of El Niño Modoki is accompanied by moderate El Niño and IOD, a weak WNPSM is associated with severe flooding in the YRV and severe drought in southern China. The 500 hPa low systems over China are responsible for the cold summer in the YRV and northeastern China. For rainfall, the influence path seems largely through the low-level tropospheric circulations including the WNPSM. For temperature, the influence path seems largely through the mid-level tropospheric circulations over East Eurasia/western North Pacific Ocean.  相似文献   

19.
1.IntroductionThelargestinterannualvariabilityassociatedwiththeENSOcycleexistsinmonsoonregionsliketheAfricanmonsoon,Australianmonsoon,Pan--AmericanmonsoonandAsianmonsoon(RopelewskiandHalpert,1987;WebsterandYang,1992;JuandSlingo,1995).OnebasicquestionishowtorepresenttheAsianmonsoonanditsvariability.WebsterandYang(1992)foundareasonableindexbyaveragingthezonalwindshearbetween850hpaand200hpaovertheSouthAsianregion(40--110E,0--20N)todescribetheSouthAsianmonsooncirculationanditsvariability.…  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号