共查询到20条相似文献,搜索用时 477 毫秒
1.
L. Golub 《Astrophysics and Space Science》1996,237(1-2):33-48
The solar corona, and the coronae of solar-type stars, consist of a low-density magnetized plasma at temperatures exceeding
106 K. The primary coronal emission is therefore in the UV and soft x-ray range. The observed close connection between solar
magnetic fields and the physical parameters of the corona implies a fundamental role for the magnetic field in coronal structuring
and dynamics. Variability of the corona occurs on all temporal and spatial scales—at one extreme, as the result of plasma
instabilities, and at the other extreme driven by the global magnetic flux emergence patterns of the solar cycle. 相似文献
2.
The dynamic spectral characteristics of the thermal model for solar hard X-ray bursts recently proposed by Brown et al. (1979) (BMS) are investigated. It is pointed out that this model, in which a single source is heated impulsively and cooled by anomalous conduction across an ion-acoustic turbulent thermal front, predicts that the total source emission measure should rise as the temperature falls. This prediction, which is common to all conductively cooled single-source models, is contrary to observations of many simple spike bursts. It is proposed, therefore, that the hard X-ray source may consist of a distribution of many small impulsively-heated kernels, each cooled by anomalous conduction, with lifetimes shorter than current burst data temporal resolution. In this case the dynamic spectra of bursts are governed by the dynamic evolution of the kernel production process, such as magnetic-field dissipation in the tearing mode. An integral equation is formulated, the solution of which yields information on this kernel production process, from dynamic burst spectra, for any kernel model.With a BMS-type kernel model in one-dimensional form, the derived instantaneous spectra are limited in hardness to spectral indices 4 for any kernel production process, due to the nature of the conductive cooling. Ion-acoustic conductive cooling in three dimensions, however, increases the limiting spectral hardness to 3. Other forms of anomalous conduction yield similar results but could permit bursts as hard as 2, consistent with the hardest observed.The contribution to the X-ray spectrum from the escaping tail of high-energy kernel electrons in the BMS model is calculated in various limits. If this tail dissipates purely collisionally, for example, its thick-target bremsstrahlung can significantly modify the kernel spectrum at the high-energy end. The energetics of this dynamic dissipation model for thermal hard X-ray bursts also are briefly discussed.Now at: Department of Mathematics, University of Waikato, Hamilton, New Zealand. 相似文献
3.
David Batchelor 《Solar physics》1994,155(1):57-61
The first published three-dimensional images of the solar X-ray corona, obtained by means of solar rotational parallax, are presented in stereographic form. Image pairs approximately 12 hours apart during times of stable coronal conditions were selected from the digitized images obtained with theSkylab X-ray Spectrographic Telescope. The image resolution limit is approximately 10 arc sec. Many coronal structures not visible in the separate images are clearly observed when the image pairs are viewed stereoscopically. This method gives a preview of the potential resources for solar research and forecasting of solar-geomagnetic interactions that could be provided by stereoscopic observations of the Sun using a small group of spacecraft. The method is also applicable to other X-ray, ultraviolet, or other wavebands in which the corona has extended, transparent structure. 相似文献
4.
Dean F. Smith 《Solar physics》1980,66(1):135-148
Requirements for the number of nonthermal electrons which must be accelerated in the impulsive phase of a flare are reviewed. These are uncertain by two orders of magnitude depending on whether hard X-rays above 25 keV are produced primarily by hot thermal electrons which contain a small fraction of the flare energy or by nonthermal streaming electrons which contain > 50% of the flare energy. Possible acceleration mechanisms are considered to see to what extent either X-ray production scenario can be considered viable. Direct electric field acceleration is shown to involve significant heating. In addition, candidate primary energy release mechanisms to convert stored magnetic energy into flare energy, steady reconnection and the tearing mode instability, transfer at least half of the stored energy into heat and most of the remaining energy to ions. Acceleration by electron plasma waves requires that the waves be driven to large amplitude by electrons with large streaming velocities or by anisotropic ion-acoustic waves which also require streaming electrons for their production. These in turn can only come from direct electric field acceleration since it is shown that ion-acoustic waves excited by the primary current cannot amplify electron plasma waves. Thus, wave acceleration is subject to the same limitations as direct electric field acceleration. It is concluded that at most 0.1% of the flare energy can be deposited into nonthermal streaming electrons with the energy conversion mechanisms as they have been proposed and known acceleration mechanisms. Thus, hard X-ray production above 10 keV primarily by hot thermal electrons is the only choice compatible with models for the primary energy release as they presently exist. 相似文献
5.
Alan L. Kiplinger B. R. Dennis A. Gordon Emslie K. J. Frost L. E. Orwig 《Solar physics》1983,86(1-2):239-240
We present the results of a search for fast spikes in 5483 hard X-ray solar flares as observed with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission (SMM). Hundreds of fast spikes with durations of less than 1 second have been detected at time resolutions of 128 ms and 10 ms. Fast spikes have been detected with rise and decay times as short as 20 ms and with widths as short at 45 ms that represent the fastest hard X-ray variations yet seen from the Sun. The observations of such fast variations place new constraints on the physical nature of the source. 相似文献
6.
C. De Jager 《Solar physics》1967,2(3):347-350
Observationally solar X bursts fall into three different categories : soft X bursts (E < 10 keV), deka-keV bursts (10–150 keV), and very hard X bursts or deci-MeV bursts (200–1000 keV). The first kind is quasi-thermal, the last kind is non-thermal. The real existence of the third kind of burst looks probable but has not yet been proved by direct observations. The difference between deci-MeV and deka-keV bursts may mainly be a matter of geometry of the emitting plasma. 相似文献
7.
Near solar maximum, hard X-ray microflares with peak 20 keV fluxes of 10–2 (cm2 s keV)–1, more than ten times smaller than for typical flares and subflares, can occur at the rate of about once every five minutes. We report here on a search for hard X-ray microflares made on a long duration balloon flight in February 1987 near solar minimum, at a time when no active regions were on the Sun. No microflares were observed over a total observing time of 16.5 hours spread over three days, implying a statistical upper limit to their rate of occurrence about a factor often lower than observed near solar maximum. Thus hard X-ray microflaring appears to be an active region phenomenon, and apparently not associated with flaring of soft X-ray bright points. 相似文献
8.
9.
A number of solar X-ray events above 10 keV and 20 keV were compiled in order to test for evidence of anisotropic emission. The results are not definite, although the two samples show apparently different behaviours. 相似文献
10.
《Chinese Astronomy》1980,4(3):265-272
This article puts forward a new method for the theoretical analysis of the X-radiation spectrum of impulsive hard X-ray bursts. It points out that the electron density energy state function must obey the fundamental kinetic equation. In the case of several model source functions, the electron density energy spectra are deduced. This can serve as a basis for an analysis of the spectrum of X-radiaiton in impulsive hard X-ray bursts. The article also makes a preliminary discussion of these energy state functions which help to explain the phenomena of softening of the X-radiation spectrum. 相似文献
11.
The source positions of solar radio bursts of spectral types I, III(U) and III(J) and V observed by the Culgoora radioheliograph are found to lie almost radially above soft X-ray loops on pictures taken by the S-056 telescope aboard Skylab. The radio source positions and the X-ray loops occur near magnetic loops on computed potential field maps. However, the magnetic induction required to explain the radio observations is much greater than the computed potential field value at that height. Dense current-carrying magnetic flux tubes emanating from active regions on the Sun and extending to 1.5R
above the photosphere provide a satisfactory model for the radio bursts. 相似文献
12.
During a balloon flight in France on September 13, 1971, at altitude 32 000 m, the solar corona was cinematographed from 2 to 5R
during 5 hr, with an externally occulted coronagraph.Motions in coronal features, when they occur, exhibit deformations of structures with velocities not exceeding a few 10 km s–1; several streamers were often involved simultaneously; these variations are compatible with magnetic changes or sudden reorganizations of lines of forces.Intensity and polarization measurements give the electron density with height in the quiet corona above the equator. Electron density gradient for one of the streamers gives a temperature of 1.6 × 106 K and comparisons with the on-board Apollo 16 coronal observation of 31 July, 1971 are compatible with the extension of this temperature up to 25 R
bd.Three-dimensional structures and localizations of the streamers are deduced from combined photometry, polarimetry and ground-based K coronametry. Three of the four coronal streamers analysed have their axis bent with height towards the direction of the solar rotation, as if the upper corona has a rotation slightly faster than the chromosphere. 相似文献
13.
We have applied detailed theories of gyro-synchrotron emission and absorption in a magnetoactive plasma, X-ray production by the bremsstrahlung of non-thermal electrons on ambient hydrogen, and electron relaxation in a partially ionized and magnetized gas to the solar flare burst phenomenon. The hard X-ray and microwave bursts are shown to be consistent with a single source of non-thermal electrons, where both emissions arise from electrons with energies < mc
2. Further-more, the experimental X-ray and microwave data allow us to deduce the properties of the electron distribution, and the values of the ambient magnetic field, the hydrogen density, and the size of the emitting region. The proposed model, although derived mostly from observations of the 7 July 1966 flare, is shown to be representative of this type of event.NAS-NRC Resident Research Associate. 相似文献
14.
We review recent observations of polarization of moderately hard X-rays in solar flares and compare them with the predictions of recent detailed modeling of hard X-ray bremsstrahlung production by non-thermal electrons. We find that the recent advances in the complexity of the modeling lead to substantially lower predicted polarizations than in earlier models and more fully highlight how various parameters play a role in determining the polarization of the radiation field. The new predicted polarizations are comparable to those predicted by thermal modeling of solar flare hard X-ray production, and both are in agreement with the observations. In the light of these results, we propose new polarization observations with current generation instruments which could be used to discriminate between non-thermal and thermal models of hard X-ray production in solar flares. 相似文献
15.
We compared the microwave bursts with short timescale fine structure observed at 2.84 GHZ at Beijing Astronomical Observatory with the hard X-ry bursts (HXB) observed by the YOHKOH satellite during the period 1991 Oct–1992 Dec, and found that of the 20 microwave events, 12 had HXB counterparts. For the typical event of 1992-06-07, we analyzed the common quasi-period oscillations on the order of 102 s and calculated the parameters of the source region, together with a brief discussion. 相似文献
16.
G. Noci 《Solar physics》1981,69(1):63-76
The flows in a coronal magnetic arch associated with a pressure difference between the footpoints are investigated. Steady flows are of different types: always subsonic; subsonic in one branch of the arch, supersonic in the second; subsonic-supersonic with stationary shocks which adjust the flow to the boundary conditions in the second footpoint. The large velocity increase along the loop in subsonic-supersonic flows is associated with a large density decrease. A velocity drop and a density jump occur across the shock. The emission of such arches in coronal lines (625 of Mg x and 499 of Si xii) is calculated. It is suggested that the intensity drop along the axis observed in some UV loops is due to the density drop associated with subsonic-supersonic flows. 相似文献
17.
N. D'Angelo 《Solar physics》1969,7(2):321-328
The suggestion is advanced that heating of the solar corona results from Landau damping of ion-acoustic waves generated in the motion of photospheric granules. Laboratory experiments relevant to the question of corona heating are discussed, together with the available observational information on the extent of energy deposition in the corona.Of the European Space Research Organization (ESRO). 相似文献
18.
A simple trap model of solar hard X-ray bursts is discussed in which nonthermal electrons trapped in a magnetic bottle precipitate into the lower chromosphere through the resonant scattering by whistlers. In such a model, the X-ray spectra produced from trapped and precipitating electrons have different spectral shape, and both of the spectra will initially soften with time, provided the precipitation dominates over collisional degradation. 相似文献
19.
The observed correlations between X-ray and type III radio emissions from solar bursts are described by means of a bivariate distribution function. Procedures for determining the form of this distribution are described using a sample of data analyzed by Kane (1981). With the help of this distribution a model is constructed to explain the correlation between the X-ray spectral index and the ratio of X-ray to radio intensities. Implications of the model are discussed. 相似文献
20.
During the impulsive phase of many solar flares, blueshifted emission wings are observed on the soft X-ray spectral lines of highly excited ions that are produced in the flare plasma. This emission has been commonly interpreted as chromospheric evaporation of material from the footpoints of coronal loops by non-thermal particle beams, although the question of whether the bulk of the energy is carried by electrons or ions (protons) has been the subject of much debate. The precise temporal relationship between the onsets of the blueshifted emission and the hard X-ray bursts is particularly important in resolving the mechanism of energy transfer to the hot plasma in the impulsive phase. A sample of flares observed with the Bragg Crystal Spectrometer (BCS) onYohkoh has been analysed for blueshifted emission and the results compared with hard X-ray light turves obtained with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO). In some flares, the blueshifted emission precedes the onset of the hard X-rays by up to 100 s. There is no evidence for a temporal correlation between the maximum energy input to the hard X-ray bursts and the maximum blueshifted intensity. These results lend support to those models favouring protons as the dominant energy carrier in the impulsive phase of flares and are inconsistent with the hypothesis that the bulk of the energy resides in electron beatos, although some other energy input, while unlikely, cannot be completely eliminated. 相似文献