首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.  相似文献   

2.
The late-Paleozoic Uralides represent one of the largest lode-gold metallogenic provinces in the world. In the southern Urals, gold distribution is heterogeneous and is confined mainly to two tectonostratigraphic zones, namely the Main Uralian fault and the East Uralian zone. The important lode-gold districts within and in the immediate hangingwall of the first-order crustal suture of the Main Uralian fault are characterized by a complex tectonic history of earlier compressional tectonics involving thrusting, folding and reverse faulting and later transcurrent shearing. Gold mineralization is hosted by second- and third-order brittle to brittle–ductile strike-slip faults that developed late during the kinematic history of the Main Uralian fault. Strike-slip reactivation of earlier compressional structures was related to the late-stage docking of the passive margin of the East European platform with island-arc complexes of the southern Urals, an event that is tentatively related to changes in plate motion during the final stages of terrane accretion during the upper Permian and lower Triassic. Gold mineralization was controlled by the permeability characteristics of the hydrothermal conduits, as well as by competence contrasts and geochemistry of the mainly volcanic host rocks. Mineralization occurred at relatively shallow crustal levels (2–6 km) and largely post dates peak-metamorphism of the host rocks. The large and very large (up to 300 to Au) gold deposits of the East Uralian zone are hosted by upper-Paleozoic granitoid massifs. Gold mineralization is temporally associated with the main phase of regional-scale compressional tectonics and granite plutonism during the upper Carboniferous and lower Permian. Controlling structures have a dominantly east–west strike and occur as hybrid shear-tensional vein systems in competent granitoids subjected to east/west-directed regional shortening. Deformation textures and alteration mineral assemblages indicate lower-amphibolite-facies conditions of mineralization close to peak metamorphic conditions that are associated with the mid-Permian regional metamorphism and tectonism. Gold deposits in the southern Urals are, therefore, polygenetic and are temporally and genetically distinct in each of the two major mineralized tectonostratigraphic zones of this well-preserved collisional orogenic belt. The different timing of ore fluid generation and fluid discharge is interpreted to be the result of the different tectonic, metamorphic and magmatic evolution of terranes in the southern Urals.  相似文献   

3.
4.
5.
在我国华南地区广泛发育了白垩纪岩浆活动,形成了大面积的花岗岩和多期侵位的中基性和酸性脉岩。其中中基性脉岩被认为是华南白垩纪多期伸展作用的标志之一。本文对采自福建沿海石狮地区的石狮和东埔两地的花岗岩和侵入的中基性脉岩进行了锆石U-Pb年代学和Hf同位素以及岩石元素地球化学研究。石狮地区的花岗岩和花岗闪长岩为中钾-高钾钙碱性、弱过铝质岩石,2个锆石U-Pb年龄分别为105.3±1.0Ma和105.1±0.5Ma,2个花岗岩的锆石εHf(t)为-0.9~+2.0;侵入的脉岩为辉绿岩和闪长岩,属于准铝质中钾-高钾钙碱性岩石,2个闪长岩的锆石U-Pb年龄分别89.5±1.5Ma和96.1±1.2Ma,脉岩的εHf(t)为+1.3~+5.0。石狮地区花岗岩和脉岩显示轻重稀土中等分馏和弱的Eu异常,花岗岩稀土总量明显低于脉岩,岩石大离子亲石元素富集、高场强元素亏损,显示岛弧岩浆岩的地球化学特征;微量元素判别(Ta/Hf-Th/Hf,Zr-Zr/Y)表明石狮地区的岩脉产于大陆边缘裂谷环境或板内构造环境,脉岩应是古太平洋俯冲的大陆边缘背景之上,俯冲结束后转入大陆边缘伸展作用的标志。福建沿海厦门-石狮-晋江地区的伸展作用发生在87~96Ma,与华南区域上多期伸展作用中~90Ma的伸展作用吻合。  相似文献   

6.
Archean processes of eclogitization in the Gridino metamorphic association (the Belomorian eclogite province) developed in mafic dykes, boudins, and acidic rocks of the Archean continental crusts. To determine the U-Pb age of the intrusion of the latest dykes, the geochronological samples were taken from the dyke of ferriferious metagabbro that cross-cuts the dyke of eclogitzed and granulitized olivine gabbronorite. The igneous zircons were dated by the SHRIMP II technique. The zircons showed a concordia age of 2846 ± 7 Ma, which is considered as the time of intrusion of a mafic melt. The younger low-thorium zircon rims of 2.78–2.81 Ga age around the igneous cores are typical formations that appeared under metamorphic conditions in equilibrium with a migmatite melt, and may characterize the time of formation of the granite leucosome under metamorphism, probably of eclogite facies.  相似文献   

7.
In Bundelkhand Craton of central India, mafic dykes intruded when granitoids was partly crystallized. Cuspate–lobate boundary along the contact of granitoids and mafic magma indicates magma mingling in outcrop scale while textural evidence of mingling is represented by acicular apatite morphologies, titanite–plagioclase ocelli and ophitic–subophitic texture, mafic clots, resorbed plagioclase, and hornblende–zircon associations. Mingling also caused thermal exchange and fluid activity along the boundary between two coeval magmas. Crystal size distribution analyses for hornblende in the mafic rocks yield concave up curves which is also consistent with interaction of felsic and mafic magmas.  相似文献   

8.
Late Neoproterozoic collision between East and West Gondwana concentrated transpressional deformation in the juvenile crust of the Nubian Shield in Eritrea along at least two steep, curvilinear crustal-scale belts, the Augaro-Adobha Belt (AAB) and the Asmara-Nakfa Belt (ANB). Volcanosedimentary rocks dominantly metamorphosed at greenschist-facies conditions characterize the belts. Each of these belts comprises a complex network of syn-metamorphic shear-fold structures. Steep strike-slip shear zones and accompanying vertical to steeply plunging folds dominated the latest phase of deformation. Quartz vein-hosted gold ± sulphide type and volcanic-hosted massive sulphide type deposits and occurrences are either deformed or hosted by these steep shear zones and folds. The deposits are broadly grouped into three major mineral districts, Asmara, Augaro and Bisha. The Asmara district, the main focus of this study, is located where the southern part of the Asmara-Nakfa Belt changes in strike from NNE–SSW to NNW–SSE. Combined field, micro-structural, and magnetic fabric studies are conducted in the sheared host rocks of a series of the mineral deposits and/or occurrences of the Asmara mineral district. These combined studies revealed that the Asmara area was subjected to a transpressional deformation accommodated in a complex and curved flower structure. Both the quartz vein and massive sulphide types of deposits are sheared, folded and generally spatially associated. The ore-bearing quartz veins are often concentrated along dilatant-extensional en-echelon fracture arrays in reverse and normal sense shear zones, and they either cut through or structurally overlie, the massive sulphide deposits. The massive sulphides that formed at the same time as the Neoproterozoic volcanosedimentary rocks were later deformed and metamorphosed with them. This study, along with previous investigations, further implies that the Asmara area represents an intra-arc, palaeo-oceanic trough or basin located over a west-northwestward dipping subduction zone that subsequently underwent transpression. The transpressional belts track the general locations of such oceanic basins into which ore-bearing fluids that resulted in various phases of vein type deposits were channeled. This study can help to locate new prospects and develop existing ore deposits and/or occurrences in Neoproterozoic Eritrea and elsewhere in areas of similar structural setting.  相似文献   

9.
The geology of the Volkovsky deposit, the composition of its rocks, titanomagnetite and copper-titanomagnetite ores with accompanying noble-metal mineralization, and their formation conditions are considered. Special attention is paid to the recently revealed noble-metal mineralization and its attendant character in respect to titanomagnetite ore is shown. Ore minerals and their relationships are characterized. Initially immiscible sulfide segregations are described and their evolution is traced up to interrelations with oxide and silicate cumulates. The distribution of noble metals (NM) in titanomagnetite and copper-titanomagnetite ores is discussed. Throughout ore formation, NM gradually accumulated in silicates, oxides, and sulfides. The highest NM concentrations are related to the sulfide schlieren and veinlike segregations in gabbroic rocks. It is suggested that the deposit was formed as a product of fractionation of basaltic magma. The copper-iron ore was deposited from the residual melt enriched in Cu, Fe, Ti, V and volatile P and S in a wide temperature range of 800 to 570°C. Noble metals concentrated in parallel with their own minerals (largely tellurides and native gold) at the final stage of crystallization of gabbroic intrusion.  相似文献   

10.
The high-pressure/low-temperature Maksyutov Complex is situated in the southern Urals between the Silurian/Devonian Magnitogorsk island arc and the East European Platform. The elongated N-S-trending complex is made up of two contrasting tectono-metamorphic units. Unit 1 consists of a thick pile of Proterozoic clastic sediments suggested to represent the passive margin of the East European Platform. The overlying unit 2, composed of Paleozoic sediments, volcanic rocks, and a serpentinite mélange with rodingites, is interpreted as a remnant of the Uralian Paleo-ocean. Devonian eastward subduction of oceanic crust beneath the Magnitogorsk island arc resulted in an incipient blueschist-facies metamorphism of unit 2 indicated by lawsonite pseudomorphs in the rodingites. While unit 2 was accreted to the upper plate, subduction of the continental passive margin caused the high-pressure metamorphism of unit 1. Buoyancy-driven exhumation of unit 1 into the forearc region led to its juxtaposition with unit 2 along a retrograde top-to-the-ENE shear zone. Further exhumation of the Maksyutov Complex into its present tectonic position was accomplished by later shear zones that were active as normal faults and are exposed along the margins of the complex. At the western margin a top-to-the-west shear zone juxtaposed a low-grade remnant of a Paleozoic accretionary prism (Suvanyak Complex) above the Maksyutov Complex. Along the eastern margin a top-to-the-east shear zone and the brittle Main Uralian Normal Fault emplaced the Maksyutov Complex against the Magnitogorsk island arc in the hanging wall.  相似文献   

11.
基性岩脉是岩石圈伸展作用的产物,对研究地幔性质和地球动力学演化具有十分重要的意义。粤北下庄铀矿田是我国最大的花岗岩型铀矿田之一,区内发育了大量与铀矿化作用密切相关的基性岩脉。前人从地球化学和年代学方面,对基性岩脉和铀矿床做了不同程度的研究,但有关铀矿床的成因及其与基性岩脉内在联系仍有不同认识。本研究新获得一批下庄铀矿田基性岩脉的角闪石40Ar-39Ar年代学数据,识别出一期形成于200~190Ma的基性岩脉,标志着华南地区在印支期碰撞造山作用结束后岩石圈伸展裂解作用可能至少在200~190Ma已经开始。结合前人已有的研究结果,粤北下庄至少发育三期基性岩脉:200~190Ma、~180Ma和145~140Ma,与华南地区在此期间广泛的岩石圈伸展作用相对应。结合成岩成矿作用的时差以及铀矿体与基性岩脉的空间关系,笔者认为准确的获得基性岩脉的侵位时代与铀的成矿作用的年龄,是探讨基性岩脉与铀成矿作用关系的前提。当基性岩脉与铀的成矿作用年龄接近或具有对应关系时,铀矿床中基性岩脉可能不仅可提供幔源流体(∑CO_2矿化剂和He)参与铀的成矿作用,也可为铀的沉淀富集提供理想场所(还原障);当基性岩脉与铀的矿化作用在时间上存在较大的时差时,基性岩脉也可为后期铀的沉淀富集提供条件,且与基性岩脉相关的深大断裂可为幔源流体(∑CO_2矿化剂)参与铀成矿过程提供运移通道。基于此,笔者认为无论基性岩脉的侵位与铀的矿化作用是否存在时差,基性岩脉均可以为后期铀的沉淀富集提供场所,进而促进铀的成矿作用。因此,本文深化了花岗岩型铀矿区内铀成矿作用与基性岩脉内在联系的认识,为该区下一步找矿勘查工作提供重要理论依据。  相似文献   

12.
Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575–300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300–200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044?0.7045 and εNd ranging from 0.65 to ?3.3 testify to their derivation from a deep mantle source of EM1 type.  相似文献   

13.
West of the Main Uralian fault, the main suture in the southern Urals, 40Ar/39Ar apparent ages of amphibole, muscovite and potassium feldspar are interpreted as cooling ages. A fast exhumation of the metamorphic complex of Kurtinsky during Upper Carboniferous time is indicated by the small age difference (15 Ma) between cogenetic amphibole and muscovite. Differentiated movement in the footwall of the Main Uralian fault along strike is indicated by the age difference of 70 Ma between the metamorphic complexes of Kurtinsky (north) and Maksyutov (south). No Upper Paleozoic (Uralian) medium- to high-temperature event is recorded in 40Ar/39Ar data from the metamorphic complex of Beloretzk (MCB). An amphibole age of 718±5 Ma and the occurrence of mafic intrusions might signal the break-up of Rodinia and therefore indicate the rifting period followed by the separate movement of the "Beloretzk terrane". Muscovite ages of approximately 550±5 Ma, the unique pre-Ordovician tectonometamorphic evolution of the MCB and the Late Vendian sedimentary history of the western Bashkirian Megaanticlinorium (BMA) imply the existence of a Neoproterozoic orogeny at the eastern margin of Baltica. This orogeny might have been initiated by the accretion of the "Beloretzk terrane". The metamorphic grade of the overlain Silurian shales and the K/Ar microcline ages from the "Beloretzk terrane" give evidence for a new thermal event at approximately 370 Ma. A microcline age of 530–550 Ma obtained for the Vendian conglomerate in the western BMA suggests that a maximum temperature of approximately 200°C was reached in Cambrian or Vendian times. An orthoclase age (590–630 Ma) of the Vendian Zigan flysch deposits might be inherited from the eastern source area, the Cadomian orogen. An orthoclase age (910–950 Ma) from the Riphean Zilmerdak conglomerate coincides with a documented decrease in the subsidence rate of the Upper Riphean basin.  相似文献   

14.
The Linglong-Jiaojia district is one of the most important regions containing gold deposits in China. These gold deposits can be divided into: a) the pyrite-gold-quartz vein type (Linglong type), which is controlled by brittle-ductile to ductile deformation structures, and b) the alteration-zone type (Jiaojia type), characterized by small veinlets, or the disseminated type recognized in brittle shear zones. Lode gold deposits in the Jiaojia area occur in NE brittle fracture zones, formed in a dominantly simple shear deformation regime, mainly in thrust attitude with a minor sinistral strike slip component. In the Linglong area, the lode gold deposits are located at the intersection of three types of structures: NNE and NE brittle-ductile fault zones and the ENE ductile reverse shear zone in the south of the area. The structural characteristics of these brittle shear zones are consistent with a tectonic NNW-SSE principal stress field orientation. Similar stresses explain the ENE Qixia fold axes, the Potouqing and several other ENE reverse ductile shear zones elsewhere in the region, the Tancheng-Lujiang fault zone and its subsidiaries in the vicinity of the Linglong-Jiaojia district, as well as the southern ENE suture zone north of Qingdao. Therefore these structural systems occurred as part of different major tectonic events under NNW-SSE compression principal stress fields in the area. Gold deposits are hosted in smaller-scale structures within the brittle fault zones and brittle-ductile shear zones. Although ore bodies and, on a smaller scale, quartz ore veins often seem to be randomly oriented, it is possible to explain their distribution and orientation in terms of the simple shear deformation process under which they were developed. The progressive simple shear failure is characterized by various fracture modes (tension and shear) that intervene in sequence. The tension and shear fractures are influenced by the stress level (depth of burial beneath the paleosurface) in their structural behavior, show variable dilatancy (void openings) and extend on all scales. By making use of these characteristics, a progressive failure analysis can be applied to predicting the shape and extent of ore bodies as well as the styles of mineralization at any given location.  相似文献   

15.
The mineralogy of slightly metamorphosed manganese ore at the South Faizulino hydrothermalsedimentary deposit in the southern Urals has been studied; 32 minerals were identified. Quartz, hausmannite, rhodochrosite, tephroite, ribbeite, pyroxmangite, and caryopilite are major minerals; calcite, kutnahorite, alleghanyite, spessartine, rhodonite, clinochlore, and parsettensite are second in abundance. This mineralic composition was formed in the process of gradual burial of ore beneath the sequence of Middle Devonian-Lower Carboniferous rocks. The highest parameters of metamorphism are T ≈ 250°C and P ≈ 2.5 kbar. The relationships between minerals and their assemblages made it possible to reconstruct the succession of ore transformation with gradually increasing temperature and pressure. Manganese accumulated in the initial sediments as oxides and a gel-like Mn-Si phase. Rhodochrosite and neotocite were formed at the diagenetic stage. In the course of a further increase in temperature and pressure, neotocite was replaced with caryopilite; ribbeite, tephroite, pyroxmangite, and other silicates crystallized afterwards. In addition to the PT parameters, the formation of various metamorphic mineral assemblages was controlled by the Mn/(Mn + Si) ratio in ore and X CO2 in pore solution. The latter parameter was determined by the occurrence of organic matter in the ore-bearing rocks. Ore veinlets as products of local hydrothermal redistribution of Mn, Si, and CO2 were formed during tectonic deformations in the Middle Carboniferous and Permian.  相似文献   

16.
The paper presents the characteristics of chrome spinels from an ore-bearing packet of the Vladimir chromite deposit. Three main types of chrome spinels are distinguished by morphology and chemical composition: medium-chrome ore-forming, high-chrome transformed, and low-chrome relict accessory. The significant role of weathering conditions is expressed in alteration of accessory chrome spinel. The formation of high-chrome spinels is explained by the hydrothermal effect of the Varshavsky granitoid massif with accompanying dikes and talc–carbonate metasomatic rocks. Characteristic accessory minerals are represented by native gold and nickel, millerite, pentlandite, chalcopyrite, maucherite, PGE sulfides, and picroilmenite.  相似文献   

17.
通过岩体地质地球化学等特征的调查研究,对大义山花岗岩体进行了岩石谱系单位划分,认为它是由印支期和燕山期3期次多阶段岩浆活动形成的复式岩体。成矿作用主要与中侏罗世—晚侏罗世的花岗质岩浆活动相关。并对含锡多金属矿花岗岩提出了如下认识:①同一超单元内花岗质岩浆演化从早至晚次单元有由酸性向(贫钙富碱)酸碱性演化的规律;即晚期次更具弱钙碱性—偏碱性岩系,成矿专属性明显。②斜长石的An值常为4~15;以钠长石为主;黑云母Mf值<0.12,属铁叶云母—铁质黑云母。具高硅SiO2>73×10-2,富碱Na2O+K2O>7.5×10-2、K2O/Na2O>1.20,贫钙CaO<0.80×10-2;过铝指数AKNC>1.10,碱度指数AR>2.5,分异指数DI>90,氧原子数与分子总数比大于1.98及富F、B的特征。轻稀土相对重稀土富集,Eu亏损值小于0.30。③岩石中Sn、W、F、As、Sb、Pb、Zn、Cu、U等有高的综合异常和重砂有锡石、黑钨矿、锑矿物、辰砂及铅、锌、铜矿物异常。④印支—燕山期北西向郴州—邵阳断裂有早期为左行压扭剪切,晚期为张扭的复合多次转换特征,与断裂同活动的花岗质岩浆有沿北西向构造带从南东向北西斜上方先后3期次顺序侵位的规律。岩体内部构造及接触带围岩的构造位态显示为“被动”侵位特征,岩体定位方式属剪切扩张型。锡多金属矿床(点)有围绕岩体展布的规律;矿床类型主要有蚀变花岗岩体型、云英岩脉型、断裂破碎带型等,并总结分析了成矿条件和找矿标志。  相似文献   

18.
湘南矿集区长英质岩脉的特征及其成矿、找矿意义   总被引:2,自引:0,他引:2  
南岭地区不仅广泛出露花岗岩,而且还广泛分布着长英质岩脉。本文选择湘南矿集区的奇古岭、香花岭、荷花坪、千里山、新田岭和瑶岗仙6个不同类型、不同演化程度的长英质(流纹质、微粒花岗岩质、细晶岩质)岩脉为研究对象,利用全岩分析、电子探针矿物化学成分分析等结果,对比总结了这些长英质岩脉的岩石学、矿物学、年代学和地球化学等方面的特征。奇古岭和香花岭是其中演化程度最高的2个岩脉,富含Li和F等挥发组分,含有黄玉和铁锂云母等特征矿物,全岩和锆石的Zr/Hf比值均较低,同时它们还富集成矿元素,并以不同产状氧化物(锡石、金红石和铌钽矿物)形式存在。其它4个岩体成矿信息不明显,仅见由于后期绿泥石化形成于绿泥石解理缝中的次生矿物金红石(富集Nb和W)。除了千里山以外,岩脉与寄主或相邻的花岗岩体大多属于同一时期的产物,但从年代学并不一定能够体现出它们与各自主岩体之间的相关性。这些岩脉都是花岗岩的次火山相或火山相的类似物,包括了斑晶矿物和基质矿物,快速的冷凝结晶的过程导致形成了特殊的岩石结构、矿物组合和成分特征,它们记录了岩浆-流体体系的活动过程。这些信息之间的相互印证,证实了奇古岭岩脉与骑田岭花岗岩来源于不同的源区,香花岭431岩脉可能是癞子岭花岗岩进一步高度分异结晶的产物,千里山岩脉与主体花岗岩也是不同成因的岩浆活动,荷花坪、新田岭和瑶岗仙岩脉与主体花岗岩未能判断明确的成因联系和成矿信息。因此,长英质岩脉,尤其是高演化的岩脉也能成为在南岭地区寻找成矿花岗岩的新窗口,它能够提供更直接的深部信息,特别是本身即为矿体的岩脉,可以指示深部或周围存在成矿作用。它们有可能与寄主岩体相关,也有可能来源于深部不同的岩浆房,这对与提供寻找隐伏岩体和矿体的证据、找矿勘探工作均有很重要的意义。  相似文献   

19.
The Gagarka gold deposit was formed in two stages. The gold-telluride ore of the main early stage was formed ~260 Ma ago synchronously with Permian collision, which was accompanied by retrograde metamorphism with mobilization of Au and Te from geochemically similar massive sulfide lodes in the rift zone. The Au-bearing argillic metasomatic rocks of the late stage presumably Mesozoic in age are distinguished by specific geochemistry and locally superposed on the ore related to the early stage. The upper part of the metasomatic column consists of quartz-kaolinite rock, which is confused in many cases with products of Mesozoic-Cenozoic weathering and because of this is not perceived as a guide for hidden Au-bearing argillic alteration, whose resource potential remains underestimated in the Urals.  相似文献   

20.
吉南地区太古宙基底中发育大量早前寒武纪基性岩墙群,是陆壳伸展的直接证据。对白山市东部天桥太古宙基底出露区内基性岩墙及其围岩进行了锆石U-Pb定年和地球化学分析,以确定该期伸展事件的形成机制及地质意义。天桥地区基性岩墙岩性为斜长角闪岩,侵位于TTG片麻岩中。英云闪长质片麻岩(TN1)中锆石具核-边结构,岩浆核的LA-ICP-MS测年结果为2500±6Ma,指示其形成于新太古代末期。天桥岩墙(TN3)中的锆石内部结构与TN1相同,酸性岩浆核的SHRIMP测年结果为2490±17Ma,与TN1在误差范围内一致,表明这些锆石不是基性岩墙原生锆石,而是岩墙侵位过程中在围岩中捕获的锆石,但根据岩墙仅侵位在太古宙基底中且变质程度高于周围古元古界老岭群,将其侵位年龄大致限制在新太古代末期-古元古代早期。地球化学特征显示,基性岩墙具有低SiO_2、Na_2O、K_2O含量,高CaO、MgO含量,A/CNK=0.56~0.59,属于准铝质的拉斑玄武岩系列岩石,∑REE低、配分曲线平坦,富集LILE(Rb、Ba和K),亏损HFSE(Th、U、Nb和Ta),具有与原始地幔相同的Nb/Ta、Zr/Hf比值及接近地壳的Nb/U、Ta/U比值,指示其岩浆可能来源于地幔且在上升过程中受到地壳混染,形成于板内伸展环境。TTG片麻岩具有中等的SiO_2和MgO含量,高Al_2O_3和Na_2O含量以及低CaO含量,A/CNK=1.00~1.14,属弱过铝质的钙碱性系列岩石,∑REE低、具有右倾的REE配分曲线,轻稀土富集、重稀土亏损,富集LILE(Rb、Ba、K和Sr),强烈亏损HFSE(U、Nb、Ta、Sm和Ti),其岩浆可能来源于变质玄武质岩石和极少量沉积岩的部分熔融,结合邻区TTG的研究成果,认为其形成于与俯冲相关的活动大陆边缘环境。前人研究表明,新太古代晚期板块构造体制可能已经启动,结合我们以往研究,认为新太古代晚期华北克拉通东北部可能发生了弧陆碰撞造山运动,天桥岩墙的侵位标志着新太古代末期至古元古代早期之间华北克拉通东北部进入造山后伸展环境,可能是对新太古代造山运动结束的响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号