首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A seismicity map of that part of the Pakistan-Afghanistan region lying between the latitudes 28° to 38°N and longitudes 66° to 75°E is given using all available data for the period 1890–1970. The earthquakes of magnitude 4.5 and above were considered in the preparation of this map. On the basis of this map, it is observed that the seismicity pattern over the well-known Hindukush region is quite complex. Two prominent, mutually orthogonal, seismicity lineaments, namely the northvestern and the north-eastern trends, characterize the Hindukush area. The northwestern trend appears to extend from the Main Boundary Fault of the Kashmir Himalaya on the southeast to the plains of the Amu Darya in Uzbekistan on the northwest beyond the Hindukush. The Sulaiman and Kirthar ranges of Pakistan are well-defined zones of intermontane seismicity exhibiting north-south alignment.Thirty-two new focal-mechanism solutions for the above-mentioned region have been determined. These, together with the results obtained by earlier workers, suggest the pre-dominance of strike-slip faulting in the area. The Hazara Mountains, the Sulaiman wrench zone and the Kirthar wrench zone, as well as the supposed extension of the Murray ridge up to the Karachi coast, appear to be mostly undergoing strike-slip movements.In the Hindukush region, thrust and strike-slip faulting are found to be equally prevalent. Almost all the thrust-type mechanisms belonging to the Hindukush area have both the nodal planes in the NW-SE direction for shallow as well as intermediate depth earthquakes. The dip of P-axes for the events indicating thrust type mechanisms rarely exceeds 35°. The direction of the seismic slip vector obtained through thrust type solutions is always directed towards the northeast. The epicentral pattern together with these results suggest a deep-seated fault zone paralleling the northwesterly seismic zone underneath the Hindukush. This NW-lineament has a preference for thrust faulting, and it appears to extend from the vicinity of the Main Boundary Fault of the Kashmir Himalaya on the southeast of Uzbekistan on the northwest through Hindukush. Almost orthogonal to this NW-seismic zone, there is a NE-seismic lineament in which there is a preference for strike-slip faulting.The above results are discussed from the point of view of convergence of the Indian and Eurasian plates in the light of plate tectonics theory.  相似文献   

2.
A marked curvature of crustal structures characterizes the Calabrian arc in Southern Italy. The overall deformation of the arc seems mostly controlled by the Sangineto shear zone to the north and by the Mt. Kumeta-Alcantara shear zone to the south, which both separate different crustal sectors. Other important fault systems cut the Iblean foreland (Scicli-Ragusa fault zone) and many others dissect the crystalline units of Central Calabria. Neotectonic structural analyses have been carried out in order to recognize the character of the Plio-Pleistocene tectonic phases and their bearing on the present configuration of the arc.After the Middle Miocene extensional phase an Early-Middle Pliocene compressional phase is detectable in many parts of the arc. Right- and left-lateral displacements respectively characterize the Mt. Kumeta-Alcantara and Sangineto shear zones and right-lateral movements are also detectable within the Scicli-Ragusa fault system.Finally, the Pleistocene tensional regime seems to have been controlled mainly by uplift. The structural and neotectonic data allow us to propose a model of the recent evolution of the arc, which was bent mainly as a result of opposed wrench faulting along the Sangineto and Mt. Kumeta-Alcantara shear zones.  相似文献   

3.
Seismotectonics of Taiwan   总被引:3,自引:0,他引:3  
High-quality seismicity data and focal mechanism solutions obtained during 1973–1983 by the permanent Taiwan Telemetered Seismographic Network and several temporary local seismographic networks are used for a detailed study of the seismotectonics of the Taiwan area. Seismicity distribution in southern Taiwan clearly reveals an east-dipping Benioff zone which has a thickness of about 30 km and begins to deepen along 121°E at a dip angle of 55°–60°. The leading edge of this Benioff zone reaches a depth of about 180 km between 21°N and 22°N, but tapers off to a shallower depth of about 100 km from 22°N to 23°N. The presence of this seismic zone implies that subduction of the South China Sea plate under the Philippine Sea plate extends from Luzon northward to about 23°N. The position of the northern boundary of the South China Sea plate, as tentatively defined according to the seismicity distribution, passes through southern Taiwan from the offshore area in the Taiwan Strait west of Kaohsiung in an east-northeast direction to the Taitung area where a triple junction probably lies. Seismicity is found to disappear abruptly below a certain depth in many parts of Taiwan. This phenomenon may be attributed to the frictional to quasiplastic transition in the crust or upper mantle. Comparison of shallow seismicity with surface faults and fractures shows that all areas of active shallow seismicity are marked by densely-developed faults and fractures. However, the converse is not necessarily true. This may be partly due to the relatively short duration of seismicity data and partly due to excessive weakening of some of the severely faulted and fractured areas. Finally, focal mechanism solutions for west central Taiwan and the Kuangfu-Fuli area in eastern Taiwan predominantly show a maximum horizontal compression in the SE-NW direction which can be related to collision between the Eurasian and Philippine Sea plates. However, focal mechanism solutions for both the Hualien area in eastern Taiwan and the Tainan area in southwestern Taiwan show remarkable irregularities which may result from local tectonic complexities.  相似文献   

4.
The results of the processing and analysis of the global earthquake distribution (more than 250000 events based on the ISC catalog) and the study of moonquakes distribution (about 900 events based on the published materials) are presented. It was found that the number of events and the energy for both cases show a bimodal distribution with maximums in the middle latitudes, zero values at the polarcaps, and a local minimum in the vicinity of the equator. The probable influence of tectonic processes on the revealed character of the seismic event distribution is analyzed, and the role of Earth tides in the activation of the seismicity in the symmetric zones on both sides of the equator is shown.  相似文献   

5.
High seismicity in the Baikal rift zone is controlled by the development of conjugate rising and subsiding block structures. Many types of seismological phenomena resulting from large earthquakes are manifested in the rift zone and include seismotectonic (regional, zonal and local), gravity-seismotectonic and seismogravitational deformations. Impulsive as distinct from gradual seismogenetic crustal movements play a dominant role in the recent development of the Baikal geomorphology.  相似文献   

6.
Data concerning the focal mechanism and the spatial distribution of earthquakes have been used to investigate the active tectonics of the northern Aegean and the surrounding area.A thrust region, which includes the northernmost part of the Aegean and at least part of the Marmara Sea, has been defined. An amphitheatrical Benioff zone dipping towards the thrust region from south, east and probably from west, at a mean angle of about 30°, has been detected.The thrust region is surrounded by a region of normal faulting. An eastward progression of the seismic activity in this normal faulting region between 1954 and 1971 has been observed.A correspondence between the earthquake occurrence in the thrust and normal faulting regions has also been observed. Each large shock produced by tensional mechanism in the region of normal faulting is preceded or followed by one or more shocks of compressional mechanism in the thrust region.The focal mechanism, the distribution of the earthquake foci with intermediate focal depth, as well as some magnetic and gravimetric observations can be interpreted by assuming that dense oceanic crust sinks in the northern part of this area and that the adjacent lithosphere moves by segmentation to fill the void with the consequence of producing tensile stresses associated with normal faulting. Such a mechanism of lithospheric interaction suggests that accretion probably takes place in this area.  相似文献   

7.
The Andaman Sea is considered as an actively spreading back-arc basin. Seismicity and newly determined focal-mechanism solutions in the Andaman Sea area support this view. The tectonic history of the region is inferred from magnetic lineations in the northeastern Indian Ocean and the northward motion of Greater India. The mid-oceanic ridge which migrated northward along the east side of the Ninetyeast Ridge collided with the western end of the “old Sunda Trench” in the Middle or Late Miocene (10–20 m.y. B.P.). This ridge—trench collision released much of the compressional stress in the back-arc area and the continued northward movement of India that collided with Eurasia exerted a drag on the back-arc region, causing the opening of the Andaman Sea. In appearance, the subducted ridge jumped to the back-arc area. Thus, the Andaman Sea is not an ordinary subduction-related back-arc basin, but probably a basin formed by oblique extensional rifting associated with both ridge subduction and deformation of the back-arc area caused by a nearby continental collision.  相似文献   

8.
The name Calabrian was introduced in the geological literature by the French stratigrapher Maurice Gignoux in 1910, and later described in his important monograph (633 pages) "Les formations marines pliocknes et quaternaires de l'ltalie du sud et de la Sicile "published in 1913. Detailed data were provided on several sections (Santa Maria di Catanzaro, Caraffa, Monasterace, Palermo) and on their fossil content. The Calabrian Stage has commonly been used for over fifty years as the oldest subdivision of the Qua- ternary, notably in the time scales of Berggren & van Cou- vering (1974) and Haq & Eysinga (1987). However, after the GSSP for the Pliocene/Pleistocene boundary (P/P) was approved by INQUA in 1982 and ratified by lUGS in 1984 at the Vrica section of Calabria, there was a decline in the usage of the stage name, and an increasing tendency by many Quaternary workers to question the boundary stratotype. This was because there was increasing evidence that it did not correspond to the beginning of the "ice age". In doing so, they were not complying with the recommendations presented at the 18th International Geological Congress (IGC) in London, 1948 (Oakley, 1950).  相似文献   

9.
The results of focal mechanisms determination for the recent seismic activity (earthquakes of 1951, 1955, 1987, 1988, and 1998) in the passive continental margin of Egypt may shed some light on the local stress field in this area. Moreover, studying the source mechanism of these events provides an opportunity to understand the structural style of the passive margin of Egypt, as well as the tectonic setting beside its variation in space and time. This study reveals that there are two types of tectonic regimes which caused these mechanisms. The first is a tensional regime, represented by NW oblique (normal-dextral) faults and the second is a compressive one represented by E–W to ENE (reverse-sinstral) faults. These fault trends probably indicate rejuvenation of inherited E–W Mesozoic and NW Oligo-Miocene faults.  相似文献   

10.
《Gondwana Research》2014,25(1):204-213
Bounded by the western and eastern syntaxes, the Himalayan region has experienced at least five M ~ 8 earthquakes during a seismically very active phase from 1897 through 1952. However, there has been a paucity of M ~ 8 earthquakes since 1952. Examining of various catalogues and seismograms from the Gottingen Observatory, it is established that this quiescence of M ~ 8 earthquakes is real. While it has not been possible to forecast earthquakes, there has been a success in making a medium term forecast of an M 7.3 earthquake in the adjoining Indo-Burmese arc. Similarly we find that in the central Himalayan region, earthquakes of M > 6.5 have been preceded by seismic swarms and quiescences. In the recent past, based on GPS data, estimates have been made of the accumulated strains and it is postulated that a number of M ~ 8 earthquakes are imminent in the Himalayan region. We examine these estimates and find that while earthquakes of M ~ 8 may occur in the region, however, the available GPS data and their interpretation do not necessarily suggest their size and time of occurrence and whether an earthquake in a particular segment will occur sooner in comparison to that in the neighboring segment. We also comment on the inference of occurrence of M ~ 8 earthquakes based on M8 algorithm for the region. We conclude that while an M ~ 8 earthquake could occur any time anywhere in the Himalayan region, there is no indication as of now as to where and when it would occur. We impress on the need for preparedness to mitigate the pending earthquake disaster in the region.  相似文献   

11.
Seismotectonics and seismicity of the Silakhor region, Iran   总被引:1,自引:0,他引:1  
This paper deals with seismotectonic and seismicity of the Silakhor region that shows high seismic activity in western Iran. Silakhor is a vast plain with several villages and cities of Dorud and Borujerd and a small town of Chalanchulan that were destroyed and/or damaged many times by large earthquakes. This paper addresses the historical and instrumental earthquakes and their causative faults, seismotectonic provinces and seismotectonic zones of the region. Available seismic data were normalized by means of time normalization technique that resulted in the magnitude-frequency relation for the Silakhor area and estimation of the return period of earthquakes with different magnitudes. Some active faults in this region include the Dorud fault, the main Zagros thrust, the Galehhatam fault, the Sahneh fault and others. Among them, the Dorud fault is an earthquake fault and is the cause for most of the large and intermediate earthquakes in the region. The return period of large earthquakes with magnitudes greater than 7.0 (Ms) is very low, however, the occurrence of destructive earthquakes is greater in the region than in the neighboring provinces. The study proves the high seismicity of this zone and it is required to develop an accurate national plan for future building and reinforcement of the existing buildings in this region.  相似文献   

12.
Seismotectonics of the Nepal Himalaya from a local seismic network   总被引:3,自引:0,他引:3  
The National Seismological Network of Nepal consists of 17 short period seismic stations operated since 1994. It provides an exceptional view of the microseismic activity over nearly one third of the Himalayan arc, including the only segment, between longitudes 78°E and 85°E, that has not produced any M>8 earthquakes over the last century. It shows a belt of seismicity that follows approximately the front of the Higher Himalaya with most of the seismic moment being released at depths between 10 and 20 km. This belt of seismicity is interpreted to reflect interseismic stress accumulation in the upper crust associated with creep in the lower crust beneath the Higher Himalaya. The seismic activity is more intense around 82°E in Far-Western Nepal and around 87°E in Eastern Nepal. Western Nepal, between 82.5 and 85°E, is characterized by a particularly low level of seismic activity. We propose that these lateral variations are related to segmentation of the Main Himalayan Thrust Fault. The major junctions between the different segments would thus lie at about 87°E and 82°E with possibly an intermediate one at about 85°E. These junctions seem to coincide with some of the active normal faults in Southern Tibet. Lateral variation of seismic activity is also found to correlate with lateral variations of geological structures suggesting that segmentation is a long-lived feature. We infer four 250–400 km long segments that could produce earthquakes comparable to the M=8.4 Bihar–Nepal earthquake that struck eastern Nepal in 1934. Assuming the model of the characteristic earthquake, the recurrence interval between two such earthquakes on a given segment is between 130 and 260 years.  相似文献   

13.
Earthquakes for the period 1964–1973 are relocated by the method of Joint Hypocenter Determination in order better to resolve the configuration and the structure of the New Guinea—New Britain—Solomon Islands region. Focal mechanism solutions are integrated with the seismicity and interpreted closely with it. A zone of subduction exists beneath New Britain and the Solomon Islands, a zone of left-lateral strike-slip movement extends from New Ireland to New Guinea. The zone of seismicity in northern New Guinea has developed as a result of a continent—island-arc collision in late Oligocene—Miocene times and does not exhibit a well-developed inclined seismic zone. It is proposed that plate tectonics theory does not apply rigorously, but slip-line field theory allows the presentation of a new geodynamic model for this region.  相似文献   

14.
New elements on the seismicity of Portugal and new focal-mechanism solutions of earthquakes with epicentres situated off the coast of the Portuguese mainland and in the Azores region are presented. Historical seismicity data show that in the territory of the Portuguese mainland there are active faults that are responsible for earthquakes that have caused important damage and many casualties. However, most of the intraplate earthquakes with epicentres situated in the Portuguese mainland or near the shore are normally of small magnitude and this renders difficult their interpretation in the light of focal mechanisms. A solution for one earthquake, with magnitude 5 and epicentre at the Nazaré submarine canyon, is presented.Southwestwards of Cape St. Vincent there is an important seismic zone responsible for high-magnitude earthquakes such as that of 1 November 1755. This zone is situated in the region where the extension of the Messejana fault into the ocean joins with the Azores-Gibraltar fault.The seismicity of the area situated between the western coast of the Portuguese mainland and the Azores increases approximately along the 15°W meridian, from the latitude of the Azores-Gibraltar fault up to 44°N. Focal mechanisms of earthquakes with epicentres situated along this line show very similar solutions.The interpretation of the focal mechanism solutions of the earthquakes with epicentres situated in the studied area shows that the stress field trends approximately NW-SE. It is assumed that this stress field results from the interaction of the Eurasian and African plates; however, this direction is not maintained in the Azores region.  相似文献   

15.
四川芦山2013年Ms7.0地震发震构造初步研究   总被引:3,自引:0,他引:3  
2013年4月20日8时2分,四川龙门山断裂带的雅安芦山发生Ms7.0级地震,震中位于芦山县太平镇和双石镇之间,震源深度13~14km,震中最大烈度达IX级。震中区野外调查发现,尽管房屋建筑损坏较严重,但这次地震没有产生明显的地表破裂构造,仅见少量的地裂缝和喷砂冒水现象。高分辨率遥感图像解译、主余震分布、震源机制解等综合分析认为,该地震是龙门山断裂带西南段一次独立的破裂事件,属于逆冲型地震,沿双石-大川断裂中南段发生破裂,主破裂面西倾,倾角33°~43°,推断芦山地震与龙门山构造带底部滑脱带(13~19km)断坡构造活动有关。历史上,沿双石-大川断裂发生至少2次Ms6~6.5级地震,由此认为芦山地震是龙门山断裂带西南段特征型地震,与汶川地震不同。原地地应力测量和监测数据表明这是汶川地震后龙门山断裂带西南段应力释放的结果。  相似文献   

16.
Uplift caused by crustal growth at active plate margins triggers an exogenic mass transfer from the mountain ranges into arc-associated basins. This mass transfer comprises weathering and erosion of the source terranes, differentiation and transport of particles and finally deposition. The hydraulic populations produced by chemical dissolution and mechanical abrasion possess different recycling potentials: Coarse-grained particles are piled up in forearc accretionary wedges and recycled by subduction with the oceanic lithosphere. Fine-grained particles and the chemical load may leave the exogenic cycle by suspension and solution. Their recycling potential is low. For the Calabrian active margin a composite exogenic mass balance has been determined. Sedimentation rates were calculated by two-dimensional modeling of the forearc sedimentary wedge based on METEOR airgun sections. Erosion rates for the Calabrian Massif were evaluated by a morphometric volume balance. The total erosion of the Calabrian Massif is 178 m/Ma. About 28 m/Ma (16%) is removed by chemical dissolution and particle dispersion. The mean sedimentation rate in the forearc basin is 137 m/Ma. The remaining mass deficiency of 13 m/Ma (7%) is referred to sediment bypass to the abyssal plain through submarine canyons.  相似文献   

17.
Doklady Earth Sciences - The results of new local seismic observations in the Laptev Sea obtained using ocean bottom seismographs were compared with actual data from global and regional earthquake...  相似文献   

18.
In this article, we review the significant recent results of geophysical studies and discuss their implications on seismotectonics, magmatism, and mantle dynamics in East Asia. High-resolution geophysical imaging revealed structural heterogeneities in the source areas of large crustal earthquakes, which may reflect magma and fluids that affected the rupture nucleation of large earthquakes. In subduction zone regions, the crustal fluids originate from the dehydration of the subducting slab. Magmatism in arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab. The intraplate magmatism has different origins. The continental volcanoes in Northeast Asia (such as Changbai and Wudalianchi) seem to be caused by the corner flow in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and the deep dehydration of the stagnant slab as well. The Tengchong volcano in Southwest China is possibly caused by a similar process in BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China seems to be a hotspot fed by a lower-mantle plume associated with the Pacific and Philippine Sea slabs’ deep subduction in the east and the Indian slab’s deep subduction in the west down to the lower mantle. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and cause the slab–plume interactions. Some of these issues, such as the origin of intraplate magmatism, are still controversial, and so further detailed studies are needed from now.  相似文献   

19.
Recent tomographic investigations performed down to ~300?km depth in the Calabrian Arc region gave insight in favor of the hypothesis that the Ionian subducting slab is continuous in depth beneath the central part of the Arc, while detachment of the deep portion of the subducting structure may have already taken place beneath the edges of the Arc itself. In the present study, we perform new geophysical analyses to further explore the structure of the subduction system and the structure and kinematics of the crustal units in the study area for a more comprehensive view of the local geodynamic scenario. Local earthquake tomography that we address to the exploration of the upper 40?km in the whole region of southern Italy furnishes P-wave velocity domains, suggesting southeast-ward long-term drifting of the southern Tyrrhenian unit with an advancement front matching well with the segment of Calabrian Arc where the subducting slab was found continuous and trench retreat can be presumed to have been active in the most recent times. This scenario of retreating subduction trench inducing drifting of the lithospheric unit overriding the subducting slab is further supported by the analysis of gravity anomalies, allowing us to better constrain the transitional zones between different subduction modes (continuous vs. detached slab) along the Arc. Also, the relocation of recent crustal seismicity, associated with geostructural data taken from the literature, provides evidence for NW-trending seismogenic structures in northeastern Sicily and northern Calabria that we interpret as Subduction-Transform Edge Propagator (STEP) faults guiding the southeast-ward drifting process of the southern Tyrrhenian unit. Crustal earthquake relocations show also seismolineaments in southern Calabria corresponding to the NE-trending longitudinal structures of the Arc where the great shallow earthquakes of 28 December 1908, and 5 and 7 February 1783 occurred. Seismicity and the extensional stress regime detected in these structures find also reasonable location in the proposed scenario, being interpretable in terms of shallow response of the central segment of the Arc to slab rollback and trench retreat.  相似文献   

20.
This paper is based on the data obtained during the field study of active faults carried out in 2005–2006 in the Chita and Amur oblast and South Yakutia in connection with detailed seismic demarcation of the projected East Siberia-Pacific Ocean pipeline route. The comprehensive geomorphic and geophysical fieldwork was focused on paleoseismogeology and accompanied by trenching in the zones of reactivated faults. These works allowed us to specify the available information on the present-day structure, seismotectonic regime, and potential seismic hazard of the conjugation of the Baikal Rift Zone and the arched-block rise of the Stanovoi Ridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号