首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fate of entering meteoroids in atmosphere is determined by their size, velocity and substance properties. Material from ablation of small-sized meteors (roughly R≤0.01–1 cm) is mostly deposited between 120 and 80 km altitudes. Larger bodies (up to meter sizes) penetrate deeper into the atmosphere (down to 20 km altitude). Meteoroids of cometary origin typically have higher termination altitude due to substance properties and higher entry velocity. Fast meteoroids (V>30–40 km/s) may lose a part of their material at higher altitudes due to sputtering. Local flow regime realized around the falling body determines the heat transfer and mass loss processes. Classic approach to meteor interaction with atmosphere allows describing two limiting cases: – large meteoroid at relatively low altitude, where shock wave is formed (hydrodynamical models); – small meteoroid/or high altitudes – free molecule regime of interaction, which assumes no collisions between evaporated meteoroid particles. These evaporated particles form initial train, which then spreads into an ambient air due to diffusion. Ablation models should make it possible to describe physical conditions that occur around meteor body. Several self-consistent hydrodynamical models are developed, but similar models for transition and free molecule regimes are still under study. This paper reviews existing ablation models and discusses model boundaries.  相似文献   

2.
J. Lasue  R. Botet  E. Hadamcik 《Icarus》2011,213(1):369-381
A model for the aggregation of size distribution of cometesimals (Gaussian or power law) into cometary nuclei is developed. Upon disruption induced by collisions, sticking and evolution of the tensile strength and density of the cometesimals by sintering processes are taken into account. The resulting cometary nuclei present specific internal structures that have been quantified to allow the comparison with observational constraints and future in situ observations and cometary nucleus sounding with the CONSERT radar on-board the Rosetta mission. A parameter called the homogeneity exponent, μ, determines different aggregation regimes. Fractal aggregates are formed for μ < 0.4. Radial variations in tensile strength appear for 0.4 < μ < 0.6 and vanish for larger values of μ. The initial size distribution (following a Gaussian or power law) of aggregating cometesimals does not influence strongly these values but can change the extent of corresponding layers. If the layering observed on the surface of some cometary nuclei occurs often and originates from primordial structures, this constrains the velocity distribution of aggregating bodies to follow vm-0.25, while a differential size distribution following a power law with exponent between −2 and −3 should result for large bodies, in agreement with current estimations of the size distributions. Such a layered structure would lead to more cohesive, dense and less porous material located near the center of mass of the nucleus predicting an increase of bulk density of comet nuclei with their erosion state.  相似文献   

3.
We present near infrared reflectance spectra from 0.8 to 2.5 μm of two asteroids with low Tisserand invariant, 1373 Cincinnati and 2906 Caltech. We compare our spectra with cometary nuclei and other asteroids in their class. Asteroids Cincinnati and Caltech have Tisserand invariant values of 2.72 and 2.97, respectively, values less than 3 are considered suggestive of cometary origin. The observed spectral slopes in the near-infrared are consistent with both the spectra of cometary nuclei and of primitive asteroids. However, both asteroids have features in the near-infrared that are not seen in cometary nuclei, but are present in other X-type asteroids. 1373 Cincinnati has a sharp slope change between 0.75 and 1.0 μm and 2906 Caltech has a broad and shallow absorption between 1.35 and 2.2 μm. Our attempts to model the visible and near-infrared spectrum of these two objects, with the components successfully used by Emery and Brown (2004, Icarus 164, 104–121) to fit Trojan asteroids, did not yield acceptable fits.Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract to the National Aeronautics and Space Administration.  相似文献   

4.
There are many aspects of observational evidence that cometary nuclei have irregular or nonspherical shape. The triaxial figure of the Halley's Comet nucleus is a well known fact. Therefore, the nucleus shape plays a significant role in consideration of the formation and evolution of comets and several attempts have been made to explain their nonsphericity. These studies were mainly based on the random-walk schemes for the aggregation processes. Although some results indeed lead to irregularities and deviation from sphericity, the spherical or irregular shape seem to be prevailing results. On the other hand the triaxial figure can be formed by the tidal and rotational forces. Thus, the assumption that the shape of the cometary nucleus due to some of these effects is in principle acceptable. In here assumed scenario already evolved cometary nucleus is situated as a satellite in the gravitation field of a planetary-like body. Since the rigidity of the nucleus is low, it may be easily transferred in the state of a synchronous satellite and in its shape could be imprinted the dynamical effects from this epoch. Here presented results indicate, that such a possibility should be seriously considered. The theory of this process is applied to the nucleus of comet Halley. It is shown, that the nucleus might be synchronously orbiting around a planetary-like hypothetical body with a period of 0.7 days. The minimal bulk tensile strength of the cometary material of about 102 N m–2 is estimated.  相似文献   

5.
A one-dimensional numerical model with a size distribution of aerosol particles in Martian atmosphere is developed. The model incorporates detailed microphysics and turbulent transport. Dust particles suspended in the Martian atmosphere play a role of cloud condensation nuclei. Diurnal cycle of condensational processes is obtained on the basis of GCM temperature profiles. An effective radius of ice particles is 1–2 μm near the lower boundary of cloud layer and 0.2–0.3 μm at the altitude of 50–60 km. These results are consistent with solar infrared occultations by SPICAM experiment on Mars-Express. Near-surface fogs may form under specific conditions. The connections of condensational processes and cloud macroscopic parameters on microphysical properties of aerosol particles are main focus of this paper. In particular, the dependence on variations of cloud condensation nuclei contact parameter is analyzed, taking into account new experimental data of adsorption properties of minerals at low temperatures.  相似文献   

6.
Triple F—a comet nucleus sample return mission   总被引:1,自引:0,他引:1  
《Experimental Astronomy》2009,23(3):809-847
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA’s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.  相似文献   

7.
The available literature on sources, chemical composition, and importance of dust particles for the origins of life is analyzed. The most abundant sources of dust on the early terrestrial planets are sedimentation of interplanetary dust, meteoritic/cometary impacts, and volcanic eruptions. Interplanetary dust can originate directly from interstellar space, from evaporation of cometary bodies, from collisional destruction of asteroidal and meteoritic bodies, and nucleation in sunspots. Many rather complex organic species, including those of prebiotic interest, have been identified in the interstellar medium and cometary dust. Some of them are believed to formvia catalytic processes on the surfaces of dust particles. However, the mechanisms are not known, and even simulating experiments are difficult to perform due to insufficient knowledge of physical conditions in the space media and of chemical composition and properties of the dust. Besides the catalytic roles, cometary dust is believed to be the best delivery vehicle for organic matter of space origin to the atmospheres of terrestrial planets. Abundant sources of catalytically active fine dust can be volcanoes. Various organic and biological compounds have been found in terrestrial volcanic gases and ash, which are assumed to formvia the catalytic Fischer-Tropsch reactions. At present the eruptions on the Earth provide a unique opportunity to observein situ the formation of organic matter, and knowledge of the ash composition and local conditions allows to perform simulating experiments.  相似文献   

8.
Models of strange quark stars with a crust consisting of atomic nuclei and degenerate electrons, maintained by an electrostatic barrier at the surface of the strange quark matter, are investigated for a realistic range of parameters of the MIT bag model. The density at which neutrons escape from nuclei, ρ = ρdrip, is taken as the maximum possible boundary density of the crust. Series of strange stars are calculated as a function of central density. Configurations with masses of 1.44 and 1.77 M{ie330-1} and a gravitational redshift Zs = 0.23, corresponding to the best-known observational data, are investigated. The presence of a crust results in the existence of a minimum mass for strange stars, and also helps to explain the glitch phenomenon of pulsars within the framework of the existence of strange quark matter. Translated from Astrofizika, Vol. 42, No. 3, pp. 439–448, July–September, 1999.  相似文献   

9.
Perov  N. I. 《Solar System Research》2003,37(2):165-174
Based on one of the particular cases of twice averaged model Hill problem with the allowance for the oblateness of the central body a quadrature is derived for the determination of the migration time of cometary nuclei from various cometary reservoirs and a (14-th order) algebraic equation for the determination of the initial conditions that allow the escape of the cometary nucleus (which at the initial instant of time moves in an orbit with arbitrary eccentricity (0 < e < 1) and inclination (0° < i < 180°) deeply inside the sphere o f action of the central body) from the sphere of action of the central body or its impact onto the central body. We analyze the shape of the boundaries of the hypothetical cometary reservoirs and the method of searching for regions of high concentration of interstellar particles in the Solar System.  相似文献   

10.
We present hydrogen Balmer-α spectra of comet C/1995 O1(Hale–Bopp) recorded on 5 nights from 1997 February 1 to April 19 by ahigh-resolution (Δ v = 5 km s-1) Fabry–Pérot spectrometer for a4'.1 (∼2.7 × 105 km) FOV centered 5' sunwardof the nucleus. The Hα line profile is an important diagnostic ofphotolytic heating in cometary atmospheres. Extraction of the spectrafrom the Fabry–Pérot ring images was complicated by obscuration of the telescope FOV due to Hale–Bopp's low elevation, but the measuredH-α line widths of 11–13 km s-1 (FWHM) are insensitive to the spectral extraction technique. The line widths are consistent withestimates derived from a successful model of Hale–Bopp's hydrogenLyman-α coma assuming the inner coma is opaque to Hα. Wediscuss methods for improving the spectral extraction technique andderiving a precise instrument profile which will allow the detailedshape of the line profile to constrain coma models.  相似文献   

11.
Peschke  S. B.  Grün  E.  Böhnhardt  H.  Campins  H.  Osip  D. J.  Hanner  M. S.  Heinrichsen  I.  Knacke  R. F.  Leinert  Ch.  Lemke  D.  Stickel  M.  Lisse  C. M.  Sykes  M.  Zarnecki  J. 《Earth, Moon, and Planets》1997,78(1-3):299-304
Comet Hale-Bopp has been observed five times with ISOPHOT, the photometer on board the Infrared Space Observatory (ISO), four times before its perihelion passage at heliocentric distances of 4.92, 4.58, 2.93 and 2.81 AU, and at 3.91 AU postperihelion. Each time, multi-filter photometry covering the range between 3.6–175 μm with eight to ten filters was performed to sample the spectral energy distribution of the comet. These measurements were used to determine dust temperatures for the cometary coma. The evolution of the strength of the silicate feature can be followed in the data as well as the flux deficit at longer wavelengths. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
I. Toth  C.M. Lisse 《Icarus》2006,181(1):162-177
Here we estimate the regions of stability, fragmentation, and destruction for cometary bodies versus rotational breakup in the radius-rotational period plane. By testing different plausible physical models of the cometary nucleus equation of state, we show that the plane is divided into 3 segments: the allowed, damaged, and forbidden regions. We then compare the location of well-observed comets with respect to the separation lines. The range of constituent material parameters from the literature for cometary nuclei are used to show that all the observed comets lie in the allowed region, except for Comet C/1995 O1 (Hale-Bopp), which resides in the damaged region (where the body is fractured and only held together gravitationally). We speculate that the extremely high activity demonstrated by Comet Hale-Bopp during the 1997 apparition may have been due to its highly fractured state. Comet Hyakutake, observed to emit fragments at perigee in 1996, may be near the boundary of the damaged region. Comet C/1999 S4 (LINEAR) was solidly in the rotationally allowed region, making its disintegration in July 2000 due to centrifugal forces unlikely. In contrast to the comets, the centaurs do not cluster in the allowed region, with the majority falling instead into the rotationally damaged and forbidden regions. The centaurs are only stable against breakup assuming much stronger solid water ice properties, strongly suggesting that on the whole, these bodies have different bulk physical properties than cometary nuclei.  相似文献   

13.
Kubo (Celest Mech Dyn Astron 110:143–168, 2011) investigated the kinematical structure of the perturbation in the rotation of the elastic Earth due to the deformation caused by the outer bodies. In that paper, while the mechanism for the perturbation of the figure axis was made clear, that for the rotational axis was not shown explicitly. In the present study, following the same method, the structure of the perturbation of the rotational axis is investigated. This perturbation consists of the direct perturbation and the convective perturbation. First the direct perturbation is shown to be (AC)/A times as large as that of the figure axis, coinciding with the analytical expressions obtained in preceding studies by other authors. As for the convective perturbation, which appears only in the perturbation of the rotational axis but not in that of the figure axis, it is shown to be (AC)/A times the angular separation between the original figure axis and the induced figure axis produced by the elastic deformation, A and C being the principal moments of inertia of the Earth. If the perturbing bodies are motionless, the conclusion of Kubo (Celest Mech Dyn Astron 105:261–274, 2009) holds strictly, i.e. the sum of the direct and the convective perturbations of the rotational axis coincides with the perturbation of the figure axis.  相似文献   

14.
Libyan Desert Glass contains meteoritic material and, therefore, its origin is most likely associated with an impact event. However, the impact crater has not been found. We performed numerical simulations of impacts of stony and cometary bodies in order to confirm the version that this glass was formed from silica heated by radiation from aerial bursts near the ground. Asteroids were treated as strengthless bodies from dunite with a density of 3.3 g cm?3, and comets as icy bodies with a density of 1 g cm?3. The simulations based on hydrodynamic equations included the equations of radiation transfer. Melting and vaporization of a silica target under action of radiation incident on a planar surface were modeled using a one‐dimensional hydrodynamic equation of energy and equations of radiation transfer in two‐flux approximation. We selected those variants of simulations in which a crater is not formed, a fireball touches the earth surface, and the area of a molten target corresponds to the area of the Libyan Desert Glass strewn field. Appropriate options include the impact of an asteroid with a diameter of 300 m, an entry speed of 35 km s?1, and an entry angle of 8°, and cometary bodies with diameters from 150 to 300 m, speeds of 50–70 km s?1, and entry angles from 15° to 45°. Impact options with crater formation are also discussed. The maximum depth of molten silica at ground zero reaches 10 cm with the cometary impacts and 3–4 cm with the asteroidal impact. Melting occurs during a period of time from 50 to 400 s.  相似文献   

15.
For z = 0.8–2.2 redshift interval, quasar pair correlation function parameters and β redshift space distortion parameter (connected to large-scale potential flows) values are estimated. We base them on the Main QSO Sample from SDSS Data Release 5. Standard correlation function form ξ(r) = (r 0/r)γ is used for comoving distances r = 2–50 Mpc between quasars. We fix the parameters of the cosmological model: ΩΛ = 1 − Ω M = 0.726 and H 0 = 70.5 km/(s Mpc). We come to the best-fit parameter values of γ = 1.77 ± 0.20, r 0 = 5.52 ± 0.95 Mpc/h for r in the range 2–30 Mpc, γ = 1.91 ± 0.11, r 0 = 5.82 ± 0.61 Mpc for r in the range 2–50 Mpc. The mean β value is β = 0.43 ± 0.22.  相似文献   

16.
In the previous paper (Li et al. in Phys. Lett. B 666:125–130, 2008), we show the solutions of Einstein equations with static spherically-symmetric quintessence-like matter surrounding a global monopole. Furthermore, this monopole become a black hole with quintessence-like matter and a deficit solid angle when it is swallowed by an ordinary black hole. We study its quasinormal modes by WKB method in this paper. The numerical results show that both the real part of the quasinormal frequencies and the imaginary part decrease as the state parameter w, for scalar and gravitational perturbations. And we also show variations of quasinormal frequencies of scalar and gravitational fields via different ε (deficit solid angel parameter) and different ρ 0 (density of static spherically-symmetric quintessence-like matter at r=1), respectively.  相似文献   

17.
We applied special data-processing algorithms to the study of long-period oscillations of the magnetic-field strength and the line-of-sight velocity in sunspots. The oscillations were investigated with two independent groups of data. First, we used an eight-hour-long series of solar spectrograms, obtained with the solar telescope at the Pulkovo Observatory. We simultaneously measured Doppler shifts of six spectral lines, formed at different heights in the atmosphere. Second, we had a long time series of full-disk magnetograms (10 – 34 hour) from SOHO/MDI for the line-of-sight magnetic-field component. Both ground- and space-based observations revealed long-period modes of oscillations (40 – 45, 60 – 80, and 160 – 180 minutes) in the power spectrum of the sunspots and surrounding magnetic structures. With the SOHO/MDI data, one can study the longer periodicities. We obtained two new significant periods (> 3σ) in the power spectra of sunspots: around 250 and 480 minutes. The power of the oscillations in the lower frequencies is always higher than in the higher ones. The amplitude of the long-period magnetic-field modes shows magnitudes of about 200 – 250 G. The amplitude of the line-of-sight velocity periodicities is about 60 – 110 m s−1. The absence of low-frequency oscillations in the telluric line proves their solar nature. Moreover, the absence of low-frequency oscillations of the line-of-sight velocity in the quiet photosphere (free of magnetic elements) proves their direct connection to magnetic structures. Long-period modes of oscillation observed in magnetic elements surrounding the sunspot are spread over the meso-granulation scales (10″ – 12″), while the sunspot itself oscillates as a whole. The amplitude of the long-period mode of the line-of-sight velocity in a sunspot decreases rapidly with height: these oscillations are clearly visible in the spectral lines originating at heights of approximately 200 km and fade away in lines originating at 500 km. We found a new interesting property: the low-frequency oscillations of a sunspot are strongly reduced when there is a steady temporal trend (strengthening or weakening) of the sunspot’s magnetic field. Another important result is that the frequency of long-period oscillations evidently depends on the sunspot’s magnetic-field strength.  相似文献   

18.
Keith A. Holsapple 《Icarus》2007,187(2):500-509
Holsapple [Holsapple, K.A., 2001. Icarus 154, 432-448; Holsapple, K.A., 2004. Icarus 172, 272-303] determined the spin limits of bodies using a model for solid bodies without tensile or cohesive strength, but with the pressure-induced shear strengths characteristic of dry sands and gravels. That theory included the classical analyses for fluid bodies given by Maclaurin, Jacobi and others as a special case. For the general solid bodies, it was shown that there exists a very wide range of permissible shapes and spin limits; and explicit algebraic results for those limits were given. This paper gives an extension of those analyses to include geological-like materials that also have tensile and cohesive strength. Those strengths are necessary to explain the smaller, fast-rotating asteroids discovered in the last few years. I find that the spin limits for these more general solids have two limiting regimes: a strength regime for bodies with a diameter <3 km, and a gravity regime for the larger bodies with a diameter >10 km (which is the case covered by the earlier papers). I derive explicit algebraic forms for the dependence of the spin limits on shape, mass density and material strength properties. The comparison of the theory to the database for the spins of asteroids and trans-neptunian objects (TNO's) objects shows excellent agreement. For large bodies (diameter D>10 km), the presence of cohesive and/or tensile strength does not permit higher spin rates than would be allowed for rubble pile bodies. Thus, the fact that the spin rates of all large bodies is limited to periods greater than about 2 h does not imply that they are rubble piles. In contrast, for small bodies (D<10 km) the presence of even a very small amount of strength allows much more rapid spins. Small bodies might then be rubble piles but require a small amount of bonding. Finally, I make some remarks about the application of the theory to the TNO's and large asteroids, and question whether a common assumption by researchers that those bodies must take on relaxed fluid shapes is warranted. If not, then the densities and shapes required by that assumption are not valid. I use 2003 EL61 as a prime example.  相似文献   

19.
A short overview of the studies of the authors and their colleagues performed over many years, which resulted in the discovery of traces of cometary matter in the peat at the epicenter of the Tunguska catastrophe in 1908, is given here. In the epicenter of the Tunguska cosmic body (TCB) explosion, the shifts in the isotopic composition of hydrogen and carbon relative to their values for the upper and lower layers of the same column were found in the catastrophic layers of peat grown up in 1908. These shifts cannot be attributed to any known terrestrial processes: the conservation of mineral and organic dust in peat, peat humification, the emission of hydrocarbon gases from the Earth, climate changes, and other physical and chemical processes. In the catastrophic layers of the control peat columns, the isotopic shifts are absent. The isotopic data agree well with the increased concentration of iridium and other platinum-group elements in the same peat layers, which is a reliable indicator of the presence of cosmic material in terrestrial objects. The cosmogenic character of the isotopic effects is confirmed by the presence of “dead” carbon (not containing radioactive 14C) in the catastrophic layers. To provide the shifts observed in the isotopic composition of carbon, cosmic carbon preserved in peat should be isotopically superheavy—from +50‰ to +60‰ according to calculations. Such isotopically heavy carbon is absent both on the Earth and in ordinary meteorites. It occurs only in individual mineral phases of CI carbonaceous chondrites, close to cometary dust in chemical composition, ratios of the content of iridium and other platinoids and rear-earth elements also points to the cometary nature of the TCB. In the near-catastrophic peat layers, the anomalous increase of the concentration of many volatiles was detected, which also suggests that the TCB was a cometary core. The studies of the content and the isotopic composition of nitrogen in the peat revealed traces of heavy acid rains induced by the flyby and explosion of the TCB.  相似文献   

20.
The possibility of impacts and their results in relation to the cometary outbursts between comets and other small bodies in the solar system has been investigated. Taking into consideration certain physical features of cometary nuclei and impacting bodies, the probability of impacts of small bodies moving in the main asteroid belt with hypothetical comets which represent three types: Jupiter family comets, Halley family comets and long period comets has been computed. The probability of impacts between comets and meteoroids at large heliocentric distances has also been estimated. Potential consequences of these events in relation to outbursts of the cometary brightness have been discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号