首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
On the basis of reflected wave hodographs interpreted by the method of homogeneous functions, the section of the lithosphere across the Caucasus, Caspian Sea and Turan Plate was obtained without the use of any preliminary section model. In a section of more than 1000 km, mantle and crustal structures and junction patterns between them are seen down to 60 km within the limits of the Kura Basin and the South and Middle Caspian basins and the Turan Plate. The section of the South Caspian Basin is generally consistent with the ideas of E.V. Artyushkov concerning its structure. A sedimentary layer of up to 30 km thick is underlain by a thinned crust about 10 km thick and by high-velocity mantle. The Turan Plate consists of three layers, which are typical for cratons that are about 50 km thick.  相似文献   

2.
Geomorphic effects observed in the Barranco (creek) de Arás basin are used to characterize the flood. Sediment features allow to qualify the flood as essentially a water flow. Using the critical section method, the peak flood discharge is estimated to be between 400 and 600 m3 s−1. Similar results were obtained using a paleohydraulic formula based on the size of the largest mobilized clasts. Using the rational method with available rainfall data, the discharge for a recurrence interval of 500 years is estimated to be between 150 and 200 m3 s−1. These results agree with predictions obtained using curves of peak discharge versus basin area based on regional data. Several trenches dug on the fan showed that the size of boulders mobilized by the event is larger that those left by previous floods at the same place. When the estimated peak flood discharge is related to the basin area, values between 20 and 30 m3 s−1 km−2 are obtained, demonstrating that the Barranco de Arás flood was most unusual.  相似文献   

3.
Far-from-equilibrium batch dissolution experiments were carried out on the 2000–500, 500–250, 250–53 and 53–2 μm size fractions of the mineral component of the B horizon of a granitic iron humus podzol after removal of organic matter and secondary precipitates. The different size fractions were mineralogically and chemically similar, the main minerals present being quartz, alkali and plagioclase feldspar, biotite and chlorite. Specific surface area increased with decreasing grain size. The measured element release rates decreased in the order 53–2>>>2000–500>500–250>250–53 μm. Surface area normalised element release rates from the 2000–500, 500–250 and 250–53 μm size fractions (0.6–77×10−14 mol/m2/s) were intermediate between literature reported surface area normalised dissolution rates for monomineralic powders of feldspar (0.1–0.01×10−14 mol/m2/s) and sheet silicates (100×10−14 mol/m2/s) dissolving under similar conditions. Element release rates from the 53–2 μm fraction (400–3000×10−14 mol/m2/s) were a factor of 4–30 larger than literature reported values for sheet silicates. The large element release rate of the 53–2 μm fraction means that, despite the small mass fraction of 53–2 μm sized particles present in the soil, dissolution of this fraction is the most important for element release into the soil. A theoretical model predicted similar (within a factor of <2) bulk element release rates for all the mineral powders if observed thicknesses of sheet silicate grains were used as input parameters. Decreasing element release rates with decreasing grain size were only predicted if the thickness of sheet silicates in the powders was held constant. A significantly larger release rate for the 53–2 μm fraction relative to the other size fractions was only predicted if either surface roughness was set several orders of magnitude higher for sheet silicates and several orders of magnitude lower for quartz and feldspars in the 53–2 μm fraction compared to the other size fractions or if the sheet silicate thickness input in the 53–2 μm fraction was set unrealistically low. It is therefore hypothesised that the reason for the unpredicted large release rate from the 52–3 μm size fraction is due to one or more of the following reasons: (1) the greater reactivity of the smaller particles due to surface free energy effects, (2) the lack of proportionality between the BET surface area used to normalise the release rates and the actual reactive surface area of the grains and, (3) the presence of traces quantities of reactive minerals which were undetected in the 53–2 μm fraction but were entirely absent in the coarser fractions.  相似文献   

4.
Geotectonics - A structural-facies map of the Bashkir stage of the Caspian basin, the southeastern part of the East European platform and the Turan plate is compiled on the basis of drilling data...  相似文献   

5.
The large hydrocarbon basin of South Caspian is filled with sediments reaching a thickness of 20–25 km. The sediments overlie a 10–18 km thick high-velocity basement which is often interpreted as oceanic crust. This interpretation is, however, inconsistent with rapid major subsidence in Pliocene-Pleistocene time and deposition of 10 km of sediments because the subsidence of crust produced in spreading ridges normally occurs at decreasing rates. Furthermore, filling a basin upon a 10–18 km thick oceanic crust would require twice less sediments. Subsidence as in the South Caspian, of ≥20 km, can be provided by phase change of gabbro to dense eclogite in a 25–30 km thick lower crust. Eclogites which are denser than the mantle and have nearly mantle P velocities but a chemistry of continental crust may occur beneath the Moho in the South Caspian where consolidated crust totals a thickness of 40–50 km. The high subsidence rates in the Pliocene-Pleistocene may be attributed to the effect of active fluids infiltrated from the asthenosphere to catalyze the gabbro-eclogite transition. Subsidence of this kind is typical of large petroleum provinces. According to some interpretations, historic seismicity with 30–70 km focal depths in a 100 km wide zone (beneath the Apsheron-Balkhan sill and north of it) has been associated with the initiation of subduction under the Middle Caspian. The consolidated lithosphere of deep continental sedimentary basins being denser than the asthenosphere, can, in principle, subduct into the latter, while the overlying sediments can be delaminated and folded. Yet, subduction in the South Caspian basin is incompatible with the only 5–10 km shortening of sediments in the Apsheron-Balkhan sill and south of it and with the patterns of earthquake foci that show no alignment like in a Benioff zone and have mostly extension mechanisms.  相似文献   

6.
新疆开都-孔雀河流域绿洲需水量与稳定性分析   总被引:3,自引:0,他引:3  
水是绿洲存在和发展的核心, 干旱区绿洲稳定性与水密切相关. 根据2000-2009年资料, 采用蒸发系数法和定额法估算开都-孔雀河流域绿洲自然生态系统和社会经济系统综合需水量, 并对水资源约束条件下的绿洲稳定性进行初步探讨. 结果表明: 2000-2009年, 绿洲年均总需水量理论值约为54.80×108 m3, 其中开都河绿洲总需水量约为20.55×108 m3, 孔雀河绿洲总需水量约为21.90×108 m3, 博斯腾湖区耗水量约为12.35×108 m3, 与绿洲10 a平均供水量相比, 供需表现出极大地不平衡性. 水资源可承载绿洲面积(不含博斯腾湖)约为3139.66 km2, 其中可承载灌溉地面积约为1395.41 km2, 与绿洲10 a平均面积5 248 km2相比, 差别较大, 绿洲处于不稳定状态, 现状绿洲面积应适当收缩. 最后, 对博斯腾湖最低生态水位进行讨论, 初步把大湖最低水位定为海拔1 045 m, 小湖最低生态水位定为海拔1 046.5 m.  相似文献   

7.
现代暖期(Current Warm Period,CWP,1850—至今)以来全球气温升高,南海北部陆坡底层海水温度升高、海平面上升影响海底天然气水合物稳定性。为探究现代暖期气候变暖对南海北部陆坡水合物分解影响,本文模拟计算了东沙海域、神狐海域、西沙海域、琼东南海域水合物赋存水深最浅处水合物的饱和度在1 000年内变化情况,评估了受现代暖期气候变暖影响水合物赋存水深范围,讨论了水合物分解量及其对环境影响。结果发现:(1)受现代暖期气候变暖影响,东沙海域、西沙海域、琼东南海域水合物分解,神狐海域水合物不分解;当东沙海域、西沙海域、琼东南海域水深分别超过665、770、725 m,水合物不分解;(2)现代暖期自始以来,南海北部陆坡水合物分解量为9.36×107~3.83×108 m3,产生的甲烷量为1.54×1010~6.28×1010 m3;(3)受现代暖期气候变暖影响,南海北部陆坡每年水合物分解量为5.5×105~2.25×106 m3,产生的甲烷量为9.02×107~3.69×108 m3,这些甲烷中3.61×105~1.48×106 m3能够进入大气,对温室效应贡献度为每年我国人类生活的0.01%~0.06%;与此同时,1.77×107~7.23×107 m3甲烷可能会在海水中被氧化形成弱酸,加重南海北部陆坡海水酸化。  相似文献   

8.
以北京市延庆地区南湾道豁子泥石流沟为研究对象,通过野外泥石流沟精细调查及历史资料统计,详细了解该泥石流发育特征和形成条件,针对流域内松散堆积物补给条件进行重点分析;综合研究该泥石流的动力学特征,进行泥石流危险区预测评价,提出相应的防治措施建议。研究结果表明:该泥石流沟内松散堆积物动储量为18.47×104 m3,分为冲洪积、残坡积、人工堆积和崩滑塌等4种补给来源,其中冲洪积和残坡积所占比重最大;泥石流发展阶段处于衰退期;经动力学分析,洪峰流量值在10年一遇的降雨条件下为52.53 m3/s,20年一遇的降雨条件下为59.25 m3/s,50年一遇的降雨条件下为68.13 m3/s,100年一遇的降雨条件下为74.85 m3/s,对应的一次固体冲出总量分别为0.77×104 m3、0.87×104 m3、1.00×104 m3和1.10×104 m3;属于中型泥石流,最大危险区面积为0.238 3 km2。通过评价分析,该泥石流沟仍存在爆发中型泥石流的可能性,将对下游南湾村以及千沙公路行车和行人的生命财产安全造成威胁。研究成果可为延庆地区该类泥石流单沟预警模型研究和灾害防治提供科学依据。  相似文献   

9.
Geochemical analyses and geobarometric determinations have been combined to create a depth vs. radiogenic heat production database for the Sierra Nevada batholith, California. This database shows that mean heat production values first increase, then decrease, with increasing depth. Heat production is 2 μW/m3 within the 3-km-thick volcanic pile at the top of the batholith, below which it increases to an average value of 3.5 μW/m3 at 5.5 km depth, then decreases to 0.5–1 μW/m3 at 15 km depth and remains at these values through the entire crust below 15 km. Below the crust, from depths of 40–125 km, the batholith's root and mantle wedge that coevolved beneath the batholith appears to have an average radiogenic heat production rate of 0.14 μW/m3. This is higher than the rates from most published xenolith studies, but reasonable given the presence of crustal components in the arc root assemblages. The pattern of radiogenic heat production interpreted from the depth vs. heat production database is not consistent with the downward-decreasing exponential distribution predicted from modeling of surface heat flow data. The interpreted distribution predicts a reasonable range of geothermal gradients and shows that essentially all of the present day surface heat flow from the Sierra Nevada could be generated within the 35 km thick crust. This requires a very low heat flux from the mantle, which is consistent with a model of cessation of Sierran magmatism during Laramide flat-slab subduction, followed by conductive cooling of the upper mantle for 70 m.y. The heat production variation with depth is principally due to large variations in uranium and thorium concentration; potassium is less variable in concentration within the Sierran crust, and produces relatively little of the heat in high heat production rocks. Because silica content is relatively constant through the upper 30 km of the Sierran batholith, while U, Th, and K concentrations are highly variable, radiogenic heat production does not vary directly with silica content.  相似文献   

10.
The Gulf of Corinth is a graben, which has undergone extension during the Late Quaternary. The subsidence rate is rapid in the currently marine part whereas uplift now affects a large part of the initially subsiding area in the North Peloponnese. In this paper, we document the rates of subsidence/uplift and extension based on new subsurface data, including seismic data and long piston coring in the deepest part of the Gulf. Continuous seismic profiling data (air gun) have shown that four (at least) major oblique prograding sequences can be traced below the northern margin of the central Gulf of Corinth. These sequences have been developed successively during low sea level stands, suggesting continuous and gradual subsidence of the northern margin by 300 m during the Late Quaternary (last 250 ka). Subsidence rates of 0.7–1.0 m kyr− 1 were calculated from the relative depth of successive topset to foreset transitions. The differential total vertical displacement between the northern and the southern margins of the Corinth graben is estimated at about 2.0–2.3 m kyr− 1.

Sequence stratigraphic interpretation of seismic profiles from the basin suggests that the upper sediments (0.6 s twtt thick) in the depocenter were accumulated during the last 250 ka at a mean rate of 2.2–2.4 m kyr− 1. Long piston coring in the central Gulf of Corinth basin enabled the recovery of lacustrine sediments, buried beneath 12–13.5 m of Holocene marine sediments. The lacustrine sequence consists of varve-like muddy layers interbedded with silty and fine sand turbidites. AMS dating determined the age of the marine–lacustrine interface (reflector Z) at about 13 ka BP. Maximum sedimentation rates of 2.4–2.9 m kyr− 1 were calculated for the Holocene marine and the last glacial, lacustrine sequences, thus verifying the respective rates obtained by the sequence stratigraphic interpretation. Recent accumulation rates obtained by the 210Pb-radiometric method on short sediment box cores coincide with the above sedimentation rates. Vertical fault slip rates were measured by using fault offsets of correlated reflector Z. The maximum subsidence rate of the depocenter (3.6 m kyr− 1) exceeds the maximum sedimentation rate by 1.8 m kyr− 1, which, consequently, corresponds to the rate of deepening of the basin's floor. The above rates indicate that the 2.2 km maximum sediment thickness as well as the 870 m maximum depth of the basin may have formed during the last 1 Ma, assuming uniform mean sedimentation rate throughout the evolution of the basin.  相似文献   


11.
U-type paragenesis inclusions predominate (94.7%) among the crystalline inclusion suite of 115 diamonds (−4+2 mm) obtained from the recently discovered Snap Lake/King Lake (SKL) kimberlite dyke system, Southern Slave, Canada. The most common inclusions are olivine (90) and enstatite (22). Sulfide, Cr-pyrope, chromite and Cr-diopside inclusion are less abundant (15, 10, 5 and 1, respectively). Results of the inclusion composition study demonstrate the following. (a) The relatively enriched character of the mantle parent rocks of the U-type diamonds. The average Mg# of olivine inclusions is 92.1, and of enstatite inclusions average 93.3. CaO content in Cr-pyrope inclusions is relatively high (3.73–5.75 wt.%). (b) Four of ten U-type Cr-rich pyrope inclusions contain a majoritic component up to 16.8 mol.% which requires pressures of 110 kbar. Carbon isotopes compositions for 34 diamonds with U-type inclusions have a δ13C range from −3.2‰ to −9‰ with a strong peak around −3.5‰. This is much heavier than the ratios of U-type diamonds from Siberia and South Africa (4.5‰). Diamonds with olivine inclusions can be divided into two groups based on their δ13C values as well as the Mg# and Ni/Fe ratio in the olivines. Most show a narrow range of δ13C values from −3.2‰ to −4.8‰ (average −3.72‰) and have olivine inclusions with Mg# less than 92.3 and relatively high Fe/Ni ratios. A second group is characterized by a much wider variation of C isotope composition (δ13C varies from −3.8‰ to −9.0‰, average −5.97‰), and the olivine inclusions having a higher Mg# (up to 93.6) and relatively low Fe/Ni ratios. This difference in the C isotope composition may have several explanations: (a) peculiarities of asthenosphere degassing coupled with an abnormal thickness of lithosphere; (b) the abnormal thickness and enriched character of lithospheric mantle; (c) involvement of subducted C of crustal origin in the processes of the diamond formation. The presence of subcalcic Cr-rich majorite (up to 17 mol.%) pyropes of low-Ca harzburgite paragenesis among the crystalline inclusion suite of SKL diamonds is strong evidence for the existence of diamondiferous depleted peridotite in lithospheric mantle at depth near 300 km beneath Southern Slave area and is postulated to be one of the main reasons for the much heavier C isotope composition of SKL U-type diamonds in comparison with those from Siberian and South African kimberlites.  相似文献   

12.
As a result of the collapse of a mine tailing dam, a large extension of the Guadiamar valley was covered with a layer of pyritic sludge. Despite the removal of most of the sludge, a small amount remained in the soil, constituting a potential risk of water contamination. The kinetics of the sludge oxidation was studied by means of laboratory flow-through experiments at different pH and oxygen pressures. The sludge is composed mainly of pyrite (76%), together with quartz, gypsum, clays, and sulphides of zinc, copper, and lead. Trace elements, such as arsenic and cadmium, also constitute a potential source of pollution. The sludge is fine grained (median of 12 μm) and exhibits a large surface (BET area of 1.4±0.2 m2 g−1).

The dissolution rate law of sludge obtained is r=10−6.1(±0.3) [O2(aq)]0.41(±0.04) aH+0.09(±0.06) gsludge m−2 s−1 (22 °C, pH=2.5–4.7). The dissolution rate law of pyrite obtained is r=10−7.8(±0.3) [O2(aq)]0.50(±0.04) aH+0.10(±0.08) mol m−2 s−1 (22 °C, pH=2.5–4.7). Under the same experimental conditions, sphalerite dissolved faster than pyrite but chalcopyrite dissolves at a rate similar to that of pyrite. No clear dependence on pH or oxygen pressure was observed. Only galena dissolution seemed to be promoted by proton activity. Arsenic and antimony were released consistently with sulphate, except at low pH conditions under which they were released faster, suggesting that additional sources other than pyrite such as arsenopyrite could be present in the sludge. Cobalt dissolved congruently with pyrite, but Tl and Cd seemed to be related to galena and sphalerite, respectively.

A mechanism for pyrite dissolution where the rate-limiting step is the surface oxidation of sulphide to sulphate after the adsorption of O2 onto pyrite surface is proposed.  相似文献   


13.
火山碎屑岩的储层物性——以松辽盆地营城组为例   总被引:2,自引:0,他引:2  
对松辽盆地营城组35口盆内深层钻井和2口剖面浅钻全取心井的对比研究揭示:在浅层(埋深<500 m),火山碎屑岩储层物性(平均孔隙度18.7%、渗透率0.32×10-3μm2)好于熔岩(14.0%,0.18×10-3μm2);在深层(埋深>2 800 m),火山碎屑岩物性(2.6%,0.05×10-3μm2)明显差于熔岩(7.3%,0.07×10-3μm2)。熔岩和火山碎屑岩的储层物性总体上都随埋深增加而变差,但火山碎屑岩的变化率显著大于熔岩;所以当大于一定埋深(2 500~3 000 m)时,熔岩的物性优于火山碎屑岩而成为主力储层。熔岩与火山碎屑岩物性随埋深变化的差异主要源于它们成岩方式的不同:前者冷凝固结,骨架体积受压实影响很小;后者压实固结成岩,其特点同沉积岩。在中浅层勘探中(埋深小于2 500 m)火山碎屑岩可作为重点目标。  相似文献   

14.
We investigate the use of a ductile material with temperature-sensitive viscosity for thermomechanical modelling of the lithosphere. First, we consider the scaling of mechanical and thermal properties. For a normal field of gravity, the balance of stresses and body forces sets the stress scale, in proportion to the linear dimensions and the densities. The equation of thermal conduction sets the time scale. The activation enthalpy for creep sets the temperature scale; but the thermal expansivity provides an additional constraint on this temperature scale.

Gum rosin appears to be a suitable material for lithospheric modelling. We have measured its flow properties, at various temperatures, in a specially designed rotary viscometer with unusually low machine friction. The rosin is almost Newtonian. Strain rate depends upon stress to the power n, where 1.0 <n < 1.14. The viscosity varies over 5 orders of magnitude, from about 102 Pa s at 80°C, to about 107 Pa s at 40°C. The activation enthalphy is thus about 250 kJ/mol. Measured with a needle probe, the thermal conductivity is 0.113 ± 0.001 W m−1K−1; the thermal diffusivity, (6±3) ×10−7 m2 s−1. Calculated from X-ray profiles, the thermal expansivity is about 3 × 10−4 K−1. These thermal and mechanical properties make gum rosin suitable for thermomechanical models, where linear dimensions scale down by a factor of 106; time, by 1011; viscosity, by 1017; and temperature change, by 101.  相似文献   


15.
We discuss several models of the evolution of the trench-trench-trench triple junction off central Honshu during the past 1 m.y. on the basis of plate kinematics, morphology, gravity and seismic reflection profile data available for the area. The study area is characterized by large basins, 7–8 km deep on the inner lower trench slope on the Philippine Sea side and the deep (9 km) Izu-Bonin Trench to the east. Between the basins and the trench, there are 6–7 km-deep basement highs. The triple junction is unstable due to the movement of the Philippine Sea plate at a velocity of 3 cm/yr in WNW direction with respect to Eurasia (Northeast Japan), subparallel to the strike of the Sagami Trough. Generally we can expect the boundary area between the Philippine Sea and Pacific plates to be extended because the Pacific plate is unlikely to follow the retreating Philippine Sea plate due to the obstruction of the southeastern corner of Eurasia. The above peculiar morphology of the junction area could have resulted from this lack of stability. However, there are several possible ways to explain the above morphology.

Our gravity model across the trench-basement high-basin area shows that the basement highs are made of low-density materials (1.8–2 g/cm3). Thus we reject the mantle diapir model which proposes that the basement highs have been formed by diapiric injection of serpentinites between the retreating Philippine Sea plate and the Pacific plate.

The stretched basin model proposes that the basins have been formed by stretching of the Philippine Sea plate wedge. We estimated the extension to be about 10 km at the largest basin. We reconstructed the morphology at 1 Ma by moving the Philippine Sea plate 20 km farther to the east after closing the basins, and thus obtained 8 km depth of the 1 Ma trench, which is similar to that of the present Japan Trench to the north. Although this stretched basin model can explain the formation of the basins and the deep trench, other models are equally possible. For instance, the eduction model explains the origin of the basin by the eduction of the Philippine Sea basement from beneath the basement high, while the accretion model explains the basement highs by the accretion of the Izu-Bonin trench wedge sediments. In both of these models we can reconstruct the 1 Ma trench depth as about 8 km, similar to that of the stretched basin model.

The deformation of the basement of the basins constitutes the best criterion to differentiate between these models. The multi-channel seismic reflection profiles show that the basement of the largest basin is cut by normal faults, in particular at its eastern edge. This suggests that the stretched basin model is most likely. However, the upper part of the sediments shows that the basement high to the east has been recently uplifted. This uplift is probably due to the recent (0.5 Ma) start of accretion of the trench wedge sediments beneath this basement high.  相似文献   


16.
The thermal structure and thickness of continental roots   总被引:19,自引:0,他引:19  
C. Jaupart  J. C. Mareschal 《Lithos》1999,48(1-4):93-114
We compare heat flow data from the Precambrian shields in North America and in South Africa. We also review data available in other less well-sampled Shield regions. Variations in crustal heat production account for most of the variability of the heat flow. Because of this variability, it is difficult to define a single average crustal model representative of a whole tectonic province. The average heat flow values of different Archean provinces in Canada, South Africa, Australia and India differ by significant amounts. This is also true for Proterozoic provinces. For example, the heat flow is significantly higher in the Proterozoic Namaqua–Natal Belt of South Africa than in the Grenville Province of the Canadian Shield (61 vs. 41 mW m−2 on average). These observations indicate that it is not possible to define single value of the average heat flow for all provinces of the same crustal age. Large amplitude short wavelength variations of the heat flow suggest that most of the difference between Proterozoic and Archean heat flow is of crustal origin. In eastern Canada, there is no good correlation between the local values of heat flow and heat production. In the Archean, Proterozoic and Paleozoic provinces of eastern Canada, heat flow values through rocks with the same heat production are not significantly different. There is therefore no evidence for variations of the mantle heat flow beneath these different provinces. After removing the local crustal heat production from the surface heat flow, the mantle (Moho) heat flow was estimated to be between 10–15 mW m−2 in the Archean, Proterozoic and Paleozoic provinces of eastern Canada. Estimates of the mantle heat flow in the Kaapvaal craton of South Africa may be slightly higher (≈17 mW m−2). Large-scale variations of bulk crustal heat production are well-documented in Canada and imply significant differences of deep lithospheric thermal structure. In thick lithosphere, surficial heat flow measurements record a time average of heat production in the lithospheric mantle and are not in equilibrium with the instantaneous heat production. The low mantle heat flow and current estimates of heat production in the lithospheric mantle do not support a mechanical (conductive) lithosphere thinner than 200 km and thicker than 330 km. Temperature anomalies with surrounding oceanic mantle extend to the convective boundary layer below the conductive layer, and hence to depths greater than these estimates. Mechanical and thermal stability of the lithosphere require the mantle part of the lithosphere to be chemically buoyant and depleted in radiogenic elements. Both characteristics are achieved simultaneously by partial melting and melt extraction.  相似文献   

17.
金沙江上游巴塘—中咱河段位于青藏高原东南缘,该河段两岸岸坡发育众多的大型古滑坡,且部分古滑坡曾堵塞金沙江形成了堰塞湖,特米大型古滑坡堰塞湖是其中之一。关于特米古滑坡堰塞湖的形成与演化过程目前尚未见有过详细的报道。本文在野外调查的基础上,结合遥感影像解译和年代学测试,对特米古滑坡堰塞湖的地貌和沉积特征进行了详细研究,并对其形成与演化过程进行了分析。研究结果表明,特米古滑坡堰塞湖很可能是由该地区的古地震活动触发大型滑坡并堵塞金沙江形成的,最大湖面面积约为1.42×107 m2,库容蓄水量约为1.46×109 m3。该古堰塞湖的形成时间约为1.8 ka BP,其溃决消亡的时间约为1.4 ka BP,溃决洪峰流量约为55 858 m3/s,该滑坡堰塞湖持续稳定了约400年的时间。  相似文献   

18.
地热水属于承压水,其储存量包括容积储存量和弹性储存量两部分,当水位处于含水层顶板以上时,已开采出的地热水只能是弹性储存量。在河北平原区进行区域地热资源评价时,地热水可开采量按照开采系数法、解析法等不同方法计算,与弹性储存量存在巨大差距。为研究地热水开采资源的构成并更加准确评价集中开采区地热水的可开采量,采用地下水均衡法对辛集集中开采区地热水开采资源量进行了计算,结果显示: 侧向补给量为126×104 m3,占开采资源量的60.9%; 越流补给量为19.7×104 m3,占开采资源量的9.55%; 弹性释水量为33.1×104 m3,占开采资源量的16.1%; 弱透水层压密释水量为27.4×104 m3,占开采资源量的13.3%。研究结果说明,集中开采区地热水的开采资源量不仅仅来自于热储层的弹性释水量,还包括侧向补给量、越流补给量和弱透水层的压密释水量。研究成果对于科学合理地开发地热资源、更好地遏制和缓解地热水开采引发的地质环境问题具有一定意义。  相似文献   

19.
我国地质结构具有3大板块、3大构造域多旋回构造演化特征,造就多种类型叠合沉积盆地,构成克拉通+前陆、断陷+坳陷、前陆+坳陷3种主要类型。大型叠合盆地是油气资源分布与勘探开发主体。我国常规与非常规油气资源十分丰富,常规石油地质资源量1 075×108 t,常规天然气地质资源量83×1012 m3;致密油地质资源量134×108 t,致密砂岩气地质资源量21×1012 m3,页岩油地质资源量335×108 t,页岩气地质资源量56×1012 m3。陆上油气资源主要分布于渤海湾(陆上)、松辽、鄂尔多斯、塔里木、四川、准噶尔、柴达木7大盆地。海域油气资源主要分布于渤海湾(海域)、东海及南海北部的珠江口、北部湾、莺歌海、琼东南6大盆地。未来我国油气勘探应始终坚持“资源战略,稳油增气”战略,坚持“非常并进、海陆统筹”积极进取勘探思路;常规勘探领域,陆上地层-岩性、前陆、海相碳酸盐岩与潜山领域;海域为渤海海域构造与基岩潜山,深水构造与岩性;非常规油气主要是立足陆上7大含油气盆地,立足致密油气与页岩油气,强化勘探开发与技术配套。  相似文献   

20.
西北地区水资源可利用量与承载能力估算   总被引:19,自引:0,他引:19       下载免费PDF全文
界定了水资源可利用量和径流口径生态需水的概念。对西北地区的径流口径生态需水和水资源可利用量进行估算。西北地区水资源总量为1638 5×108m3,但需净出境水量为411 9×108m3,实有水资源总量为1226 6×108m3,径流口径生态需水量为454 4×108m3,除去保留给生态的生态需水、偏远封闭流域难以利用的水量,人类可以消耗利用的可利用量有742×108m3,其中黄河流域可利用量为187×108m3,西北内流区当地可利用量为555×108m3。建立了水资源承载能力优化计算模型,估算西北地区的水资源承载能力,并建议用水资源承载能力图谱表示水资源承载能力。在人均GDP每10年翻一番、水资源利用效率每年提高7%的条件下,西北地区水资源承载能力2010年为11310万人,2020年为12019万人,2030年为12733万人。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号