首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Determining factors that limit coseismic rupture is important to evaluate the hazard of powerful subduction zone earthquakes such as the 2011 Tohoku‐Oki event (Mw = 9.0). In 1960 (Mw = 9.5) and 2010 (Mw = 8.8), Chile was hit by such powerful earthquakes, the boundary of which was the site of a giant submarine slope failure with chaotic debris subducted to seismogenic zone depth. Here, a continuous décollement is absent, whereas away from the slope failure, a continuous décollement is seismically imaged. We infer that underthrusting of inhomogeneous slide deposits prevents the development of a décollement, and thus the formation of a thin continuous slip zone necessary for earthquake rupture propagation. Thus, coseismic rupture during the 1960 and 2010 earthquakes seems to be limited by underthrusted upper plate mass‐wasting deposits. More generally, our results suggest that upper plate dynamics and resulting surface processes can play a key role for determining rupture size of subduction zone earthquakes.  相似文献   

2.
张丁丁  张衡 《地学前缘》2022,29(1):303-315
大陆岩石圈深俯冲作用是地球科学领域的前沿热点,榴辉岩的折返机制是板块构造及动力学的关键科学问题。全球著名的大陆造山带中榴辉岩的p-T轨迹呈现差异性折返特征,为了揭示榴辉岩的折返机制,本文结合变质岩石学和地球物理学研究,选取3个典型大陆造山带——中生代—新生代的阿尔卑斯造山带、中生代的苏鲁—大别造山带和新生代的喜马拉雅造山带中的榴辉岩进行阐述。在阿尔卑斯造山带地区,地球物理研究结果发现,欧洲板块的俯冲造成了Adria地区下方的岩石圈存在明显厚度差异。同时,阿尔卑斯造山带Doria Maria和Pohorje地区以及Pohorje地区内部,榴辉岩折返历史也不尽相同,原因可能是亚德里亚大洋岩石圈断离后不同期次的逆冲推覆作用使其差异性斜向挤出。苏鲁—大别造山带中榴辉岩的快速折返,原因可能是华南板块与华北板块碰撞后岩石圈的拆沉或断离作用。在喜马拉雅造山带,西构造结和中喜马拉雅榴辉岩的折返存在差异性。在西构造结,那让和卡甘榴辉岩呈现不同的p-T轨迹和折返速率,变质岩石学和地球物理研究结果都表明它们的差异性折返很可能与印度-欧亚大陆碰撞过程中的构造挤压作用以及印度大陆岩石圈的断离作用有关。喜马拉雅造山带是年轻的正在进行造山活动的造山带,相较于古老的苏鲁-大别造山带,它更适合变质岩石学和地球物理学的综合研究。因此西构造结高压/超高压榴辉岩的折返机制——构造挤压和俯冲板块断离可应用于全球造山带。  相似文献   

3.
South of the Matterhorn the Valtournanche cuts through Alpine serpentinites, metagabbros, meta-pillowbasalts and metasediments—dismembered remnants of the Jurassic Tethyan oceanic crust, reassembled in the Piemonte ophiolite nappe. This study deals with a serpentinized ultramafic to mafic layered complex stemming from a spreading ridge environment. Cumulus fabrics of various kinds can be read through antigorite pseudomorphs, still allowing the detailed reconstruction of deep oceanic crust. Relics of igneous and metamorphic olivine prove crustal conditions during deformation. Fracturing of cumulus olivine was succeeded by plastic flow that activated low-temperature slip systems. Concomitant recrystallization produced metaperidotite only along shear zones, which are ascribed to subduction of the oceanic crust. At the turning point from subduction to obduction a static metamorphic event resulted in recovery and grain growth of recrystallized olivine. Afterwards serpentinization of the complex took place still under static conditions. Deformation of the serpentinite led to a sequence of four phases, involving non-penetrative cleavage formation, stretching and folding. This deformation is structurally related to obduction of the complex although partly accompanied by subduction zone metamorphism. Final movements of the ophiolites were due to cataclastic thrusting forming subnappe boundaries.  相似文献   

4.
The northern Snake Range, east-central Nevada, is one of the metamorphic core complexes of the Sevier hinterland. Within the range a major décollement separates an ‘upper plate’ composed of brittlely deformed Paleozoic sedimentary rocks (mostly carbonates), from a ‘lower plate’ composed of metamorphic Upper Precambrian-Lower Cambrian rocks, intruded by gneissic granites. A study of the geometry and kinematics of structures and fabrics at outcrop scale and in thin sections indicates that: the northern Snake Range décollement has been a zone of intense non-coaxial E-vergent shear and transport in a ∼- N115°E direction. Outstanding asymmetric boudinage within the marble sheet capping the lower plate testifies for late ductile shear strains (γ) of at least 20. The interface between brittlely and ductilely deformed rocks seems too sharp to represent a regional rheological transition, but might result from two distinct phases of deformation. Ductile deformation in and below the décollement could have occurred before brittle deformation in the upper plate. Brittle faulting in the upper plate related to Basin and Range extension reactivated the upper surface of the ductile shear zone. High topographic relief on the normal faults bounding the range triggered the slide of olistolites from the upper plate into the adjacent Oligo-Miocene basins.  相似文献   

5.
Preservation/exhumation of ultrahigh-pressure subduction complexes   总被引:14,自引:0,他引:14  
W.G. Ernst   《Lithos》2006,92(3-4):321-335
Ultrahigh-pressure (UHP) metamorphic terranes reflect subduction of continental crust to depths of 90–140 km in Phanerozoic contractional orogens. Rocks are intensely overprinted by lower pressure mineral assemblages; traces of relict UHP phases are preserved only under kinetically inhibiting circumstances. Most UHP complexes present in the upper crust are thin, imbricate sheets consisting chiefly of felsic units ± serpentinites; dense mafic and peridotitic rocks make up less than  10% of each exhumed subduction complex. Roundtrip prograde–retrograde PT paths are completed in 10–20 Myr, and rates of ascent to mid-crustal levels approximate descent velocities. Late-stage domical uplifts typify many UHP complexes.

Sialic crust may be deeply subducted, reflecting profound underflow of an oceanic plate prior to collisional suturing. Exhumation involves decompression through the PT stability fields of lower pressure metamorphic facies. Scattered UHP relics are retained in strong, refractory, watertight host minerals (e.g., zircon, pyroxene, garnet) typified by low rates of intracrystalline diffusion. Isolation of such inclusions from the recrystallizing rock matrix impedes back reaction. Thin-aspect ratio, ductile-deformed nappes are formed in the subduction zone; heat is conducted away from UHP complexes as they rise along the subduction channel. The low aggregate density of continental crust is much less than that of the mantle it displaces during underflow; its rapid ascent to mid-crustal levels is driven by buoyancy. Return to shallow levels does not require removal of the overlying mantle wedge. Late-stage underplating, structural contraction, tectonic aneurysms and/or plate shallowing convey mid-crustal UHP décollements surfaceward in domical uplifts where they are exposed by erosion. Unless these situations are mutually satisfied, UHP complexes are completely transformed to low-pressure assemblages, obliterating all evidence of profound subduction.  相似文献   


6.
In orogenic belts, a basal décollement zone often develops at depth to accommodate the shortening due to folding and thrusting of the sedimentary cover. In the Early Mesozoic intracontinental Xuefengshan Belt of South China, such a décollement zone is exposed in the core of anticlines formed by the emplacement of the late-orogenic granitic plutons. Our detailed, multi-scale structural analysis documents a synmetamorphic ductile deformation. In the basal décollement, the Neoproterozoic pelite and sandstone, and the intruding Early Paleozoic granites were deformed and metamorphosed into mylonites and orthogneiss, respectively. The metamorphic foliation contains a NW–SE stretching lineation associated with top-to-the-NW kinematic indicators. The ductile shearing of these high-strained rocks can be correlated with NW-verging folds and thrusts recognized in the Neoproterozoic to Early Triassic sedimentary cover. Monazite U–Th–Pbtot chemical dating, and zircon SIMS U–Pb dating provide age constraints of the ductile shearing between 243 and 226?Ma, and late-orogenic granite emplacement around 235–215?Ma. In agreement with recent geochronological data, these new results show that the Xuefengshan Belt is an Early Mesozoic orogen dominated by the NW-directed shearing and thrusting. At the southeastern boundary of the Xuefengshan Belt, the Chenzhou-Linwu fault separates the Early Mesozoic domain to the NW from the Early Paleozoic domain to the SE. The tectonic architecture of this belt was possibly originated from the continental underthrusting to the SE of the South China block in response to northwest-directed subduction of the Paleo-Pacific plate.  相似文献   

7.
板内扭压造山机制   总被引:5,自引:0,他引:5  
李东旭 《地学前缘》1999,6(4):317-322
据中国大陆板块内部构造特征提出两种扭压造山机制:(1) 扭压滑脱褶皱造山作用;(2) 扭压斜滑断裂岩浆造山作用。前者以扬子板块内的武陵山台褶带为例,后者以华北板块内的太行山断裂岩浆带为例。扭压滑脱褶皱造山作用表现为沉积盖层呈隔档式及隔槽式褶皱;结晶基底呈大型隆起和拗折,莫霍面下降,从而使地壳增厚,构成造山带。值得注意的是,这类滑脱褶皱带的整体形状呈S状展布,其中的次级褶皱呈雁行状斜列,表明这类造山带的形成除受水平挤压作用外,还伴有左行剪切作用。扭压斜滑断裂岩浆造山作用表现为沿断裂带有一系列花岗质深成岩体展布。这些断裂不仅深切地幔,而且导致下地壳局部融熔形成花岗岩浆,驱动岩浆斜向上升,并控制岩体侵位。与此同时地壳在平面上缩短,垂向上增厚,构成造山带。上述两种造山作用一致表明,东亚大陆在中生代时曾相对太平洋板块向南滑移  相似文献   

8.
Abstract Mineralogical and petrological studies of Triassic Verrucano metasediments of the Northern Apennines are reported. The widespread occurrence of Al-silicates allows the delineation of four metamorphic zones with increasing metamorphic grade: (1) kaolinite zone (well Perugia 2, Umbria); (2) kaolinite-pyro-phyllite zone (Monte Argentario and part of the Verrucano of the Monticiano-Roccastrada area and Monti Leoni); (3) pyrophyllite zone (Monti Pisani, Iano, Monti Leoni, the Monticiano-Roccastrada area and some wells in the Larderello region); (4) kyanite zone (Massa area and some wells in the Larderello area).
The four metamorphic zones correspond to temperatures ranging from 300°C to about 450°C. On the basis of the Si content of muscovite and geological arguments, pressures of between 3 and 5 kbar are estimated. The metamorphic zones are located more or less parallel to the bent north-west-south-east trending structural zonation of the Northern Apennines, with the concave side towards the Tyhrrenian Sea.
During the Alpine orogeny, the Verrucano metasediments underwent three folding phases each of which has produced an axial plane schistosity (S1, S2, S3). During the first folding phase the Verrucano sediments were buried increasingly deeply within the crust from east to west. The climax of Alpine metamorphism was attained prior to the second folding phase with crystallization of porphyroblasts of kyanite and chloritoid in a central area located between Massa and Larderello. The inferred paleo-temperature distribution pattern resembles an asymmetric thermal high defined by the kyanite zone, and surrounded by the pyrophyllite zone. A similar pattern is still present in the Tuscan crust, as indicated by a series of geothermal anomalies passing through the Northern Apennines.  相似文献   

9.
High‐pressure (HP) metabasites from the Sancti Spiritus dome (Escambray massif, Central Cuba) have been studied in order to better understand the origin and evolution of the Northern Caribbean boundary plate during the Cretaceous, in a global subduction context. Geochemical and petrological studies of these eclogites reveal two groups with contrasting origins and pre‐subduction metamorphic histories. Eclogites collected from exotic blocks within serpentinite (mélange zone) originated from a N‐MORB type protolith, do not record pre‐eclogitic metamorphic history. Conversely eclogites intercalated in Jurassic metasedimentary rocks (non‐mélange zone) have a calc‐alkaline arc‐like origin and yield evidence for a pre‐subduction metamorphic event in the amphibolite facies. However, all the studied Escambray eclogites underwent the same eclogitic peak (around 600 °C at 16 kbar), and followed a cold thermal gradient during their exhumation (estimated at around 13.5 °C km?1), which can suggest that this exhumation was coeval with subduction. Concordant geochronological data (Rb/Sr and Ar/Ar) support that the main exhumation of HP/LT rocks from the Sancti Spiritus dome occurred at 70 Ma by top to SW thrusting. The retrograde trajectory of these rocks suggests that the north‐east subduction of the Farallon plate continued after 70 Ma. The set‐off to the exhumation can be correlated with the beginning of the collision between the Bahamas platform and the Cretaceous island arc that induced a change of the subduction kinematics. The contrasting origin and ante‐subduction history of the analysed samples imply that the Escambray massif consists of different geological units that evolved in different environments before their amalgamation during exhumation to form the present unit III of the massif.  相似文献   

10.
雅鲁藏布江断裂带的构造特征   总被引:1,自引:0,他引:1  
雅鲁藏布扛断裂带是印度板块与欧亚板块俯冲、碰撞的界面。通过对断裂带及邻近地质体的构造变形及大地构造背景研究,可将断裂带的发展划分成4个阶段:1)蛇绿岩侵位前的板块俯冲阶段(90Ma以前):2)蛇绿岩侵位时的板块俯冲阶段(90Ma左右—始新世);3)板块碰撞阶段(始新世以后);4)走滑阶段(现代)。  相似文献   

11.
雅鲁藏布江断裂带的构造特征   总被引:2,自引:0,他引:2  
雅鲁藏布扛断裂带是印度板块与欧亚板块俯冲、碰撞的界面。通过对断裂带及邻近地质体的构造变形及大地构造背景研究,可将断裂带的发展划分成4个阶段:1)蛇绿岩侵位前的板块俯冲阶段(90Ma以前):2)蛇绿岩侵位时的板块俯冲阶段(90Ma左右—始新世);3)板块碰撞阶段(始新世以后);4)走滑阶段(现代)。  相似文献   

12.
Subduction-zone magmatism became extensive along the west coast of South America during the Ordovician, soon after Gondwana was assembled. During the remainder of the Paleozoic and the early Mesozoic, eastward subduction of the Farallon plate led to emplacement of a succession of granitic and volcanic rocks. During the Cretaceous, when South America broke away from Africa and began moving independently toward the Pacific Basin, the resulting opposite motions of the South American and Farallon plates toward the subduction zone caused vigorous tectonic mountain building. But by the Oligocene, South America had advanced more than 2000 km beyond the position of the Cretaceous subduction zone's root in the lower mantle. The South American plate, moving westward over the subducting plate, pushed down and flattened the curved top of the subducting slab, as indicated by today's flattened earthquake zone under South America. I hypothesize that this flattening increased the subducting slab's resistance with the underlying lower mantle. Crustal deformation slowed, and the mountains built during the Cretaceous and later were eroded to a peneplane.

During the Oligocene, about 25 Ma, the Farallon plate broke into the Cocos and Nazca plates, and I suggest that along the west coast of South America a shear at a slope of about 30° cut through the subducting slab. The oceanic (Nazca) part of the slab then entered the lower mantle below the Andes with a steeper dip than before. As the newly sheared obtuse upper corner of the Nazca plate pushed eastward and downward, it buckled the rigid edge of the continent and began the folding and thrusting of the Andean (Quechua) orogeny. The orogeny continues, but earthquake foci indicate that as South America continues to move westward, the subduction zone once again is flattening; in the future we can expect the Nazca slab to shear once more and its new wedge-shaped end to enter the lower mantle again.  相似文献   

13.
1.IntroductionFig.1. RegionalgeologyoftheeasternLiaoningSouthernJilinarea(AfterZhang,1984)  ThePaleoproterozoicvolcanicsedimentarysequence,i.e.,theSouthLiaoheGroupandNorthLiaoheGroup,extendsbetweentwoArchaeancratons(Fig.1).Abundantmineralresources…  相似文献   

14.
Ancient subduction zones are characterized by metamorphic and orogenic belts. The Zagros Orogenic Belt comprises almost all sections of an ancient subduction zone along which Neo-Tethyan oceanic crust was subducted beneath central Iran. The Eslami Peninsula, as a part of the Zagros Orogenic Belt in Azerbaijan province, northwestern Iran, is situated between the Lake Urmia fore-arc basin and the Sahand Magmatic Arc. This region contains Eocene leucite dikes, trachyte, tephrite, phenolite, basanite and syenite. Volcanic features related to the Sahand are located in the eastern part of the Eslami Peninsula. In view of its relative age and composition, the Eslami Peninsula proposed as an outer arc of the Sahand Magmatic Arc that formed within the post-collisional setting of the central Iranian and Arabian plates. After subduction and contact of the two plates, a symmetric pop-up structure has been created by thrusting in the Zagros belt as a result of the collision processes. The injesction of dikes in the Eslami Peninsula is also a result of the continent_continent collision.  相似文献   

15.
Zoltá  n N 《岩石学报》2004,20(4):837-854
本文总结并报导了斯洛伐克西喀尔巴阡山脉内侧的石炭纪岩石中产出的菱镁矿和滑石成因的最新资料.这些矿床赋存于Veporicum构造超单元中和该超单元与Gemericum的接触带中.北部Sinec成矿带是主要的菱镁矿和滑石矿化区,产出的主要矿床有Kokava,Sinec,Samo,Hnsta-Mutnik等矿床.而南部的Ochtina成矿带只产有菱镁矿床,主要矿床包括在Dubrava地体上的Dubrava,Mikov?JedL'vec;Luben韐,Ochtina,Kosice-Bankov,Banisko,Medvedia等矿床.菱镁矿形成于变质M1期石炭系中方解石被白云石和菱镁矿连续交代过程(北矿带成矿温度为280~400℃,南矿带成矿温度为370~420℃;Radvanec&Prochska,2001;Kodera&Radvanec,2002).Permoscythian蒸发卤水提供了Mg.成矿事件和华力西期碰撞后运动有关.拉伸构造和高热流值促使成矿热液系统的产生.滑石矿化则形成于稍晚的不同期变质事件(M2),成矿流体来源也与菱镁矿化不同.构造的、微构造的、变质的以及地质年代学的数据将滑石成矿作用和阿尔卑斯上白垩系的构造地热事件AD2联系在一起.AD2事件是阿尔卑斯碰撞(AD1)地壳加厚和变质核杂岩体起源的结果,体现在地壳不整合面上的区域拉伸,及开放系统中大规模热液流动.这一过程在更靠近Veporic热穹的北带区域(Sinec剪切带)很显著,而向着Veporic热穹的周围部分(南Ochtina带),M2变质过程和块滑石化则逐渐减弱.Sinec剪切带是北Sinec带中突出的AD2-AD3结构,白云石/菱镁矿透镜体(在M1期交代造成的)和相伴随的岩石夹杂在AD1中更坚硬的基底岩石之中.本研究证明了AD2中块滑石化的普遍性,滑石和白云石2形成于拉伸显微构造中(变质过程M2;温度为490~540℃,压力为240~330MPa).在Sinec带中AD3阶段的对偶剪切作用形成了该带中的滑石矿.它是AD2事件从去顶到区域扭压剪切的动力学转变过程的逐步延续.北Sinec带使AD3变形处于由坚硬岩石包围的软岩石的狭窄的剪切带中,而在南Ochtina带中AD3变形产生在由里面漂浮着坚硬碳酸盐块的软的岩石柱中.在Ochtina带中,在AD2和AD3阶段由于M2期较低的P-T条件和变形梯度导致了该区有经济价值的滑石矿化不发育.总之,现有的研究结果能用作阿尔卑斯型地体中菱镁矿和滑石找矿的基本标志.  相似文献   

16.
自20世纪80年代在大陆地壳岩石中发现柯石英和金刚石等超高压变质矿物以来,大陆深俯冲和超高压变质作用就成为了固体地球科学研究的前沿和热点领域之一.经过三十余年的研究,已经在大陆地壳的俯冲深度、深俯冲岩石变质P-T-t轨迹、俯冲地壳岩石的折返机制、深俯冲岩石的原岩性质、大陆碰撞过程中的熔/流体活动与元素活动性、俯冲隧道内...  相似文献   

17.
In Alpine Corsica, the major tectonic event during the late Cretaceous was the thrusting to the west of an ophiolitic nappe and its sedimentary cover upon the Variscan basement and its Mesozoic cover. A detailed field survey shows that the basal contact of the nappe corresponds to a pluri-kilometric scale shear zone. Thus gneissified basement slices have been tectonically emplaced in the ophiolitic nappe. The thrusting was responsible for small scale structures: foliation, lineation and folds, initiated in a HP/LT metamorphic context. The deformation analysis shows that the finite strain ellipsoid lies in the constriction field close to that for plane strain. Moreover occurrences of rotational criteria in the XZ planes (sigmoidal micas, asymmetric pressure shadows, quartz C-axes fabrics) are in agreement with shear from east to west. All structural data from microscopic to kilometric scales, of which the most widespread is a transverse stretching lineation, can be interpreted by a simple shear model involving ductile synmetamorphic deformation. At the plate tectonic scale the ophiolitic obduction is due to intraoceanic subduction blocked by underthrusting of continental crust beneath oceanic lithosphere.  相似文献   

18.
冷伟  孙郁东 《地球科学》2019,44(12):3993-3997
俯冲带热结构是控制俯冲板块演化的最主要因素之一.前人通过建立解析模型和数值模型对大洋俯冲带热结构进行了一系列研究,发现俯冲板块年龄和俯冲速度是影响俯冲带热结构的关键因素.为了认识大陆俯冲带热结构,特别是理解数值模型结果与岩石学结果之间的差异,我们建立了二维大陆俯冲带运动学和动力学数值模型研究其热结构演化.模型结果显示,如果大陆俯冲板块的俯冲速度与角度和大洋板块一致的话,较低的大陆俯冲带初始温度导致其板块温度比大洋俯冲带低.但是,当大陆俯冲板块的初始温度较高,俯冲速度超慢并且考虑大陆地壳中的放射性元素生热时,模型得到的大陆俯冲带热结构能够解释通过高压和超高压变质岩得到的较热的俯冲板块温度.另一方面,如果俯冲板块与上覆板块存在动力学解耦作用,也能够得到较热的俯冲温压数据.   相似文献   

19.
The Rand thrust of the Rand Mountains in the northwestern Mojave Desert separates an upper plate of quartz monzonite and quartzofeldspathic to amphibolitic gneiss from a lower plate of metagraywacke and mafic schist (Rand Schist). The Rand thrust is considered part of the regionally extensive Vincent/Chocolate Mountain thrust system, which is commonly believed to represent a Late Cretaceous subduction zone. The initial direction of dip and sense of movement along the Vincent/Chocolate Mountain thrust are controversial. Microfabrics of mylonites and quartzites from the Rand Mountains were analyzed in an attempt to determine transport direction for this region, but the results are ambiguous. In addition, the southwestern portion of the Rand thrust was found to have been reactivated as a low-angle normal fault after subduction. Reactivation might have occurred shortly after subduction, in which case it could account for the preservation of high-pressure mineral assemblages in the Rand Schist, or it could be related to mid-Tertiary extension in the western United States. In either event, the reactivation might be responsible for the complicated nature of the microfabrics. The Rand Schist exhibits an inverted metamorphic zonation. Isograds in the schist are not significantly truncated by the reactivated segment of the Rand thrust. This indicates that other segments of the Vincent/Chocolate Mountain thrust should be re-evaluated for the possibility of late movement, even if they show an apparently undisturbed inverted metamorphic zonation.  相似文献   

20.
HP/UHP and LT metamorphic units that commonly occur in the inner parts of mountain belts result from the subduction of continental and oceanic material, most often exhumed prior to continental collision. The prograde pressure–temperature history of HP–UHP rocks strongly depends on the convergence rate and on the subduction zone geometry. The maximum pressure recorded provides a proxy for the depth of shearing off and stacking of HP metamorphic nappes. A 2-D thermal model of continental subduction at lithospheric scale is used to compute the length and pressure peak of detached HP metamorphic units as a function of the slab dip angle and the convergence rate. Model results are applied to the metamorphic nappe pile of the inner Alps. A mean convergence rate of 1 cm/year during the subduction of the Briançonnais terrane is indicated by the paleogeographic reconstructions between 46 and 38 Ma. On this basis, the available petrological data and lengths of metamorphic units are used to compute the variations of the slab dip angle. The slab dip angle is shown to increase, from the northeast to the southwest, along the Alpine arc with estimated values of 20° for Suretta, 30–45° for Monte Rosa and Gran Paradiso, and 60° for Dora Maira. From Eocene to Oligocene times, the increase in slab dip angle is controlled by changes of buoyancy, due to the spatial configuration of the Valaisan trough and the incoming of crustal material within the subduction zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号