首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文对十多次等离子体彗尾扭折的资料进行了测算,由此分析了行星际激波的某些特性。由太阳事件导致的行星际激波,不仅时空尺度很大、而且强度也很高;但是由别的原因导致的行星际骚扰,一般产生的,则是时空尺度较小的弱激波。根据彗尾扭折效应的分析,文章给出了行星际激波波面前后的速度差值,其大致范围在100—500km/s。  相似文献   

2.
If all coronal mass ejections (CMEs) have flux ropes, then the CMEs should keep their helicity signs from the Sun to the Earth according to the helicity conservation principle. This study presents an attempt to answer the question from the Coordinated Data Analysis Workshop (CDAW), “Do all CMEs have flux ropes?”, by using a qualitative helicity sign comparison between interplanetary CMEs (ICMEs) and their CME source regions. For this, we select 34 CME–ICME pairs whose source active regions (ARs) have continuous SOHO/MDI magnetogram data covering more than 24 hr without data gap during the passage of the ARs near the solar disk center. The helicity signs in the ARs are determined by estimation of cumulative magnetic helicity injected through the photosphere in the entire source ARs. The helicity signs in the ICMEs are estimated by applying the cylinder model developed by Marubashi (Adv. Space. Res., 26, 55, 2000) to 16 second resolution magnetic field data from the MAG instrument onboard the ACE spacecraft. It is found that 30 out of 34 events (88 %) are helicity sign-consistent events, while four events (12 %) are sign-inconsistent. Through a detailed investigation of the source ARs of the four sign-inconsistent events, we find that those events can be explained by the local helicity sign opposite to that of the entire AR helicity (28 July 2000 ICME), incorrectly reported solar source region in the CDAW list (20 May 2005 ICME), or the helicity sign of the pre-existing coronal magnetic field (13 October 2000 and 20 November 2003 ICMEs). We conclude that the helicity signs of the ICMEs are quite consistent with those of the injected helicities in the AR regions from where the CMEs erupted.  相似文献   

3.
Factors that could produce the statistical relationship observed between the duration of transient processes on the Sun and the power of corresponding disturbances of the interplanetary medium are investigated. Uniform data on the soft X-radiation of more than 50000 flares made it possible to study their number distribution according to duration in four ranges of event power. It proved possible to identify three event types: impulse flares of a total duration of less than 30 min, typical (two-ribbon) flares of less than one to two hours' duration, and very prolonged events, which include phenomena in activity complexes and dynamical flares. These results are in good agreement with the expected phenomena durations, which were determined from the energy balance in the flare source of the soft X-radiation. In particular, while there is a free leakage of the generated hot plasma in impulse flares, heating near a coronal-loop apex becomes significant in two-ribbon flares and determines the entire process in prolonged flares. A comparison of the data on soft and hard X-rays demonstrated that fairly powerful impulses are as a rule followed by the formation of a coronal-loop system. This process of the formation of a flare-loop system often generates a shock wave, which gives rise to coronal mass ejections (CMEs). The possibility is discussed that, in the most prolonged flares, CMEs often lead to new flare formations, the ejection of material from coronal levels continuing and increasing disturbances in interplanetary space for a lengthy period of time.  相似文献   

4.
Solar System Research - In this paper, we analyze the problems of testing the impact strength of the Exomars-2020 spacecraft on landing. The design features of the landing module of the...  相似文献   

5.
A double discontinuity is a rarely observed compound structure composed of a slow shock layer and an adjoining rotational discontinuity layer in the downstream region. In this paper, we report the observations of a double discontinuity detected by Wind on May 15, 1997. This double discontinuity is found to be the front boundary of a magnetic cloud boundary layer. We strictly identify the shock layer and the rotational discontinuity layer by using the high-resolution plasma and magnetic field data from Wind. The observed jump conditions of the upstream and downstream region of the slow shock layer are in good agreement with the Rankine – Hugoniot relations. The flow speeds in the shock frame U n <V Acos θ Bn on both sides of the slow shock layer. In the upstream region, the slow Mach number M s1=U n1/V s1 is 1.95 (above unity), and in the downstream region, the slow Mach number M s2=U n2/V s2 is 0.31 (below unity). Here V A and V s represent the Alfvén speed and the local slow magnetosonic speed, respectively, and θ Bn is the angle between the direction of the magnetic field and the shock normal. The magnetic cloud boundary layer observed by Wind was also detected by Geotail 48 min later when the spacecraft was located outside the bow shock of the magnetosphere. However, Geotail observations showed that its front boundary was no longer a double discontinuity and the rotational discontinuity layer disappeared, indicating that this double discontinuity was unstable when propagating from Wind to Geotail.  相似文献   

6.
T. Iju  M. Tokumaru  K. Fujiki 《Solar physics》2013,288(1):331-353
We report radial-speed evolution of interplanetary coronal mass ejections (ICMEs) detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), interplanetary scintillation (IPS) at 327 MHz, and in-situ observations. We analyze solar-wind disturbance factor (g-value) data derived from IPS observations during 1997?–?2009 covering nearly the whole period of Solar Cycle 23. By comparing observations from SOHO/LASCO, IPS, and in situ, we identify 39 ICMEs that could be analyzed carefully. Here, we define two speeds [V SOHO and V bg], which are the initial speed of the ICME and the speed of the background solar wind, respectively. Examinations of these speeds yield the following results: i) Fast ICMEs (with V SOHO?V bg>500 km?s?1) rapidly decelerate, moderate ICMEs (with 0 km?s?1V SOHO?V bg≤500 km?s?1) show either gradually decelerating or uniform motion, and slow ICMEs (with V SOHO?V bg<0 km?s?1) accelerate. The radial speeds converge on the speed of the background solar wind during their outward propagation. We subsequently find; ii) both the acceleration and the deceleration are nearly complete by 0.79±0.04 AU, and those are ended when the ICMEs reach a 480±21 km?s?1. iii) For ICMEs with (V SOHO?V bg)≥0 km?s?1, i.e. fast and moderate ICMEs, a linear equation a=?γ 1(V?V bg) with γ 1=6.58±0.23×10?6 s?1 is more appropriate than a quadratic equation a=?γ 2(V?V bg)|V?V bg| to describe their kinematics, where γ 1 and γ 2 are coefficients, and a and V are the acceleration and speed of ICMEs, respectively, because the χ 2 for the linear equation satisfies the statistical significance level of 0.05, while the quadratic one does not. These results support the assumption that the radial motion of ICMEs is governed by a drag force due to interaction with the background solar wind. These findings also suggest that ICMEs propagating faster than the background solar wind are controlled mainly by the hydrodynamic Stokes drag.  相似文献   

7.
Anand Kumar  Badruddin 《Solar physics》2014,289(6):2177-2205
Interplanetary structures such as shocks, sheaths, interplanetary counterparts of coronal mass ejections (ICMEs), magnetic clouds, and corotating interaction regions (CIRs) are of special interest for the study of the transient modulation of galactic cosmic rays (GCRs). These structures modulate the GCR intensity with varying amplitudes and recovery-time profiles. It is known that ICMEs are mainly responsible for Forbush decreases in the GCR intensity. However, not all of the ICMEs produce such decreases in GCR intensity. We utilize GCR intensity data recorded by neutron monitors and solar-wind plasma/field data during the passage of ICMEs with different features and structures, and we perform a superposed-epoch analysis of the data. We also adopt the best-fit approach with suitable functions to interpret the observed similarities and differences in various parameters. Using the GCR-effectiveness as a measure of the cosmic-ray response to the passage of ICMEs, about half of the ICMEs identified during 1996?–?2009 are found to produce moderate to very large intensity depressions in GCR intensity. The ICMEs associated with halo CMEs, magnetic-cloud (MC) structures, bidirectional superthermal electron (BDE) signatures, and those driving shocks are 1.5 to 4 times more GCR effective than the ICMEs not associated with these structures/features. Further, the characteristic recovery time of GCR intensity due to shock/BDE/MC/halo-CME-associated ICMEs is larger than those due to ICMEs not associated with these structures/features.  相似文献   

8.
Fadeyev  Yu. A. 《Astronomy Letters》2020,46(5):324-330
Astronomy Letters - The evolutionary calculations for population I stars with masses on the main sequence $$5M_{\odot}\leq M_{0}\leq 6.1M_{\odot}$$ and initial fractional abundances of helium...  相似文献   

9.
10.
我们对周期小于周期分布空缺段的激变变星(CVs),重新进行了周期分布统计,使用了比Warner等人更多、更新的资料.统计中发现一个AM Her型CVs:GRU V1偏离了Warner等人的统计结果.我们给出了CVs 新的周期分布图和相应于此分布的随机概率.虽然结果与Warner等人的不同,但周期分布同磁场仍呈现一定的相关性,磁激变变星(MCVs)与非磁激变变星(NMCVS)同样显示出成团趋势.  相似文献   

11.
The magnetohydrodynamics of solar-wind flow lead logically to the formation of one warped annular neutral surface that apparently extends from ≈ 2r (solar radii) to the boundary of the heliosphere. The most likely asymptotic configuration for this neutral sheet intersects the heliomagnetic equatorial plane along four corotating arcs. The observer sees a reversal of magnetic polarity on each crossing of the neutral surface, and so interprets each reversal as the crossing of a sector boundary.  相似文献   

12.
At 11:46 UT on 9 September 2011, the Wind spacecraft encountered an interplanetary (IP) fast-forward shock. The shock was followed almost immediately by a short-duration (~?35 minutes) extremely dense pulse (with a peak ~?94 cm?3). The pulse induced an extremely large positive impulse (SYM-H = 74 nT and Dst = 48 nT) on the ground. A close examination of other in situ parameters from Wind shows that the density pulse was associated with i) a spike in the plasma \(\upbeta\) (ratio of thermal to magnetic pressure), ii) multiple sign changes in the azimuthal component of the magnetic field (\(B_{\phi}\)), iii) a depressed magnetic field magnitude, iv) a small radial component of the magnetic field, and v) a large (>?90°) change in the suprathermal (~?255 eV) electron pitch angle across the density pulse. We conclude that the density pulse is associated with the heliospheric plasma sheet (HPS). The thickness of the HPS is estimated to be \({\sim}\,8.2\times10^{5}\ \mbox{km}\). The HPS density peak is about five times the value of a medium-sized density peak inside the HPS (~?18 cm?3) at 1 AU. Our global three-dimensional magnetohydrodynamic simulation results (Wu et al. in J. Geophys. Res. 212, 1839, 2016) suggest that the extremely large density pulse may be the result of the compression of the HPS by an IP shock crossing or an interaction between an interplanetary shock and a corotating interaction region.  相似文献   

13.
The Sun is not only a source of energy but also a tremendous source of interplanetary disturbances. The continuous stream of plasma (solar wind) is propelled by a pressure gradient near the photosphere. The pressure gradient and the Sun's gravitational field drive the plasma to supersonic velocities at the Earth's orbit. Solar activity is discussed in terms of the characteristics of the origin, x-ray flare class, optical classification, radio emission, energy particle emission and geophysical effects. Solar activities during March–June 1991 and February 20–21, 1994 are but two activities in recent times which resulted in large scale Interplanetary Waves (IPW), medium-scale gravity waves and geomagnetic disturbances. The disturbances of these activities are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Cosmic-ray intensity data recorded with the ground-based neutron monitor at Deep River have been investigated taking into account the associated interplanetary magnetic field and solar-wind plasma data during 1981 – 1994. A large number of days having abnormally high or low amplitudes for five or more successive days as compared to the annual average amplitude of diurnal anisotropy have been taken as high- or low-amplitude anisotropic wave-train events. The amplitude of the diurnal anisotropy of these events is found to increase on days with a magnetic cloud as compared to the days prior to the event, and it is found to decrease during the later period of the event as the cloud passes the Earth. The high-speed solar-wind streams do not play any significant role in causing these types of events. However, corotating solar-wind streams produce significant deviations in cosmic-ray intensity during high- and low-amplitude events. The interplanetary disturbances (magnetic clouds) are also effective in producing cosmic-ray decreases. Hα solar flares have a good positive correlation with both the amplitude and direction of the anisotropy for high-amplitude events, while the principal magnetic storms have a good positive correlation with both amplitude and direction of the anisotropy for low-amplitude events. The source responsible for these unusual anisotropic wave trains in cosmic rays has been proposed.  相似文献   

15.
Motion of the interplanetary dust particle under the action of collisions with much smaller interplanetary dust particles is investigated. The equation of motion is derived. Perturbation equations of celestial mechanics are also discussed. The results are compared with the Poynting-Robertson effect and the effect of solar wind on the motion of the interplanetary dust particles, from the point of view of observational data.  相似文献   

16.
An effect of the solar wind on the motion of interplanetary dust particles is investigated. An equation of motion is derived. It is pointed out that the Pseudo-Poynting-Robertson effect (and its special case — a corpuscular drag) and the corpuscular sputtering represent in reality one and the same effect within the framework of special relativity. In this context perturbation equations of celestial mechanics are also discussed.  相似文献   

17.
We have found that two members of the TW Hydrae association, TW Hydrae and Hen 3-600A, are still actively accreting, based on the ballistic infall signature of their broad Halpha emission profiles. We present the first quantitative analysis of accretion in these objects and conclude that the same accretion mechanisms which operate in the well-studied 1 Myr old T Tauri stars can and do occur in older (10 Myr) stars. We derive the first estimates of the disk mass accretion rate in TW Hya and Hen 3-600A, which are 1-2 orders of magnitude lower than the average rates in 1 Myr old objects. The decrease in accretion rates over 10 Myr, as well as the low fraction of TW Hya association objects still accreting, points to significant disk evolution, possibly linked to planet formation. Given the multiplicity of the Hen 3-600 system and the large UV excess of TW Hya, our results show that accretion disks can be surprisingly long lived in spite of the presence of companions and significant UV ionizing flux.  相似文献   

18.
Interplanetary Scintillation (IPS) allows observation of the inner heliospheric response to corotating solar structures and coronal mass ejections (CMEs) in scintillation level and velocity. With colleagues at STELab, Nagoya University, Japan, we have developed near-real-time access of STELab IPS data for use in space-weather forecasting. We use a 3D reconstruction technique that produces perspective views from solar corotating plasma and outward-flowing solar wind as observed from Earth by iteratively fitting a kinematic solar wind model to IPS observations. This 3D modeling technique permits reconstruction of the density and velocity structure of CMEs and other interplanetary transients at a relatively coarse resolution: a solar rotational cadence and 10° latitudinal and longitudinal resolution for the corotational model and a one-day cadence and 20° latitudinal and longitudinal heliographic resolution for the time-dependent model. This technique is used to determine solar-wind pressure (“ram” pressure) at Mars. Results are compared with ram-pressure observations derived from Mars Global Surveyor magnetometer data (Crider et al. 2003, J. Geophys. Res. 108(A12), 1461) for the years 1999 through 2004. We identified 47 independent in situ pressure-pulse events above 3.5 nPa in the Mars Global Surveyor data in this time period where sufficient IPS data were available. We detail the large pressure pulse observed at Mars in association with a CME that erupted from the Sun on 27 May 2003, which was a halo CME as viewed from Earth. We also detail the response of a series of West-limb CME events and compare their response observed at Mars about 160° west of the Sun – Earth line by the Mars Global Surveyor with the response derived from the IPS 3D reconstructions.  相似文献   

19.
Radio wave propagation through an inhomogeneous, random plasma produces a variety of observable phenomena – group delay, Faraday rotation, refraction, angular broadening, spectral broadening, and scintillations in phase, amplitude, and frequency. These may be exploited to constrain the mean and fluctuating properties of the medium through a variety of remote sensing techniques. In the case of the solar corona and the solar wind, the mean density, magnetic field, solar wind speed, and the spatial spectrum of the density fluctuation scan all be constrained in regions that are inaccessible to in situmeasurements. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
It is shown that substorm activity after a storm sudden commencement (S.S.C.) depends on whether or not an interplanetary shock wave is accompanied by a large increase of the solar wind-magnetosphere energy coupling function ε. It has long been thought that substorm activity associated with an S.S.C. results from sudden conversion of magnetic energy stored in the magnetotail and that this conversion is triggered by the shock wave. However, the present result implies that the magnetospheric substorm is not a sudden conversion of stored magnetic energy, but is a direct consequence of increased efficiency of the solar wind-magnetosphere dynamo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号