首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron diffraction and electron microscopic evidence is presented for a dynamical and reversible phase transition in anorthite at T c=516 K. Antiphase boundaries with a displacement vector, R=1/2[111] become unstable at T c, while other antiphase boundary loops with the same displacement vector are formed. These interfaces are very mobile and vibrate with a frequency which increases strongly with temperature. At temperatures considerably above T c, a shimmering effect is observed on imaging in dark field using diffuse c reflections. These observations are in agreement with the interpretation of the high temperature body-centered phase as a statistical dynamical average of very small c type antiphase domains of primitive anorthite. We propose that the c type antiphase domains in primitive anorthite originate from ordered and anti-ordered configurations around Ca2+ ions at (ooo) and (oio) [likewise (zoo) and (zio)] positions. The dynamical model for the transition involves a two-stage mechanism: a softmode mechanism causing the aluminosilicate framework to approach body-centered symmetry, followed by an orderdisorder of the Ca2+ ion configurations. Close to T c, statistical fluctuations set in and breathing motion type lattice vibrations of the aluminosilicate framework cause the configurations around Ca (ooo) and Ca(oio) [likewise Ca(zoo) and Ca(zio)] in the configuration to dynamically interchange through an intermediate configuration. The dynamical nature of the phase transition in anorthite is comparable to the phase transition in quartz.  相似文献   

2.
The adiabatic elastic stiffness constants of synthetic single-crystal MnO were measured in this study using pulse superposition interferometry. Data were obtained up to 1.0 GPa in pressure and over the temperature range 273 to 473 K. As a result, we were able to determine the complete set of second-order stiffness moduli (C ij s ) and their pressure and temperature derivatives, as well as higher-order properties for selected modes. Relevant results for the adiabatic bulk modulus are: K s=155.1±0.8 GPa; (Ks/P)T=4.70±0.13; and, (K s/T)P= -0.0203±0.0009 GPa/K. Our results for the second-order moduli are generally consistent with the data from previous studies. However, relative to the estimated uncertainties, small and systematic discrepancies appear to characterize the data set. The available evidence indicates that the differences result from microstructural variations (in particular, microcracks and Mn3O4 inclusions) between the synthetic MnO specimens used in different investigations. The pure shear mode C 44 exhibits anomalous soft-mode behavior with both temperature (the ambient derivative is positive) and pressure (the ambient derivative is negative). In both cases the C 44 data trends appear to primarily reflect the influence of Mn-Mn magnetoelastic interactions associated with the onset of a paramagnetic-antiferromagnetic (PM AFM) phase transition.  相似文献   

3.
In the Rogers Pass area of British Columbia the almandine garnet isograd results from a reaction of the form: 5.31 ferroan-dolomite+8.75 paragonite+4.80 pyrrhotite+3.57 albite+16.83 quartz+1.97 O2=1.00 garnet+16.44 andesine+1.53 chlorite+2.40 S2+1.90 H2O+10.62 CO2. The coefficients of this reaction are quite sensitive to the Mn content of ferroan-dolomite.Experimental data applied to mineral compositions present at the isograd, permits calculation of two intersecting P, T equilibrium curves. P=29088–39.583 T is obtained for the sub-system paragonite-margarite (solid-solution), plagioclase, quartz, ferroan-dolomite, and P=28.247 T–14126 is obtained for the sub-system epidote, quartz, garnet, plagioclase. These equations yield P=3898 bars and T=638° K (365° C). These values are consistent with the FeS content of sphalerite in the assemblage pyrite, pyrrhotite, sphalerite and with other estimates for the area.At these values of P and T the composition of the fluid phase in equilibrium with graphite in the system C-O-H-S during the formation of garnet is estimated as: bars, bars, bars, bars, bars, bars, bars, bars, , bars, bars.  相似文献   

4.
The partition of Ni between olivine and monosulfide-oxide liquid has been investigated at 1300–1395° C, =10–8-9–10–6.8, and =10–2.0–10–0.9, over the composition range 20–79 mol. % NiS. The product olivine compositions varied from Fo98 to Fo59 and from 0.06 to 3.11 wt% NiO. The metal/sulfur ratio of the sulfide-oxide liquid increases with increase in , decrease in , and increase in NiS content. The Ni/Fe exchange reaction has been perfectly reversed using natural olivine and pure forsterite as starting materials. The FeO and NiO contents of olivine from runs equilibrated at the same and form isobaric distributions with NiS content, which, to a first approximation, are dependent at constant temperature and total pressure on a variable term, –0.5 log ( / ). The Ni/Fe distribution coefficient (K D3) exhibits only a weak decrease from 35 to 29 with increase in from the IW buffer to close to the FMQ buffer. At values higher than FMQ, the sulfide-oxide liquid has the approximate composition (Ni,Fe)3±xS2K D358. The present K D3 vs O/(S+O) data define a trend which extrapolates to K D320 at 10 wt% oxygen in the sulfide-oxide liquid. The compositions of olivine and Ni-Cu sulfides associated with early-magmatic basic rocks and komatiites are consistent, at 1400° C, with a value of -log ( / ) of about 7.7, which is equivalent to 0.0 wt% oxygen in the hypothesized immiscible sulfide-oxide liquid. Therefore, K D3 would not be reduced significantly from the 30 to 35 range for sulfide-oxide liquids with low oxygen contents.  相似文献   

5.
Zusammenfassung Die chemische Analyse des neuen Minerals Johillerit mit der Elektronenmikrosonde ergab: Na2O 5,4, MgO 18,3, ZnO 5,4, CuO 15,8 und As2O5 55,8, Summe 100.7%. Aus diesem Ergebnis wurde die idealisierte Formel Na(Mg, Zn)3 Cu(AsO4)3 abgeleitet. Johillerit ist monoklin mit der RaumgruppeC2/c. Die Gitterkonstanten sind:a=11,870 (3),b=12,755 (3),c=6,770 (2) , =113,42 (2)°,Z=4. Die stärksten Linien des Pulverdiagramms sind: 4,06 (5) (22 ), 3,50 (4) (310), 3,25 (8) (11 ), 2,75 (10) (330, 240), 2,64 (5) (311, 13 , 40 ), 1,952 (4) (13 , 35 ), 1,682 (4) (20 , 460), 1,660 (5) (40 , 71 , 550, 64 ), 1,522 (4) (442, 153, 13 ). Es bestehen enge strukturelle Beziehungen zwischen Johillerit und O'Danielit, Na(Zn, Mg)3H2(AsO4)3, sowie einigen synthetischen. Verbindungen.Johillerit ist violett durchscheinend. Die Spaltbarkeit nach {010} ist ausgezeichnet und nach {100} und {001} gut.H (Mohs)3.D=4,15 undD X =4,21 g·cm–3. Das Mineral ist optisch zweiachsig positiv, 2V80 (5)°. Die Werte der Lichtbrechung sindn =1,715 (4),n =1,743 (4) undn =1,783 (4). Die Auslöschung istn b und auf (010)n c16°. Johillerit ist stark pleochroitisch mit den AchsenfarbenX=violett-rot,Y = blauviolett undZ = grünblau. Das neue Mineral kommt in radialstrahligen Massen gemeinsam mit kupferhaltigem Adamin und Konichalcit in zersetzem Kupfererz von Tsumeb, Namibia, vor. Die Benennung erfolgte nach Prof. Dr.J.-E. Hiller (1911–1972).
Johillerite, Na(Mg, Zn) 3 Cu(AsO 4 ) 3 , a new mineral from Tsumeb, Namibia
Summary Electron microprobe analysis of the new mineral johillerite gave Na2O 5.4, MgO 18.3, ZnO 5.4, CuO 15.8, and As2O5 55.8, total 100.7%. From this result, the ideal formula is given as Na(Mg, Zn)3 Cu(AsO4)3. Johillerite crystallizes monoclinic,C2/c. The unit cell dimensions are:a=11.870(3),b=12.755 (3),c=6.770 (2) , =113.42 (2)°,Z=4. The strongest lines on the X-ray powder diffraction pattern are: 4,06 (5) (22 ), 3,50 (4) (310), 3,25 (8) (11 ), 2,75 (10) (330, 240), 2,64 (5) (311, 13 , 40 ), 1,952 (4) (13 , 35 ), 1,682 (4) (20 , 460), 1,660 (5) (40 , 71 , 550, 64 ), 1,522 (4) (442, 153, 13 ). There is a close relationship between johillerite, o'danielite, Na(Zn, Mg)3H2(AsO4)3, and some synthetic compounds. Johillerite is violet in colour, transparent. Cleavage is {010} perfect, {100} and {001} good.H (Mohs)3.D=4.15 andD X =4.21 g·cm–3. The mineral is optically biaxial positive, 2V80 (5)°. The refractive indices are:n =1.715 (4),n =1.743 (4),n =1.783 (4). The extinction isn b and on (010)n c16°. Strongly pleochroic with axial coloursX=violet-red,Y=bluish violet andZ=greenish blue. The new mineral was found in radiated masses together with cuprian adamite and conichalcite in an oxidized copper ore from Tsumeb, Namibia. It is named in honour of Prof. Dr.J.-E. Hiller (1911–1972).


Mit 1 Abbildung  相似文献   

6.
The phenocryst assemblage of cummingtonite, orthopyroxene, quartz, titanomagnetite and ilmenite in rhyolites of New Zealand has been used to calculate P total and . The values of P total and depend strongly upon whether an ideal mixing, or an ordered, model is used for the solid-solutions, but in both cases P total.The rhyolite magma contained over 9 per cent water (by weight) when the cummingtonite phenocrysts precipitated, and possibly as much as 12 per cent, so that it is surprising that one of these rhyolites is a coherent lava. The calculated values of P total and are very sensitive to uncertainty in both the composition of the solid-solutions and temperature. Calculations show that >0.7–0.8 P total for cummingtonite to precipitate in rhyolites, and that iron-rich olivine and cummingtonite could only exist in rhyolites over a small temperature range at a pressure near 5 kilobars. Hornblende phenocrysts co-existing with fayalitic olivine in rhyolites accordingly have a very low activity of Mg7Si8O22(OH)2.  相似文献   

7.
Single crystal Raman spectra of pyrite-type RuS2, RuSe2, OsS2, OsSe2, PtP2, and PtAs2 are presented and discussed with reference to the energies of the X-X stretching modes x-x (A g, F g) and the X2 librations (E, 2Fg). The main results obtained are (i) strong Raman resonance effects, (ii) different sequences for x-x (A g) and (E g), i.e., R_{x_2 } $$ " align="middle" border="0"> for PtP2 and PtAs2 and R_{x_2 } $$ " align="middle" border="0"> for OsS2, owing to the interplay of intraionic and interionic lattice forces, (iii) greater strengths for the intraionic P-P and As-As bonds compared to the S-S and Se-Se bonds, respectively, and (iv) a strong influegnce of the metal ions on the strength of the X-X bonds.This is contribution LXI of a series of papers on lattice vibration spectra  相似文献   

8.
Polarized single crystal absorption spectra, in the spectral range 40 000–5 000 cm-1, were obtained on Co2+ in trigonally distorted octahedral oxygen fields of buetschliite-type K2Co(SeO3)2 (I), K2Co2(SeO3)3 (II) and zemannite-type K2Co2(SeO3)3 · 2H2O (III). Site symmetries of Co2+ are m (D3d) in I, 3m (C3v) in II, and 3 (C3) in III. The spectra can be interpreted on the basis of an electric dipole mechanism, wherein transitions of Co2+ in the centrosymmetric site in I gain intensity from dynamic removal of the inversion centre by vibronic coupling. In accordance with the elongation of the CoO6 octahedra along the trigonal axis, the split component E(g) of the ground state 4T1g in octahedral fields is the ground state in all three compounds. Trigonal field parameters Dq(trig), D, D and the Racah parameters B have been fitted to the energies of spin allowed transitions (293 K) as follows: I: 744, 94, -16, and 838 cm-1, resp.; II: 647, 227, 42, and 798 cm-1, resp.; III: 667, 181, 21, and 809 cm-1, respectively. Racah parameters C were estimated from the energy of some observed spin-forbidden transitions to be 3770 (I), 3280 (II), and 3465 cm-1 (III). Values of Dq and of the Racah parameters B and C indicate slight differences of Co2+-O bonding in I as compared to II and III, with somewhat higher covalency in compounds II and III which contain face-sharing CoO6 octahedra with short Co-Co contacts. Also, in II and III the observed D values do not agree with theoretical D values, predicted from the magnitude of the mean octahedral distortions.  相似文献   

9.
The volume of fluid and amount of heat involved in a portion of a metamorphic event around three synmetamorphic granitic stocks has been quantitatively estimated using mineral composition and modal data from carbonate rocks. Values of volumetric fluid-rock ratios range, with respect to a reference zoisite isograd, from 0.001 to 0.434. Amounts of heat involved range from –25 to 134 cal/cm3 rock. Contours of constant fluid-rock ratio and of constant amount of heat are generally concentric about the granitic stocks indicating that the stocks are foci of high heat and fluid fluxes during metamorphism. In addition, contours of fluid-rock ratios and amount of heat outline NE-SW-trending channelways of high fluid and heat fluxes that alternate with regions of lower fluid and heat fluxes. The NE-SW-trending vertical bedding and schistosity in the area — of premetamorphic origin — probably constrained fluid and heat transfer to occur preferentially in NE-SW directions. Large values of heat involved in metamorphism are strongly correlated with large fluid-rock ratios, suggesting that fluids are an important carrier of heat during metamorphism. Configurations of mapped isograds in the area mimic the patterns of contours of constant fluid-rock ratio and of heat content, indicating that configurations of isograds may contain useful information about regional patterns of heat and fluid transfer during metamorphism.Notation T Last temperature recorded by metacarbonate rocks (°C) - P Lithostatic pressure (bars) - Pi Partial pressure of component i (bars) - of last fluid in equilibrium with carbonate rocks during metamorphism - R 1.987 cal/bar-degree - K s Activity constant for an assemblage of solid mineral phases - In Natural logarithm - c v Volumetric heat capacity (cal/cm3-degree) - Q Heat added to or subtracted from a rock during metamorphism in the zoisite zone (kcal/100 cm3 rock; cal/cm3 rock) - Q{ibrxn} Heat added to or subtracted from a rock due to mineral reactions during metamorphism in the zoisite zone (kcal/100 cm3 rock; cal/cm3 rock) - Std. Dev. Standard Deviation - Average of fluid in equilibrium with carbonate rocks during their metamorphism in the zoisite zone - of fluid in equilibrium with carbonate rocks at the zoisite isograd - T Temperature at the zoisite isograd (°C) - X i,j Mole fraction of component i in phase j - H i Molar enthalpy of reaction i at 0 bars pressure - ¯V i Change of molar volume due to reaction ii - i Measure of progress of reaction i - V Change in rock volume due to fluid-rock reactions - iV Initial rock volume before metamorphism within the zoisite zone - ¯V s,i Change in molar volume of solid minerals due to reaction i Component notation an CaAl2Si2O8 Phase notation Pl Plagioclase - Am Amphibole - Cc Calcite - Qz Quartz - Di Diopside - Zo Zoisite - Ga Garnet - Bi Biotite - Kf Microcline - Mu Muscovite  相似文献   

10.
The stress gradient calculated from an isotropic elastic approximation does not directly reflect the distribution of permanent deformation in a crystal of the same shape under the same conditions. However, with additional crystallographic constraints, it serves to predict locations where twinning and slip are first activated in a stressed crystal. In this study, thick-walled hollow cylinders were cored from single calcite crystals parallel to 0001 and . One cylinder of each orientation was loaded at room temperature under one of two conditions: internal pressure (P p )=60 MPa, external pressure (P c )=100 MPa, or P p = 20 MPa, P c = 50 MPa. These conditions would produce a radial stress gradient in an isotropic elastic cylinder. Mechanical twins in the deformed calcite samples had a hexagonal distribution in the 0001 oriented cylinder and an orthorhombic distribution in the oriented cylinder.Zones of dense r-slip dislocations were observed in the cylinder. Calculated resolved shear stresses for r-slip in either cylinder remained far below the published critical resolved shear stress (c.r.s.s.) value. Calculated contributions from twinning back stress and anisotropy do not account for the difference between the resolved shear stress and the c.r.s.s. These results underscore the necessity of considering dislocation activiation stresses rather than c.r.s.s. in quantitative analyses of heterogeneous of deformation in single crystals.  相似文献   

11.
Iron chlorites with compositions intermediate between the two end-members daphnite (Fe5Al2Si3O10(OH)8) and pseudothuringite (Fe4Al4Si2O10(OH)8) were synthesized from mixtures of reagent chemicals. The polymorph with a 7 Å basal spacing initially crystallized from these mixtures at 300 °C and 2 kb after two weeks. Conversion to a 14 Å chlorite required a further 6 weeks at 550 °C. Shorter conversion times were required at higher water pressures. The products contained up to 20% impurities.The maximum equilibrium decomposition temperature for iron chlorite, approximately 550 °C at 2kb, is at an between assemblages (1) and (2) listed below. Synthetic iron chlorite will break down by various reactions with variable P, T, and fugacity of oxygen. For the composition FeAlSi = 523, the sequence of high temperature breakdown products with increasing traversing the magnetite field for P total = =2kb is: (1) corierite+ fayalite+hercynite; (2) cordierite+fay alite+magnetite; (3) cordierite+magnetite+quartz; (4) magnetite+mullite+quartz. Almandine should replace cordierite in assemblages (1) and (2) but it did not nucleate. The significance of the relationship between iron cordierite and almandine in this system is discussed.At water pressures from 4 to 8.5 kb and at the nickel-bunsite buffer, iron chlorite+quartz break down to iron gedrite+magnetite with temperature 550 to 640 °C along the curve. At temperatures 50 °C greater and along a parallel curve, almandine replaces iron gedrite. For on this buffer curve, almandine is unstable below approximately 4 kb for temperatures to approximately 750 °C.  相似文献   

12.
Fluid inclusions occur in a composite xenolith from the Lunar Crater Volcanic Field, Nevada, U.S.A. The xenolith is an amphibole-bearing wehrlite that is cut by an andesine-amphibole vein. The compositions of individual fluid inclusions in both portions of the xenolith have been determined using microthermometry and micro Laser-Raman spectroscopy. Fluids in the host wehrlite are nearly pure CO2 (>99 mol%) whereas those in the vein contain from 8.5 to 12.0 mol % CO in CO2. Chemical modelling shows that the composition of the vein fluids at T room is representative of the composition at the high P, T conditions of trapping. Graphite has not been observed by optical microscopy in any of the fluid inclusions. Graphite is probably absent (although stable at T<800° C) most probably because of the kinetically unfavorable CO decomposition reaction and rapid quenching. By combining the measured fluid compositions with fluid P-V-T data and the chemical equilibrium CO2CO +1/2 O2, we have calculated the oxygen fugacity of the fluid inclusions at 1200° C: log 8.6 (vein) and –6 (host). If the of the fluid in the vein represents that in equilibrium with the magma that crystallized to produce the vein, then the of the basalt magma is near QFM at 1200° C and 10.3 kbar. This is similar to values reported for extrusive basaltic lavas. If the much lower intrinsic oxygen fugacity-values for divines and spinels from alkali basalt nodules are representative of upper mantle conditions, then oxidation of basaltic magmas must occur in the upper mantle prior to ascent to the surface. Implications for the origin of CO2-rich fluids and carbon isotope geochemistry are also discussed.  相似文献   

13.
Multivariate statistical analyses have been extensively applied to geochemical measurements to analyze and aid interpretation of the data. Estimation of the covariance matrix of multivariate observations is the first task in multivariate analysis. However, geochemical data for the rare elements, especially Ag, Au, and platinum-group elements, usually contain observations the below detection limits. In particular, Instrumental Neutron Activation Analysis (INAA) for the rare elements produces multilevel and possibly extremely high detection limits depending on the sample weight. Traditionally, in applying multivariate analysis to such incomplete data, the observations below detection limits are first substituted, for example, each observation below the detection limit is replaced by a certain percentage of that limit, and then the standard statistical computer packages or techniques are used to obtain the analysis of the data. If a number of samples with observations below detection limits is small, or the detection limits are relatively near zero, the results may be reasonable and most geological interpretations or conclusions are probably valid. In this paper, a new method is proposed to estimate the covariance matrix from a dataset containing observations below multilevel detection limits by using the marginal maximum likelihood estimation (MMLE) method. For each pair of variables, sayY andZ whose observations containing below detection limits, the proposed method consists of three steps: (i) for each variable separately obtaining the marginal MLE for the means and the variances, , , , and forY andZ: (ii) defining new variables by and and lettingA=C+D andB=CD, and obtaining MLE for variances, and forA andB; (iii) estimating the correlation coefficient YZ by and the covariance YZ by . The procedure is illustrated by using a precious metal geochemical data set from the Fox River Sill, Manitoba, Canada.  相似文献   

14.
Thirteen energy-dispersive x-ray diffraction spectra for -Fe2SiO4 (spinel) collected in situ at 400° C and pressures to 24 GPa constitute the basis for an elevated-temperature static compression isotherm for this important high-pressure phase. A Murnaghan regression of these molar volume measurements yields 177.3 (±17.4) GPa and 5.4(±2.5) for the 400° C, room pressure values of the isothermal bulk modulus (K P 0) and its first pressure derivative (K P 0), respectively. When compared to the room-Tdeterminations of K P 0 available in the literature, our 400° C K P 0 yields -4.1 (±6.2)×10-2 GPa/degree for the average value of (K/T) P 0 over the temperature interval 25° C<><400°>A five-parameter V(P, T) equation for -Fe2SiO4 based on simultaneous regression of our data combined with the elevated P-Tdata of Yagi et al. (1987) and the extrapolated thermal expansion values from Suzuki et al. (1979) yields isochores which have very little curvature [(2 T/P 2) v 0], in marked contrast to the isochores for fayalite (Plymate and Stout 1990) which exhibit pronounced negative curvature [(T/P 2) v <0]. along=" the=">-Fe2SiO4 reaction boundary VRvaries from a minimum of approximately 8.3% at approximately 450° C to approximately 8.9% at 1200° C. Extrapolation of the fayalite and -Fe2SiO4 V(P, T) relationships to the temperature and pressure of the 400 km discontinuity suggests a V R of approximately 8.4% at that depth, approximately 10% less than the 9.3% V R at ambient conditions.  相似文献   

15.
The formulas for thermodynamic functions for minerals are presented, couched in terms of the important thermodynamic variable KT= (P/T)v, where is the volume thermal expansivity and KT is the isothermal bulk modulus. Presenting the formulas in this way leads to simplification since KT as a product varies only slightly with volume, and is close to being independent of temperature at high temperature. Using our equations, we present as examples some computed data in the form of graphs on the entropy, internal energy, Helmholtz free energy, and Gibbs free energy in the high temperature regime (up to 2000 K) and for high compression (up to 0.7), for MgO. For entropy, knowledge of the V, T dependence of KT is sufficient. For enthalpy and internal energy, the equation of state is needed in addition.  相似文献   

16.
Brillouin spectroscopy was used to measure the single crystal elastic properties of a pure synthetic pyrope and a natural garnet containing 89.9 mol% of the pyrope end member (Mg3Al2Si3O12). The elastic moduli, c ij , of the two samples are entirely consistent and agree with previous estimates of the elastic properties of pyrope based upon the moduli of solid solutions. Our results indicate that the elastic moduli of pyrope end-member are c 11=296.2±0.5, c 12=111.1±0.6, c 44=91.6±0.3, Ks=172.8±0.3, =92.0±0.2, all in units of GPa. These results differ by several percent from those reported previously for synthetic pyrope, but are based upon a much larger data set. Although the hydrous components of the two samples from the present study are substantially different, representing both dry and saturated samples, we find no discernable effect of structurally bound water on the elastic properties. This is due to the small absolute solubility of water in pyrope, as compared with other garnets such as grossular.  相似文献   

17.
Zusammenfassung Emmonsit kristallisiert triklin, RaumgruppeP , Gitterkonstanten:a 0=7,90 Å,b 0=8,00 Å,c 0=7,62 Å, =96o44, =95o 0, =84o 28,Z=2. Der Strukturtyp wurde aus 3-dimensionalen photographischen Röntgendaten ermittelt. Die Eisenatome werden je von 6 Sauerstoffen verzerrt oktaedrisch koordiniert. Jedes Telluratom wird von 3 Sauerstoffen in einem Abstand <2,0 Å umgeben. Ein vierter Sauerstoff hat bezüglich dieser drei einen um etwa 25–35% größeren Abstand, so daß jedes Telluratom im weiteren Sinne eine (3+1)-Koordination aufweist.
The structure type of emmonsite, {Fe2[TeO3]3·H2O}·xxH2O (x=0–1)
Summary Emmonsite is triclinic with space groupP , and lattice constantsa 0=7.90 Å,b 0=8.00 Å,c 0=7.62 Å, =96o 44, =95o 0, =840 28,Z=2. The structure type is derived from 3-dimensional photographic X-ray data. The iron atoms are coordinated by six oxygens in the form of a distorted octahedron. Each tellurium atom is coordinated to 3 oxygens at a distance <2.0 Å. Compared with these 3 Te–O distance the distance of a fourth oxygen is only 25 to 35% greater; therefore each tellurium atom has a (3+1)-coordination of oxygens.


Mit 2 Abbildungen  相似文献   

18.
The junctions of cracks in mudcrack, patterned ground, and columnar joint patterns can be categorized into Y, T,and Xtypes. The mean number of sides, ,to the polygonal areas in such nets is = 2(2JT + 3JY + 4JX)/(JT + JY + 2JX)where JT, JY,and JX are the proportions of T, Y,and Xjunctions, respectively.  相似文献   

19.
This study examines the links between 31P solidstate NMR studies of aluminum phosphate minerals and their crystallographic structures. We found that 31P isotropic chemical shift values, iso, carry little information about mineral structures. There seems to be no relation between the chemical shift anisotropy, =3311 (33>22> 11), and indicies of phosphate-tetrahedra distortion. 31P1H heteronuclear magnetic dipole interactions, on the other hand, carry important information about hydrous phosphate mineral structures, information that should prove to be quite valuable in studies of phosphate adsorbed on mineral surfaces. This interaction can be measured through a variety of qualitative and quantitative experiments. It appears that spin diffusion is so rapid that subtle differences in hydrogen-bonding environments cannot be resolved.  相似文献   

20.
Zusammenfassung Colquiriit tritt in Vergesellschaftung mit Ralstonit, Gearksutit, Zinkblende, Madocit und Pyrit im Bereich der Zinnlagerstätte von Colquiri in Bolivien auf. Das als selten zu betrachtende Mineral bildet maximal cm-große xenomorphe durchscheinende bis durch-sichtige Körner von weißlicher Farbe. Es zeigt keine Spaltbarkeit. Härte ca. 4; Dichte (gem.) 2,94, (ber.) 2,95 g/cm3;n 1,385±0.002,n 1,388±0,002, einachsig oder schwach zweiachsig, negativ. Colquiriit kristallisiert trigonal, Raumgruppe oderP31c,a 0 5,02,c 0 9,67 Å,Z=2. Stärkste Linien des Pulverdiagramms: 3,98(7) ; 3,23(10) ; 2,22(9) ; 1,736(8) . Eine chemische Analyse ergab: Li 3,1, Na 0,34, Mg 0,55, Ca 22,8, Al 13,4, F 58,0, Gewichtsverlust (105 °C) 0,5, Summe 98,69%, woraus sich die idealisierte Formel LiCaAlF6 ableiten läßt. Beim Erhitzen wird das Gitter zwischen 800 und 900°C zerstört.
Colquiriite, a new fluoride mineral from the Colquiri tin deposit in Bolivia
Summary Colquiriite occurs at the Colquiri tin deposit in Bolivia and is associated with ralstonite, gearksutite, sphalerite, madocite and pyrite. The mineral, which probably is a rare species, forms anhedral translucent to transparent white grains reaching up to 1 cm in size. No cleavage; hardness about 4; density (meas.) 2.94, density (calc.) 2.95 g/cm3;n 1.385±0.002,n 1.388±0.002, uniaxial or weakly biaxial, negative. Colquiriite is trigonal,a 0 5.02,c 0 9.67 Å, space group orP31c,Z=2. The strongest lines of the powder pattern are: 3.98(7) ; 3.23(10) ; 2.22(9) ; 1.736(8) . The chemical analysis gave: Li 3.1, Na 0.34, Mg 0.55, Ca 22.8, Al 13.4, F 58.0, weight loss (105 °C) 0.5, sum 98.69%, leading to the idealized formula LiCaAlF6. Heating experiments show that the lattice breaks down between 800 and 900 °C. The new mineral and its name have been approved by the I.M.A. Commission on New Minerals and Mineral Names.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号