首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于2008-2013年关中平原冬小麦单产数据和条件植被温度指数(vegetation temperature condition index,VTCI)的干旱监测结果,分别采用Morlet、Mexican Hat和Paul(m=4)3种非正交小波的功率谱分析冬小麦单产和主要生育期VTCI和单产的多时间尺度特征,借助小波互相关度进一步确定两个时间序列在时频域局部相关的密切程度,并以此构建主要生育期加权VTCI与冬小麦单产间的线性回归模型。结果表明,基于同一小波函数确定的主要生育期VTCI的振荡能量不同,而基于不同小波函数确定的同一生育期VTCI的主振荡周期及其与单产对应的小波互相关系数也存在差异,但各生育时期VTCI均存在着6 a左右的主振荡周期。基于Paul(m=4)小波的各生育时期VTCI与单产时间序列的多尺度相关性分析的效果最佳(R2=0.521),且Paul(m=4)对应的模型的单产估测结果与实测单产的平均相对误差较之于Morlet和Mexican Hat小波函数获得的相对误差分别降低了0.78%和0.30%,表明Paul(m=4)小波函数能更好地用于干旱对冬小麦单产的影响评估研究,也可用于多尺度的干旱影响评估研究。  相似文献   

2.
通过人工田间诱发不同等级条锈病,在不同生育期测定冬小麦感染条锈病严重度和冠层光谱,采用偏最小二乘(PLS)方法建立了冠层光谱和条锈病严重度的回归模型。结果显示: PLS反演冬小麦条锈病严重度的效果很好,与文献[4]中提出的利用高光谱指数进行反演的结果相比,精度更高; 通过对PLS回归系数的分析,发现叶绿素吸收谷两边(505~550 nm,640~670 nm,680~700 nm)的一阶微分光谱可用于诊断冬小麦条锈病病情,条锈病病害冬小麦在叶绿素吸收谷两边的一阶微分光谱的绝对值会比健康冬小麦的更大。  相似文献   

3.
闫岩  柳钦火  刘强  李静  陈良富 《遥感学报》2006,10(5):804-811
本文以LAI作为结合点,讨论了利用复合型混合演化(SCE—UA)算法实现CERES—Wheat模型与遥感数据同化的可行性。CERES—Wheat模型同化后主要生育期和产量的模拟值分别与真实条件下模型相应模拟值以及实测值进行比较。结果表明,同化后CERES—Wheat模型的模拟精度对LAI外部同化数据的误差并不十分敏感。并且在LAI同化数据较少时,也可获得较好的同化结果。这一特点体现了SCE—UA算法应用于同化过程的优越性,为同化策略在区域冬小麦长势监测及估产中的应用提供了基础。  相似文献   

4.
Vegetation indices are widely used to assess quantitatively the biophysical characteristics of vegetation from remote sensing measurements. Different indices have their own advantages in retrieving vegetation information. It is very difficult to precisely attribute any vegetation index to any particular vegetation biophysical parameter. This study examines the correlations among different vegetation indices derived from a set of mustard, gram and wheat fields at three different phenological growth stages. The results are presented as correlation matrices along with correlation scatter plots. Homologous (equi-magnitude) vegetation information is represented by NDVI, PVI and AtRVI for wheat crop with leaf area index less than 1.  相似文献   

5.
Efficacy of irrigation management of wheat and mustard crops grown in Western Yamuna Canal Command area was determined in the present study from agro-climatic data merged with Maximum Likelihood Classified (MXL) satellite image and from irrigation scheduling efficiencies obtained through FAO model CROPWAT. For computing irrigation scheduling efficiencies, amount of water supplied at different growth stages, soil water depletion and crop water need have been taken into account. Agro-meteorological data in combination with MXL classified crop map approximated the deficiency of applied irrigation amount compared to requirement. Irrigations at 35-80 Days After Sowing (DAS) for two times of applications, 30-60-90 DAS for three, 21-50-80-110 DAS in case of four and 20-45-70-90-120 DAS in case of five irrigations have yielded better scheduling efficiencies for wheat than other times of applications in all soil associations.  相似文献   

6.
The most important advantage of the low resolution National Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (NOAA AVHRR) data is its high temporal frequency and high radiometric sensitivity which helps in vegetation detection in the visible and near-infrared spectral regions. In areas where most of the crop cultivation is in large contiguous areas, and if the AVHRR data are selected for time period such that the crop of interest is well discriminated from other crops, these data can be used for monitoring vegetative growth and condition very effectively. The present study deals with the application of AVHRR data for the monitoring of the wheat crop in its seventeen main growing districts of the Rajasthan state. The fourteen date AVHRR data covering the entire growth period have been used to generate the normalized difference vegetation index (NDV1) growth profile for the crop by masking the non-crop pixels following the two-date NDVI change method. The growth profile parameters and other derived parameters, such as post-anthesis senescence rate and areas under the entire growth profile or under selected growth periods have been related to the district average wheat yield through statistical regression models. Various methods adopted for wheat pixels masking have been critically evaluated. It is found that the wheat yield can be predicted well by the area under the profile in different growth periods.  相似文献   

7.
In this study, temporal MODIS-Terra MOD13Q1 data have been used for identification of wheat crop uniquely, using the noise clustering (NC) soft classification approach. This research also optimises the selection of date combination and vegetation index for classification of wheat crop. First, a separability analysis is used to optimise the date combination for each case of number of dates and vegetation index. Then, these scenes have undergone for NC soft classification. The resolution parameter (δ) was optimised for the NC classifier and found to be a value of 1.6 × 104 for wheat crop identification. Classified outputs were analysed by receiver operating characteristics (ROC) analysis for sub-pixel detection. Highest area under the ROC curve was found for soil-adjusted vegetation index corresponding to the three different phenological stages data sets. From this study, the data sets corresponding to the Sowing, Flowering and Maturity phenological stages of wheat crop were found more suitable to identify it uniquely.  相似文献   

8.
High spectral resolution spectroscopy enables to have detailed information on chemical and morphological status of crop. An attempt of using space platform for detecting red edge shift during different growth stages of wheat crop is reported. Study was conducted during rabi 1996–97 season using Modular Opto-Electronic Scanner MOS-B Imaging data onboard IRS-P3 satellite. Inverted Gaussian model was fitted for satellite derived reflectances between 650 and 870 nm to derive inflection wavelength and its subsequent change with crop stages i.e. red shift. Red shift of 10 nm observed from crown root initiation stage (703.8 nm) to peak vegetative stage (714.2 nm). A comparative study on temporal behaviour of vegetative indices like NDVI and ARVI with Red edge showed that latter is more atmospherically stable parameter. It is concluded that red edge shift which hitherto has been observed from ground and airborne sensors, can also be detected from space.  相似文献   

9.
A field experiment was conducted on wheat at New Delhi with five treatments of Nitrogen (N) fertilizer application (0, 30, 60, 90 and 120 kgha-1). Relationship has been established between observed leaf area index (LAI) and remotely sensed vegetation indices. These relationships are inverted and used for predicting LAI from vegetation indices on different days after sowing. The “re-initialization” strategy is implemented in model WTGROWS in which initial conditions of model are changed so that the model simulated LAI match remote sensing predicted LAI. The model performance with re-initialization has been evaluated by comparing the simulated grain yield and total above-ground dry matter (TDM) values with the actual observations. The results show that in-season re-initialization is effective in model course correction by improving the simulated results of yield and TDM for different N treatments even though the model was run with no N stress condition. Model re-initialization at different days shows that the closer is the day of re-initialization to crop anthesis the more effective is model course correction. Also, the treatment showing maximum error in yield simulation without re-initialization shows maximum reduction in error by re-initialization. The approach shows that the remote sensing inputs can substitute for some of the inputs or errors in inputs required by crop models for yield prediction.  相似文献   

10.
本文以北京顺义县为例,以气象因子与垂直植被指数(PVI)作为参数,用灰色模型G(0,2)和逐段订正模型即阶乘模型,建立冬小表遥感信息-气象因子综合模型。计算结果表明,改进后的综合模型其平均精度比单纯的遥感信息模型提高近7%,个别年份达到10%以上。  相似文献   

11.
统计数据总量约束下全局优化阈值的冬小麦分布制图   总被引:6,自引:0,他引:6  
大范围、长时间和高精度农作物空间分布基础农业科学数据的准确获取对资源、环境、生态、气候变化和国家粮食安全等问题研究具有重要现实意义和科学意义。本文针对传统阈值法农作物识别过程中阈值设置存在灵巧性差和自动化程度低等弱点,以中国粮食主产区黄淮海平原内河北省衡水市景县为典型实验区,首次将全局优化算法应用于阈值模型中阈值优化选取,开展了利用全局优化算法改进基于阈值检测的农作物分布制图方法创新研究。以冬小麦为研究对象,国产高分一号(GF-1)为主要遥感数据源,在作物面积统计数据为总量控制参考标准和全局参数优化的复合型混合演化算法SCE-UA (Shuffled Complex Evolution-University of Arizona)支持下,提出利用时序NDVI数据开展阈值模型阈值参数自动优化的冬小麦空间分布制图方法。最终,获得实验区冬小麦阈值模型最优参数,并利用优化后的阈值参数对冬小麦空间分布进行提取。通过地面验证表明,利用本研究所提方法获取的冬小麦识别结果分类精度均达到较高水平。其中冬小麦识别结果总量精度达到了99.99%,证明本研究所提阈值模型参数优化方法冬小麦提取分类结果总量控制效果良好;同时,与传统的阈值法、最大似然和支持向量机等分类方法相比,本研究所提阈值模型参数优化法区域冬小麦作物分类总体精度和Kappa系数分别都有所提高,其中,总体精度分别提高4.55%、2.43%和0.15%,Kappa系数分别提高0.12、0.06和0.01,这体现出SCE-UA全局优化算法对提高阈值模型冬小麦空间分布识别精度具有一定优势。以上研究结果证明了利用本研究所提基于作物面积统计数据总量控制以及SCE-UA全局优化算法支持下阈值模型参数优化作物分布制图方法的有效性和可行性,可获得高精度冬小麦作物空间分布制图结果,这对提高中国冬小麦空间分布制图精度和自动化水平具有一定意义,也可为农作物面积农业统计数据降尺度恢复重建和大范围区域作物空间分布制图研究提供一定技术参考。  相似文献   

12.
Monitoring of Agricultural crops using remote sensing data is an emerging tool in recent years. Spatial determination of sowing date is an important input of any crop model. Geostationary satellite has the capability to provide data at high temporal interval to monitor vegetation throughout the entire growth period. A study was conducted to estimate the sowing date of wheat crop in major wheat growing states viz. Punjab, Haryana, Uttar Pradesh (UP), Madhya Pradesh (MP), Rajasthan and Bihar. Data acquired by Charged Couple Detector (CCD) onboard Indian geostationary satellite INSAT 3A have continental (Asia) coverage at 1 km?×?1 km spatial resolution in optical spectral bands with high temporal frequency. Daily operational Normalized Difference Vegetation Index (NDVI) product from INSAT 3A CCD available through Meteorological and Oceanographic Satellite Data Archival Centre (MOSDAC) was used to estimate sowing date of wheat crop in selected six states. Daily NDVI data acquired from September 1, 2010 to December 31, 2010 were used in this study. A composite of 7 days was prepared for further analysis of temporal profile of NDVI. Spatial wheat crop map derived from AWiFS (56 m) were re-sampled at INSAT 3A CCD parent resolution and applied over each 7 day composite. The characteristic temporal profiles of 7 day NDVI composite was used to determine sowing date. NDVI profile showed decreasing trend during maturity of kharif crop, minimum value after harvest and increasing trend after emergence of wheat crop. A mathematical model was made to capture the persistent positive slope of NDVI profile after an inflection point. The change in behavior of NDVI profile was detected on the basis of change in NDVI threshold of 0.3 and sowing date was estimated for wheat crop in six states. Seven days has been deducted after it reached to threshold value with persistent positive slope to get sowing date. The clear distinction between early sowing and late sowing regions was observed in study area. Variation of sowing date was observed ranging from November 1 to December 20. The estimated sowing date was validated with the reported sowing date for the known wheat crop regions. The RMSD of 3.2 (n?=?45) has been observed for wheat sowing date. This methodology can also be applied over different crops with the availability of crop maps.  相似文献   

13.
In the present study, Sentinel-1A Synthetic Aperture Radar analysis of time series data at C-band was carried out to estimate the winter wheat crop growth parameters. Five different date images were acquired during January 2015–April 2015 at different growth stages from tillering to ripening in Varanasi district, India. The winter wheat crop parameters, i.e. leaf area index, vegetation water content (VWC), fresh biomass (FB), dry biomass (DB) and plant height (PH) were estimated using random forest regression (RFR), support vector regression (SVR), artificial neural network regression (ANNR) and linear regression (LR) algorithms. The Ground Range Detected products of Interferometric Wide (IW) Swath were used at VV polarization. The three different subplots of 1 m2 area were taken for the measurement of crop parameters at every growth stage. In total, 73 samples were taken as the training data-sets and 39 samples were taken as testing data-sets. The highest sensitivity (adj. R2?=?0.95579) of backscattering with VWC was found using RFR algorithm, whereas the lowest sensitivity (adj. R2?=?0.66201) was found for the PH using LR algorithm. Overall results indicate more accurate estimation of winter wheat parameters by the RFR algorithm followed by SVR, ANNR and LR algorithms.  相似文献   

14.
Soil moisture is one of the most important parameter which controls the growth of the vegetation. For accurate data and sufficient information to increase food production, remote sensing technique is highly useful. This paper deals with the bistatic microwave response of spinach and spinach covered soil moisture at various growth stages on X-band if the frequency spectrum. The microwave response of spinach in different stages of growth have been studied in terms of scattering co-efficient (σ°). The look angle effect on σ° is observed for like polarization i.e. (VV-and-HH) only. A linear regression analysis has been done between the vegetation covered soil moisture and scattering co-efficient. It provides an idea that VV-polarization is more sensitive than HH-polarizalion for vegetation covered soil moisture and best suitable look angle for observing vegetation covered soil moisture is less than 40°(θ<40°).  相似文献   

15.
ABSTRACT

Agricultural drought threatens food security. Numerous remote-sensing drought indices have been developed, but their different principles, assumptions and physical quantities make it necessary to compare their suitability for drought monitoring over large areas. Here, we analyzed the performance of three typical remote sensing-based drought indices for monitoring agricultural drought in two major agricultural production regions in Shaanxi and Henan provinces, northern China (predominantly rain-fed and irrigated agriculture, respectively): vegetation health index (VHI), temperature vegetation dryness index (TVDI) and drought severity index (DSI). We compared the agreement between these indices and the standardized precipitation index (SPI), soil moisture, winter wheat yield and National Meteorological Drought Monitoring (NMDM) maps. On average, DSI outperformed the other indices, with stronger correlations with SPI and soil moisture. DSI also corresponded better with soil moisture and NMDM maps. The jointing and grain-filling stages of winter wheat are more sensitive to water stress, indicating that winter wheat required more water during these stages. Moreover, the correlations between the drought indices and SPI, soil moisture, and winter wheat yield were generally stronger in Shaanxi province than in Henan province, suggesting that remote-sensing drought indices provide more accurate predictions of the impacts of drought in predominantly rain-fed agricultural areas.  相似文献   

16.
为了进一步提高冬小麦产量估测的精度,基于集合卡尔曼滤波算法和粒子滤波(particle filter, PF)算法,对CERES–Wheat模型模拟的冬小麦主要生育期条件植被温度指数(vegetation temperature condition index,VTCI)、叶面积指数(leaf area index, LAI)和中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer, MODIS)数据反演的VTCI、LAI进行同化,利用主成分分析与Copula函数结合的方法构建单变量和双变量的综合长势监测指标,建立冬小麦单产估测模型,并通过对比分析选择最优模型,对2017—2020年关中平原的冬小麦单产进行估测。结果表明,单点尺度的同化VTCI、同化LAI均能综合反映MODIS观测值和模型模拟值的变化特征,且PF算法具有更好的同化效果;区域尺度下利用PF算法得到的同化VTCI和LAI所构建的双变量估产模型精度最高,与未同化VTCI和LAI构建的估产模型精度相比,研究区各县(区)的冬小麦估测单产与实际单产的均方根误差降低了56.25 kg/hm2,平均相对误差降低了1.51%,表明该模型能有效提高产量估测的精度,应用该模型进行大范围的冬小麦产量估测具有较好的适用性。  相似文献   

17.
Biomass and soil moisture are two important parameters for agricultural crop monitoring and yield estimation. In this study, the Water Cloud Model (WCM) was coupled with the Ulaby soil moisture model to estimate both biomass and soil moisture for spring wheat fields in a test site in western Canada. This study exploited both C-band (RADARSAT-2) and L-band (UAVSAR) Synthetic Aperture Radars (SARs) for this purpose. The WCM-Ulaby model was calibrated for three polarizations (HH, VV and HV). Subsequently two of these three polarizations were used as inputs to an inversion procedure, to retrieve either soil moisture or biomass without the need for any ancillary data. The model was calibrated for total canopy biomass, the biomass of only the wheat heads, as well as for different wheat growth stages. This resulted in a calibrated WCM-Ulaby model for each sensor-polarization-phenology-biomass combination. Validation of model retrievals led to promising results. RADARSAT-2 (HH-HV) estimated total wheat biomass with root mean square (RMSE) and mean average (MAE) errors of 78.834 g/m2 and 58.438 g/m2; soil moisture with errors of 0.078 m3/m3 (RMSE) and 0.065 m3/m3 (MAE) are reported. During the period of crop ripening, L-band estimates of soil moisture had accuracies of 0.064 m3/m3 (RMSE) and 0.057 m3/m3 (MAE). RADARSAT-2 (VV-HV) produced interesting results for retrieval of the biomass of the wheat heads. In this particular case, the biomass of the heads was estimated with accuracies of 38.757 g/m2 (RSME) and 33.152 g/m2 (MAE). For wider implementation this model will require additional data to strengthen the model accuracy and confirm estimation performance. Nevertheless this study encourages further research given the importance of wheat as a global commodity, the challenge of cloud cover in optical monitoring and the potential of direct estimation of the weight of heads where wheat production lies.  相似文献   

18.
In the period 1999–2009 ten-day SPOT-VEGETATION products of the Normalized Difference Vegetation Index (NDVI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) at 1 km spatial resolution were used in order to estimate and forecast the wheat yield over Europe. The products were used together with official wheat yield statistics to fine-tune a statistical model for each NUTS2 region, based on the Partial Least Squares Regression (PLSR) method. This method has been chosen to construct the model in the presence of many correlated predictor variables (10-day values of remote sensing indicators) and a limited number of wheat yield observations. The model was run in two different modalities: the “monitoring mode”, which allows for an overall yield assessment at the end of the growing season, and the “forecasting mode”, which provides early and timely yield estimates when the growing season is on-going. Performances of yield estimation at the regional and national level were evaluated using a cross-validation technique against yield statistics and the estimations were compared with those of a reference crop growth model. Models based on either NDVI or FAPAR normalized indicators achieved similar results with a minimal advantage of the model based on the FAPAR product. Best modelling results were obtained for the countries in Central Europe (Poland, North-Eastern Germany) and also Great Britain. By contrast, poor model performances characterize countries as follows: Sweden, Finland, Ireland, Portugal, Romania and Hungary. Country level yield estimates using the PLSR model in the monitoring mode, and those of a reference crop growth model that do not make use of remote sensing information showed comparable accuracies. The largest estimation errors were observed in Portugal, Spain and Finland for both approaches. This convergence may indicate poor reliability of the official yield statistics in these countries.  相似文献   

19.
Multi temporal dat acquired at different growth stages increases the dimensionality information content and have advantage over single date data for crop classification. Attempt was made to select suitable single date and combination of multidate data for wheat crop classification in Nalanda district of Bihar state where pulses and other crops are also grown in rabi season. Amongst the single date data February data was found to be better for wheat classification in comparison to November. January, March and April data. Combination of first two principal components each derived from IRS LISS-I four band data acquired in January and February was found to be the best set. Wheat classification accuracy achieved was 94.54 percent.  相似文献   

20.
Modular Optoelectronic Scanner (MOS-B) spectrometer data over parts of Northern India was evaluated for wheat crop monitoring involving (a) sub pixel wheat fractional area estimation using spectral unmixing approach and (b) growth assessment by red edge shift at different phenological stages. Red shift of 10 nm was observed between crown root initiation stage to flowering stage. Wheat fraction estimates using linear spectral unmixing on Feb. 13, 1999 acquisition of MOS-B data had high correlation (0.82) with estimates from Wide Field Sensor (WiFS) data acquired on same date by IRS-P3 platform. It was observed that five bands (4,5,8,12,13 MOS-B bands) are sufficient for signature separability of major land cover classes viz. wheat, urban, wasteland, and water based on purely spectral separability criterion using Transformed Divergence (T.D.) approach. Higher number of bands saturated the T.D. values. In contrast, performance of sub pixel fractional area estimation using unmixing decreased drastically for eight bands (4,5,6,7,8,9,12,13 MOS-B bands) chosen from optimal band selection criteria in comparison to full set of 13 bands. The relative deviation between area estimated from Wifs and MOS-B increased from 1.72 percent when all thirteen bands were used in unmixing to 26.10 percent for the above eight bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号