首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous studies of large-scale vortical flows arising in shear flows of stellar accretion disks with Keplerian azimuthal velocity distributions as a result of the development of small perturbations are continued. The development of large-scale instability in an accretion disk is investigated via mathematical modeling. One result obtained is the change of the disk flow structure due to the formation of large vortices. In the limiting case, sufficiently long evolution leads to the formation of several asymmetric spiral structures of the flow of disk matter. The presence of large-scale structures leads to angular-momentum redistribution in the disk.  相似文献   

2.
We consider disk accretion resulting purely from the loss of angular momentum due to the outflow of plasma from a magnetized disk. In this limiting case, the dissipation due to the viscosity and finite electrical conductivity of the plasma can be neglected. We have obtained self-consistent, self-similar solutions for dissipationless disk accretion. Such accretion may result in the formation of objects whose bolometric luminosities are lower than the flux of kinetic energy in the ejected material.  相似文献   

3.
We consider the interaction of interstellar dust grains with a galactic shock in the gaseous component. Typical parameters of dust grains and spiral density waves imply that the formation of large-scale dust lanes at the front of a galactic shock is possible only in models taking into account a self-focusing phenomenon. In the case of an isothermal flow of interstellar gas through a spiral arm in a model with a gaseous disk of variable thickness, dust lanes can be projected onto the region of increased gas density, although this is not associated with a galactic shock. The dust density peak derived from the classical model of a galactic shock (isothermal flow and a constant thickness of the gaseous disk) is appreciably shifted downstream of the gas flow, so that it does not outline the gas density maximum.  相似文献   

4.
论河流的弯曲机理   总被引:2,自引:0,他引:2       下载免费PDF全文
基于能量守恒原理,通过实体模型试验的方法,对河流发生弯曲的机理进行了探讨。研究认为,河流具有弯曲的自然属性,其弯曲程度主要取决于水流能量的大小,与流量、比降有很大关系;河流发生弯曲是水流为补偿能量损失得以保持运动而形成的一种自然造床过程,河流在运动过程中,通过弯曲形成上游壅水,增加势能,使下游比降相对增大,动能得以增加,从而保持河段内的水沙输移达到相对平衡,此即"动能自补偿"的弯曲机理;河流弯曲程度与需要补偿的动能多少有关,河段上下断面的动能差越大,河段弯曲系数就越大。"动能自补偿"的机理得到了实验室观测结果的验证和野外原型定位观测资料的佐证。  相似文献   

5.
The paper continues our studies of large-scale instability arising during shearmotions in stellar accretion disks due to the development of small perturbations. The evolution of a local perturbation introduced into the outer part of a stationary accretion disk is modeled mathematically. The possible formation of large-scale structures that propagate throughout the disk, leading to an appreciable redistribution of angular momentum, is demonstrated.  相似文献   

6.
土石混合料大型直剪试验的颗粒离散元细观力学模拟研究   总被引:4,自引:0,他引:4  
贾学明  柴贺军  郑颖人 《岩土力学》2010,31(9):2695-2703
土石混合料作为一种特殊的岩土介质越来越受到国内外众多研究者的重视。基于3维颗粒离散元PFC3D,建立了土石混合料直剪试验模型,进行了不同含石量、不同岩性的土石混合料直剪试验模拟研究。颗粒离散元模拟结果表明,土石混合料的石料岩性和含石量在很大程度上控制了土石混合料的抗剪强度特性。硬岩混合料的摩擦角普遍比软岩混合料大6°~ 7°,含石量为60%~80%时达到最大。土石混合料的剪切面不再是一个平面,其起伏度随含石量增加而增大。剪切过程中软岩混合料在低正应力下表现为剪胀,高正应力下表现为剪缩,并产生软化现象,硬岩混合料表现为剪胀和塑性;软岩土石混合料剪切过程中能量以应变能和动能为主,而硬岩土石混合料的能量以摩擦能和动能为主。  相似文献   

7.
水动力学条件对鱼类生长影响的试验研究   总被引:7,自引:1,他引:6       下载免费PDF全文
以鲫鱼为研究对象,将其放入流速渐变环形水槽的不同水动力分区中进行实验,研究水动力学条件对鱼类生长的影响。通过对水槽流场的三维数值模拟,得到其中与鲫鱼生长相联系的水动力学细部特征,将模拟结果与实测流场数据比较分析,结果可靠。细部特征采用流速、流速梯度和动能梯度3个水动力学特征量进行量化分析,并结合鲫鱼相对日增长率,得到鱼类生长与水动力学特征量之间的定量关系。流速对鲫鱼有一个短期的胁迫作用,0.20m/s流速比较适宜鲫鱼的生长;鲫鱼的体重相对日增长率随着水流动能梯度增大而下降,两者呈现负相关性,0.009J/(kg·m)为鲫鱼生长所需动能梯度的一个阈值。通过量化鱼类生长对水动力学条件的需求,可为生态水利规划提供定量化的依据。  相似文献   

8.
Kinetic energy exchange equations (Saltzman 1957) in wave number domain are partitioned into standing, transient and standing-transient components following Murakami (1978, 1981). These components are computed for the 1991 summer monsoon using dailyu andv grid point data at 2.5° latitude-longitude interval between the equator and 40°N at 200 hPa and 850 hPa levels for the period June through August. The data are obtained from NCMRWF, New Delhi. The study shows that at 200 hPa wave number 1 over Region 3 (30°N to 40°N), wave number 2 over Region 2 (15°N to 30°N) and wave number 3 over Region 1 (equator to 15°N) dominate the spectrum of transport of momentum and wave to zonal mean flow interaction. Wave number 1 over Region 1 and Region 3 and wave number 2 over Region 2 are the major sources of kinetic energy to other waves via wave-to-wave interaction. At 850 hPa wave number 1 over Region 3 has maximum contribution in the spectrum of transport of momentum and kinetic energy and more than 90% of its contribution is from the standing component. This indicates that standing wave number 1 over Region 3 plays a very important role in the dynamics of monsoon circulation of the lower troposphere. The study further shows that although the circulation patterns at 200 hPa and 850 hPa levels are opposite in character, a number of energy processes exhibit a similar character at these levels. For example, (i) transport of momentum by most of the waves is northward, (ii) small scale eddies intensify northward, (iii) eddies are sources of kinetic energy to zonal mean flow over Region 1 and (iv) standing eddies are sources of kinetic energy to transient eddies. Besides the above similarities some contrasting energy processes are also observed. Over Region 2 and Region 3 standing and transient eddies are sources of kinetic energy to zonal mean flow at 200 hPa, while at 850 hPa the direction of exchange of kinetic energy is opposite i.e. zonal mean flow is a source of kinetic energy to standing as well as transient eddies. L(n) interaction indicates that at 200 hPa waves over R2 maintain waves over R1, while at 850 hPa waves over R1 maintain waves over R2. It has been found that the north-south gradient of zonal mean of zonal wind is the deciding factor of wave to zonal mean flow interaction.  相似文献   

9.
A large-scale avalanche of Earth material is modeled here as a granular flow using a distinct element numerical model PFC 2D. Such failures occur in a variety of geological settings and are known to occur frequently over geologic time-scales transporting significant volumes of material basinward. Despite this, they remain poorly understood. The model used here begins with a listric failure, typical of the flank collapse of a volcanic cone, and describes the movement of an assembly of several thousand particles from failure to deposition. Within the model, each particle possesses its own material properties and interacts with its immediate neighbors and/or the basal boundary during emplacement. The general mechanics of the particle assembly are observed by monitoring the stresses, displacements, and velocities of distinct sections of the avalanche body. We monitor the avalanches’ energy regime (e.g., gravitational influence, energy dissipation by friction, kinetic energy evolution, and avalanche body strain). The addition of colored markers of varying geometry to the pre-failure avalanche was also used to make qualitative observations on the internal deformation that occurs during avalanche emplacement. A general stretching and thinning of the avalanche is observed. Monitoring of vertical and horizontal variations in stress, strain, porosity, and relative particle stability indicate that the lower more proximal sections of the avalanche are subject to higher stresses. These stresses are observed to be most significant during the initial phases of failure but decline thereafter; a situation likely to be conducive to block fragmentation and in developing a basal shear layer in real-world events. The model also shows how an avalanche which is initially influenced purely by gravity (potential energy) develops into a fully flowing assemblage as downslope momentum is gained and kinetic energy increases. The horizontal transition where the failure meets the run-out surface is recognized as a key area in emplacement evolution. The model has particular relevance to volcanic flank collapses and consequently the implications of the model to these types of failure and the geological products that result are considered in detail although the model is relevant to any form of large-scale rock or debris avalanche.  相似文献   

10.
Vertical distributions of various components of the tropospheric global rotational kinetic energy, enstrophy and available potential energy during July 1979, and the contributions to these from different zonal wave categories were studied. Representative levels in the lower and upper troposphere for the stationary and transient energetics were identified on the basis of different components of energy and enstrophy. The eddy energy and enstrophy contained in different zonal scale components in the lower and upper troposphere were studied to find out the preferred scales for stationary and transient monsoonal motion in the two atmospheric layers. The role of different zonal wave categories in the nonlinear exchanges of energy and enstrophy arising due to stationary-stationary, transient-transient, stationary-transient and observed flow interactions was examined. Stationary and transient global spectra of the aforesaid dynamical variables in terms of the zonal wavenumber(m) with triangular truncation atm = 42 were utilized for this purpose. It was found from the global average kinetic energy in lower and upper troposphere that the global stationary and transient motions were comparable in the lower troposphere while in the upper troposphere stationary motion dominated over the transient motion. The computed zonal and eddy energy confirmed that the stationary motion was predominantly zonal while the transient motion was dominated by eddies. From the time mean nonlinear interaction of kinetic energy (enstrophy) of observed flow it was seen that the long and short waves as well as the zonal flow gained kinetic energy (enstrophy) from medium waves due to nonlinear interactions. The transfer of available potential energy due to nonlinear interaction was down the scale except for short waves in the upper troposphere. The stationary-transient interaction was found to be an important element of the spatial-temporal varying atmospheric flow.  相似文献   

11.
为研究沉水植被对水流结构的影响,以苦草为对象,利用实验室水槽实验研究了含淹没水生植被水流时均流速、雷诺应力及紊动能的垂向分布特征。受苦草冠层的影响,时均流速在冠顶以上呈对数分布,且随着流量的增加,冠层倾伏高度降低,对数剖面愈加明显;冠层内部,由于冠层阻流面积在垂向分布上的差异,冠层内时均流速出现逆梯度分布,且在床面附近出现局部流速最大值。雷诺应力在冠顶附近达到最大值,并向水面与床底方向逐渐减小;受逆流速梯度的影响,冠层内部雷诺应力出现负值以及局部最大值。雷诺应力产生的剪切紊动使得紊动能在冠顶处最大,并向水面与床底进行垂向传输;受紊动传输距离的限制,冠层底部以叶片后产生的尾流紊动为主,紊动能较小。  相似文献   

12.
We analyze heating and cooling processes in accretion disks in binaries. For realistic parameters of the accretion disks in close binaries (\(\dot M \simeq 10^{ - 12} - 10^7 M_ \odot /yr\) and α?10?1–10?2), the gas temperature in the outer parts of the disk is from ~104 to ~106 K. Our previous gas-dynamical studies of mass transfer in close binaries indicate that, for hot disks (with temperatures for the outer parts of the disk of several hundred thousand K), the interaction between the stream from the inner Lagrange point and the disk is shockless. To study the morphology of the interaction between the stream and a cool accretion disk, we carried out three-dimensional modeling of the flow structure in a binary for the case when the gas temperature in the outer parts of the forming disk does not exceed 13 600 K. The flow pattern indicates that the interaction is again shockless. The computations provide evidence that, as is the case for hot disks, the zone of enhanced energy release (the “hot line”) is located beyond the disk and originates due to the interaction between the circumdisk halo and the stream.  相似文献   

13.
弯道水面横比降及断面环流是弯道水流的显著特性。通过U形弯道水流壅水试验,对弯道水面横向比降、横向流速分布、环流强度、紊动能及纵向流速沿程的变化进行了试验研究。结果显示,随着下游回水的抬高,弯道水面横比降、横向流速分布、环流强度、紊动能及纵向流速将发生明显的改变。为深入探讨下游回水对弯道水流结构的影响提供了科学依据。  相似文献   

14.
A model for the generation of large-scale magnetic fields is constructed for the galaxy NGC 5775, in which the magnetic field has the form of a dipolar dynamo wave propagating along the galactic disk. The excitation of such a mode, which is unusual for galactic dynamos, can be explained by the strong variation of the galactic rotation with height above the plane of symmetry of the galactic disk.  相似文献   

15.
We present a “combined” model taking into account visual manifestations of the interaction between the gas flow and the accretion disk in a close binary system in the form of a “hot line” and a “hot spot.” The binary consists of a red dwarf that fills its Roche lobe and a compact spherical star (a white dwarf or neutron star) surrounded with a thick ellipsoidal accretion disk of a complex shape. The disk thickness is not large near the compact star but increases according to a parabolic law towards its outer edge. The oblique collision of the gaseous flow with matter of the cool, rotating disk, whose outer edge has a temperature <10 000 K, creates an extended region of enhanced energy release. In the combined model, this region is represented with a hot line that coincides with the optically opaque part of the flow and is located outside the disk, together with a hot spot at the outer surface of the disk, on the leeward side of the flow. The synthetic light curves for the combinedmodel and a hot-line model demonstrate that both models are able to fairly accurately reproduce the shapes of both classical and atypical light curves of cataclysmic variables in quiescence. Our determination of the parameters of the cataclysmic variable OY Car from an analysis of its light curves using the two models shows that the basic characteristics of the close binary, such as the component mass ratio q = M 1/M 2, orbital inclination i, effective temperatures of the red dwarf (T 2) and white dwarf (T 1), and orientation of the disk α e , remain the same within the errors. The parameters describing the size of the slightly elliptical disk and the radiation flux from the disk differ by several percent (∼ 2–8%). A more significant difference is detected in the parameters of the hot line, due to the different shape and alignment of the flow and the presence of an additional radiation source—the hot spot—on the disk.  相似文献   

16.
The weak turbulent motions of a dry granular dense flow and the influence of the turbulent fluctuations caused by the minor short-term elastic/inelastic instantaneous collisions and the major long-term enduring frictional contacts among the grains on the mean flow characteristics are investigated. To this end, the conventional Reynolds-averaging process is applied to obtain the balance equations for the mean primitive fields associated with turbulent closure models. The thermodynamic analysis, based on the Mueller–Liu entropy principle, is carried out to derive the equilibrium formulations of the closure models. It shows that the effect of the turbulent fluctuations on the mean flow characteristics as well as the turbulent kinetic energy and dissipation can be taken into account by the granular coldness: a phenomenological measure of the fluctuating kinetic energy intensity. The implementation of the complete thermodynamically consistent turbulent closure models and the simulation of a gravity-driven stationary flow down an inclined moving plane compared with the experimental outcomes are provided in Part II of the present study.  相似文献   

17.
油气成藏动力学及其研究进展   总被引:141,自引:3,他引:138  
成藏动力学是综合利用地质、地球物理、地球化学手段和计算机模拟技术 ,在盆地演化历史中和输导格架下 ,通过能量场演化及其控制的化学动力学、流体动力学和运动学过程分析 ,研究沉积盆地油气形成、演化和运移过程和聚集规律的综合性学科。成藏动力学研究的基础是盆地演化历史和流体输导格架 ,研究的核心是能量场 (包括温度场、压力场、应力场 )演化及其控制的化学动力学和流体动力学过程。 2 0世纪 90年代以来 ,成藏动力学研究的进展表现在 :( 1)流体输导系统预测能力的提高 ;( 2 )能量场演化机制及其控制的化学动力学过程和流体流动样式研究的深入 ;( 3)油气成藏机理研究的深化 ;( 4 )计算机模拟技术的改进。在进一步认识与油气成藏密切相关的化学动力学和流体动力学过程和机理的基础上 ,实现盆地温度场、压力场、应力场的耦合和流体流动、能量传递和物质搬运的三维模拟 ,是成藏动力学的重要发展方向。  相似文献   

18.
We consider the structure and formation of the circumbinary envelopes in semi-detached binary systems. Three-dimensional numerical simulations of the gas dynamics are used to study the flow pattern in a binary system after it has reached the steady-state accretion regime. The outer parts of the circumbinary envelope are replenished by periodic ejections from the accretion disk and circum-disk halo through the vicinity of the Lagrange point L3. In this mechanism, the shape and position of a substantial part of the disk is specified by a precessional density wave. On timescales comparable to the orbital period, the precessional wave (and hence an appreciable fraction of the disk) will be virtually stationary in the observer’s frame, whereas the positions of other elements of the flow will vary due to the orbital rotation. The periodic variations of the positions of the disk and the bow shock formed when the inner parts of the circumbinary envelope flow around the disk result in variations in both the rate of angular-momentum transfer to the disk and the flow structure near L3. All these factors lead to a periodic increase of the matter flow into the outer layers of the circumbinary envelope through the vicinity of L3. The total duration of the ejection is approximately half the orbital period.  相似文献   

19.
Wind power has become one of the fastest growing renewable energy. With the large-scale deployment of wind farms in the world, people have started to pay attention to the impact of wind farms on the ecological environment and climate. This paper summarized the impact of wind farms on climate and ecological environment by investigating relevant literature: In the areas of wind farms, on the one hand, the set-up of wind turbines changes original aerodynamic roughness height and strengthens the dragging of the land surface against turbulence, directly affecting the turbulent motion of the boundary layer, resulting in the changes of intensity and pattern of material energy and water vapor exchange between land surface and near-surface atmosphere, further affecting the atmospheric circulation and climate. On the other hand, wind turbines convert the majority of the wind kinetic energy into electric energy, which produces the wake effect of the wind turbine. The budget patterns and spatial and temporal distribution of large-scale kinetic energy in the boundary layer are changed correspondingly, generating changes in various fluxes (heat flux, water vapor flux, etc.) in the atmosphere, which affect temperature, precipitation, and wind speed. Generally, the warming or cooling effect of wind farms on the near-surface is related to the stability of atmosphere. However, simulations in the global climate model showed that the average impact of wind farms on global climate is small, much smaller than the expected changes in greenhouse gas emissions and the interannual changes in natural climate.Wind power emits almost no carbon dioxide and pollutants. Compared with other traditional energy sources, it reduces water consumption but may generate some negative ecological impacts such as animal habitats, bird collisions, and noise, vision impact. However, some measures can be taken to mitigate these adverse effects.  相似文献   

20.
Observations by Doppler weather radar are crucial for nowcasting and short-time forecasting of severe weather events as they bring in refined information of the atmosphere. However, due to the inevitable noises and non-meteorological signals, they cannot be assimilated straightforwardly into a numerical model. In the present study, assimilation of the radial component of wind velocity observed by two Doppler radars is performed in the numerical simulation of Supertyphoon Rammasun (2014) just before its landfall. After several quality-control steps, the radar-observed radial velocities are de-aliased, noise-reduced and assimilated into the model to improve initial conditions for the high-resolution simulation. Results show that only when using global background error covariance matrix can the observational increment be properly assimilated into the model, correcting large-scale background steering flow and yielding a simulated track close to the observed one. However, little improvement is found in simulating the TC core-scale structures by the assimilation of radar velocity as compared to the radar-observed flow, primarily due to the insufficient spatial resolution of the model that may lead to the incorrect representation of the TC core structure and the rejection of some core-region observations during the data assimilation procedure. Moreover, assimilation-induced asymmetries consume a certain portion of mean kinetic energy, preventing the simulated Rammasun from axisymmetrization and thus intensification as compared with the non-assimilated experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号