首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rock failure is observed around boreholes often with certain types of failure zones, which are called breakouts. Laboratory‐scale drilling tests in some high‐porosity quartz‐rich sandstone have shown breakouts in the form of narrow localized compacted zones in the minimum horizontal stress direction. They are called fracture‐like breakouts. Such compaction bands may affect hydrocarbon extraction by forming barriers that inhibit fluid flow and may also be a source of sand production. This paper presents the results of numerical simulations of borehole breakouts using 3D discrete element method to investigate the mechanism of the fracture‐like breakouts and to identify the role of far‐field stresses on the breakout dimensions. The numerical tool was first verified against analytical solutions. It was then utilized to investigate the failure mechanism and breakout geometry for drilled cubic rock samples of Castlegate sandstone subjected to different pre‐existing far‐field stresses. Results show that failure occurs in the zones of the highest concentration of tangential stress around the borehole. It is concluded that fracture‐like breakout develops as a result of a nondilatant failure mechanism consisting of localized grain debonding and repacking and grain crushing that lead to the formation of a compaction band in the minimum horizontal stress direction. In addition, it is found that the length of fracture‐like breakouts depends on both the mean stress and stress anisotropy. However, the width of the breakout is not significantly changed by the far‐field stresses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Stress-induced breakouts in vertical boreholes are failure zones caused by excessive compressive stress concentration at the borehole wall along the springline of the least horizontal far-field stress. Wellbores are sometimes drilled into aquifers or oil reservoirs that are weak, poorly consolidated, and highly porous sandstone formations, which are often conducive to breakout formation. Breakouts are an expression of borehole instability and a potential source of sand production. On the other hand, the breakout phenomenon can be used advantageously in obtaining an estimate of the in situ stress condition. The average orientation of breakouts, as identified by borehole geophysical logging, is a reliable indicator of in situ stress directions. It has also been suggested that breakout dimensions could potentially be used as indicators of in situ stress magnitudes. The research reported here has concentrated on the unique type of breakouts observed for the first time in high-porosity Berea sandstone. Drilling experiments in rock blocks subjected to critical far-field true triaxial stress regimes, simulating in situ conditions, induced breakouts that were unlike the ‘dog-ear’ ones previously observed in granites, limestones, and low-porosity sandstones. The newly observed breakouts were thin, tabular, and very long, resembling fractures that counterintuitively extended perpendicular to the maximum principal stress. We found that a narrow zone ahead of a fracture-like breakout tip underwent apparent localized grain debonding and compaction. In the field, such zones have been termed ‘compaction bands’, and are a source of concern because in oil fields and aquifers they constitute curtains of low permeability that can impede the normal flow of oil or water. In order to determine whether a correlation exists between fracture-like breakouts and in situ stress, we conducted several series of tests in which the minimum horizontal and vertical stresses were held constant and the maximum horizontal stress (σH) was increased from test to test. These tests showed strong dependence of the breakout length on far-field stress, signaling that potentially the ability to assess fracture-like breakout length in the field could be used to estimate in situ stress magnitudes in conjunction with other indicators. Another series of tests revealed that breakout length increased substantially when borehole diameter was enlarged. This result suggested that in the field, where wellbore size is considerably larger, fracture-like breakout could extend to sizable distances, creating a sand production hazard. Two series of tests, one to evaluate the effect of drill-bit penetration rate, and the other to verify the drilling-fluid flow rate effect on breakout formation and dimensions yielded inconsistent results and showed no unique trends. Remarkably, fracture-like breakouts maintained a consistent narrow width of about 5–10 grain diameters, irrespective of the test conditions. This characteristic supports the suggestion that fracture-like breakouts are emptied compaction bands.  相似文献   

3.
In many wellbore stability analyses, the ability to forecast both the occurrence and extent of plastic deformation and failure hinges upon a fundamental understanding of deformation mode and failure mechanism in the reservoir rock. This study focuses on analyzing plastic zones, localized deformations, and failures around a borehole drilled overbalanced or underbalanced through a highly porous rock formation. Based on several laboratory experiments, porous rocks are prone to deform under both shear-induced dilation and shear-enhanced compaction mechanisms depending on the stress state. The shapes of the deformation and failure patterns around the borehole are shown, depending on the initial stress state and the local stress paths. The inquiry of the local stress paths in the near-wellbore zone facilitates the understanding of the reasons for different types of failure mechanisms, including the mixed-mode and the plastic deformation structures. The modification of the 2D plane strain condition by imitating third stress in the numerical scheme helps us bring the stress paths closer to the real state of loading conditions. Our modeling reveals that the transition from isotropic to anisotropic stress state is accompanied by an increase in the deviatoric part of effective shear tensor that leads to the development of inelastic deformation, degradation, and subsequent rock failure. Particular interest is devoted to the modeling of strain localization especially in compaction mode around a wellbore and computing the amount of stress concentration at the tips of dog-eared breakouts. Stress concentration can result in a change in irreversible deformation mode from dilatancy to compaction, elucidating the formation of the shear-enhanced compaction phenomenon at the failure tips in the direction of the minimum horizontal stress.  相似文献   

4.
A vertical profile of maximum horizontal principal stress, SHmax, orientation to 5 km depth was obtained beneath the Swiss city of Basel from observations of wellbore failure derived from ultrasonic televiewer images obtained in two 1 km distant near-vertical boreholes: a 2755 m exploration well (OT2) imaged from 2550 m to 2753 m across the granitic basement-sediment interface at 2649 m; and a 5 km deep borehole (BS1) imaged entirely within the granite from 2569 m to 4992 m. Stress-related wellbore failure in the form of breakouts or drilling-induced tension fractures (DITFs) occurs throughout the depth range of the logs with breakouts predominant. Within the granite, DITFs are intermittently present, and breakouts more or less continuously present over all but the uppermost 100 m where they are sparse. The mean SHmax orientations from DITFs is 151 ± 13° whereas breakouts yield 143 ± 14°, the combined value weighted for frequency of occurrence being N144°E ± 14°. No marked depth dependence in mean SHmax orientation averaged over several hundred meters depth intervals is evident. This mean SHmax orientation for the granite is consistent with the results of the inversion of populations of focal mechanism solutions of earthquakes occurring between depths of 10–15 km within regions immediately to the north and south of Basel, and with the T-axis of events occurring within the reservoir (Deichmann and Ernst, this volume). DITFs and breakouts identified in OT2 above and below the sediment-basement interface suggest that a change in SHmax orientation to N115°E ± 12° within the Rotliegendes sandstone occurs near its interface with the basement. The origin of the 20–30° change is uncertain, as is its lateral extent. The logs do not extend higher than 80 m above the interface, and so the data do not define whether a further change in stress orientation occurs at the evaporites. Near-surface measurements taken within 50 km of Basel suggest a mean orientation of N–S, albeit with large variability, as do the orientation of hydrofractures at depths up to 850 m within and above the evaporite layers and an active salt diapir, also within 50 km of Basel. Thus, the available evidence supports the notion that the orientation of SHmax above the evaporites is on average more N–S oriented and thus differs from the NW–SE inferred for the basement from the BS1/OS2 wellbore failure data and the earthquake data. Changes in stress orientation with depth can have significant practical consequences for the development of an EGS reservoir, and serve to emphasise the importance of obtaining estimates from within the target rock mass.  相似文献   

5.
We induced borehole breakouts in a 25%-porosity Berea sandstone by drilling 23 mm diameter holes into 152×152×229 mm blocks subjected to constant true triaxial far-field stresses. BSen5 consists of large quartz grains (0.5 mm) cemented mainly by sutured grain contacts. Breakouts in BSen5 are demonstratively different from those observed in granite, limestone, and lower porosity sandstones. Rather than the typically short ‘V’-shaped breakouts, BSen5 displays long fracture-like tabular slots, which counterintuitively, develop orthogonally to σH. These breakouts originate at the points of highest compressive stress at the borehole wall, along the σh spring line. Micrographs of BSen5 breakouts show an apparent compaction band created just ahead of the breakout tip in the form of a narrow layer of grains that are compacted normal to σH. The compaction band characteristics are nearly identical to those observed in the field. The mechanism leading to fracture-like breakouts is seen as anti-dilatant, and related directly to grain debonding and porosity reduction accompanying the formation of the compaction band. Some compacted grains at the borehole wall are expelled as a result of the line of tangential loading and the radial expansion of adjacent grains. The circulating drilling fluid flushes out the remaining compacted loose grains at the borehole-rock interface. As the breakout tip advances, the stress concentration ahead of it persists, extending the compaction band, which in turn leads to additional grain removal and breakout lengthening. By extrapolation, this process may continue for considerable distance (at least several times the wellbore diameter) in field situations, leading potentially to substantial sand production.  相似文献   

6.
Summary Stress concentration at the bottom of a borehole due to the corners with small radius of curvature in an axial section and its effect on the azimuth of breakout was studied. To this end, a 3-D finite element analysis was conducted and the stress around the borehole was examined for boreholes arbitrarily oriented to three principal axes of remote stress. Results show that, in the case of high strength rock, compressive failure resulting in spalling of a borehole may occur only at the bottom of the borehole. The spalling can occur continuously with drilling, and results in continuous spalling with depth, i.e., a breakout. This type of breakout tends to form on one side of the borehole and its orientation is approximately perpendicular to the orientation of standard breakouts, inferred from the stress concentration due to the cylindrical shape of the borehole.  相似文献   

7.
The development of Hot-Dry Rock (HDR) geothermal energy in Australia with drillings to some kilometres depth yields an impetus for deep stress logging. For the Olympic Dam HDR-project, borehole Blanche-1 was drilled to almost 2 km depth and provided the possibility to estimate the in situ stresses within the granitic borehole section by the analysis of borehole breakouts and core discing, as well as by hydraulic fracturing combined with acoustic borehole televiewer logging for fracture orientation determination. Although the stress magnitudes derived by the different methods deviate significantly, they clearly indicate for the depth range between 800 and 1,740 m a compressional stress regime of S v ≤ S h < S H and a consistent East–West orientation of maximum horizontal compression in agreement with existing stress data for Australia. The minor horizontal stress S h derived from the hydraulic fracturing closure pressure values is about equal to the overburden stress and may be regarded as most reliable.  相似文献   

8.
The determination of in situ stresses is very important in petroleum engineering. Hydraulic fracturing is a widely accepted technique for the determination of in situ stresses nowadays. Unfortunately, the hydraulic fracturing test is time-consuming and expensive. Taking advantage of the shape of borehole breakouts measured from widely available caliper and image logs to determine in situ stress in petroleum engineering is highly attractive. By finite element modeling of borehole breakouts considering thermoporoelasticity, the authors simulate the process of borehole breakouts in terms of initiation, development, and stabilization under Mogi-Coulomb criterion and end up with the shape of borehole breakouts. Artificial neural network provides such a tool to establish the relationship between in situ stress and shape of borehole breakouts, which can be used to determine in situ stress based on different shape of borehole breakouts by inverse analysis. In this paper, two steps are taken to determine in situ stress by inverse analysis. First, sets of finite element modeling provide sets of data on in situ stress and borehole breakout measures considering the influence of drilling fluid temperature and pore pressure, which will be used to train an artificial neural network that can eventually represent the relationship between the in situ stress and borehole breakout measures. Second, for a given measure of borehole breakouts in a certain drilling fluid temperature, the trained artificial neural network will be used to predict the corresponding in situ stress. Results of numerical experiments show that the inverse analysis based on finite element modeling of borehole breakouts and artificial neural network is a promising method to determine in situ stress.  相似文献   

9.
Abstract

For the determination of the tectonic stress field in the region of the Jura Mountains, three different relief techniques have been used in 18 test sites. In six test sites measurements have been carried out in horizontal boreholes using the doorstopper method. In the remaining test sites measurements were made in vertical boreholes by the doorstopper method (8), triaxial strain cell method (3) and borehole slotter (1). Additionally, analyses of borehole breakouts from six deep wells are presented.

Orientation of maximum horizontal stress clearly deviates from the uniform NW-SE orientated central and western European stress field. Local stress sources, which are probably related to active decollement tectonics in the Jura Mountains, may explain the deviation in stress orientations in comparison to the foreland. Normal stress magnitudes perpendicular to the trend of compressional structures in the Folded Jura are largest in the southeastern Upper Rhine Graben and its southwards prolongation into the Jura Mountains. Low stress magnitudes are characteristic for the eastern termination, intermediate ones for the southern foreland of the Jura Mountains.  相似文献   

10.
Inherent heterogeneity of a rock strongly affects its mechanical behavior. We numerically study the mechanisms governing the initiation, propagation, and ultimate pattern of borehole breakouts in heterogeneous rocks. A two-dimensional finite element model incorporating material heterogeneity is established to systematically examine the effects of several key factors on borehole failure, including borehole diameter, far-field stress, and rock heterogeneity. The inherent heterogeneity of a rock is explicitly characterized by prescribing the rock mechanical properties of mesoscale elements statistically obeying the Weibull distribution. Elastic damage mechanics is used to represent the constitutive law of the mesoscale element. We find that borehole diameter reduction remarkably changes the crack failure from tensile to shear and elevates the critical hydrostatic pressure. Far-field stress anisotropy strongly affects the shape of the borehole breakout. Rock heterogeneity dictates the location of the preferred crack under the hydrostatic stress, which leads to local stress concentration, and determines the types of breakouts around the borehole. Our findings facilitate in-depth understanding of the classic borehole stability problems in heterogeneous rocks.  相似文献   

11.
中国大陆科学钻主孔现今地应力状态   总被引:3,自引:0,他引:3  
用钻孔崩落法确定了中国大陆科学钻探主钻孔5 047 m深度以上的现今地应力状态.由钻孔声波成像测井资料发现, 科学钻主钻孔在1 200 m深度以下出现了钻孔崩落现象.我们从1 216~5 047 m的深度范围内采集了143个钻孔成像测井图象资料, 对钻孔崩落椭圆长轴方位进行了统计, 结果表明崩落椭圆长轴平均方位为319.5°±3.5°, 最大水平主应力方位平均为49.5°±3.5°.利用崩落形状要素(崩落深度和崩落宽度) 以及岩石的内聚力和内摩擦角, 估算了1 269 m至5 047 m范围内52个深度上的最大和最小水平主应力的大小.结果表明, 在浅处1 216 m深度, 最大水平主应力为42 MPa, 最小水平主应力为30.3 MPa; 在深处5 000 mm深度, 最大水平主应力为160.5 MPa, 最小水平主应力为120 MPa; 地应力随深度近于线性增加.据岩石密度测井资料计算了各个深度上静负载应力.3个主应力的大小和方向反映出科学钻主孔位置的应力场处于走滑应力状态, 与临近地区地震震源机制解和其他方法得到的应力场一致.利用声发射法对岩心试件进行了声发射测量, 得到了最大水平主应力幅值, 并与崩落法测量结果进行了对比, 两者十分一致.   相似文献   

12.
The Sulu-Dabie high-pressure (HP)-ultrahigh-pressure (UHP) metamorphic belt as the product of subduction-collision between the northern China plate and Yangtze plate underwent a process of formation and evolution from deep subduction→exhumation→extension→slow uplift. The study of its modern tectonic stress field has great significance for a complete understanding of the process of formation and evolution of the HP-UHP metamorphic belt, especially the exhumation and uplift of the belt. Wellbore breakouts are the most visual tectonic phenomenon which can characterize the modern stress action in the main borehole of Chinese Continental Scientific Drilling (CCSD). Ultrasonic borehole televiewer reflection wave data show that wellbore breakouts began to occur at 1216 m depth of the main borehole. A total of 143 borehole televiewer images were collected from 1216 to 5118 m depth (hole completion depth). After data processing and statistics, the average azimuth of the long dimension of the wellbore breakout obtained was 319.5° ± 3.5°, indicating that the average azimuth of the maximum horizontal principal stress causing wellbore breakout initiation was 49.5° ± 3.5°. The maximum and minimum horizontal principal stress values at 52 depths in the interval of 1269 to 5047 m were estimated using the elements of wellbore shapes (wellbore depth and width), combined with the cohesive strength and internal frictional angle of the rock obtained by rock mechanical tests on samples, and the static load stresses at corresponding depths were calculated according to the rock density logging data. The results indicate that: the maximum and minimum horizontal principal stresses are 41.4 and 25.3 MPa at 1269 m depth respectively and 164.7 and 122 MPa at 5047 m depth respectively; the maximum vertical stress is 141.3 MPa at 5047 m depth with a density of 2.8 g/cm3; the in-situ stresses increase nearly linearly with depth. The magnitudes and directions of the three principal stresses reflect that the regional stress field around the CCSD main borehole is mainly in a strike-slip state, which is consistent with the basic features of the regional stress field determined using other methods.  相似文献   

13.
Two deep scientific boreholes, named Poigny 701 and Sainte-Colombe 702, located in the Paris Basin near Provins (Seine-et-Marne, France), recovered a complete Upper Cretaceous chalk succession. A correlation between the boreholes lithostratigraphy, reflexion seismic profiles and diagenetic patterns shows that major velocity variations measured in the seismic reflection profiles correspond to dolomitized chalk intervals. Dolomitisations occurred during early and burial diagenesis. The understanding of these complex diagenetic events has an important economic consequence on the static correction of the chalk formation in the Paris Basin. Optimisation of petroleum prospecting below chalk cover is thus possible. The chalk series of the 701 and 702 boreholes range from the Cenomanian to the upper Campanian. In this succession, micrite has a primarily biogenic origin; it consists of pelagic organisms, indicative of warm seawater with values around 25°C. Several hiatuses occur in the 701 borehole. These hiatuses indicate the existence of particular hydrodynamic conditions. Deep-water channels were locally recognised in the Paris Basin as in Normandy and Picardy. In the 702 borehole, massive dolomitisation affected the upper meters of sediment below the sea floor. This early phase of massive dolomitisation was induced by slow circulation of a magnesium-rich seawater mass, along the seawater/sediment interface. Thus, this area was a zone of intense marine circulation between the North-West infralittoral and the South-West bathyal domains, across the London-Paris Basin. Magnesium-rich seawater had as origin the recrystallisation of the biogenic peri-plateform carbonates. During both dolomitisation and dissolution of the calcite matrix of the massive dolomite, the calcite had cemented chalk around the massive dolomite body. After deposition, the chalk series was progressively compacted and lithified by burial calcite cement. During the late Campanian-Maastrichtian, the burial compaction of the chalk and thermal gradient reached their maximum, as compressive stresses from the Pyrenean orogenesis affected the Paris Basin. At this time, compaction of the massive dolomite induced the expulsion of magnesian-rich fluids into the underlying already compacted chalk series. In 702 borehole, a diffuse dolomitisation then affected strongly underlying the chalk series. In 701 borehole, this diffuse dolomitisation affected slightly the lower half of the chalk series. Laterally, dolomitisation decreases gradually and affected a only smaller thickness of the chalk series, disappearing laterally. During the progressive emergence of the Paris Basin, from the Paleogene to the Quaternary, the chalk series were partially invaded by continental fresh water. Thus partial dedolomitisation affected the massive dolomite, whereas total dedolomitisation affected only the upper first meters of it.Manuscrit reçu le 20 juin 2003 Révision acceptée le 9 septembre 2004  相似文献   

14.
 With this paper we present a first attempt to combine the direct results on lithology, composition and age dating in the boreholes BDP-93, BDP-96 and BDP-97 with geological and seismic data from the areas where those sections were drilled. The sedimentary environments represented by the BDP boreholes are markedly different and possess characteristic lithological features. The results of the deep drilling provide the essential means for testing numerous age models used in geological reconstructions of the Lake Baikal rifting dynamics. Neither the basin-wide unconformity interpreted from seismic data, nor the interpreted change from shallow-water to deep-water facies at the boundary of the seismic stratigraphic complexes were found in the BDP-96 boreholes on Academician Ridge. Also, lithology does not support the proposed reconstructions of intense lake level fluctuations and transgressions during the Pliocene at Academician Ridge. The continuous deep-water hemipelagic sedimentation at Academician Ridge has existed for the past 5 Ma. The beginning of an intense rifting phase of the Neobaikalian sub-stage and related drastic changes in sedimentation processes were interpreted on seismic sections as the basin-wide unconformity B10. Different age estimates for this boundary ranged from Late Pliocene (3.5 Ma) to Plio-Pleistocene boundary. As shown by BDP-96 borehole, B10 is associated with a lithological change from diatomaceous ooze to dense silty clay and not with an erosional contact. The new age for this boundary in BDP-96 is approximately 2.5 Ma. This new age constraint suggests that the upper sedimentary strata of Northern Baikal (1.5–1.7 km thick) have formed during the past 2.5 Ma with average sedimentation rates of 60–70 cm/ka. The BDP-93 boreholes at Buguldeika suggest that uplift in Primorsky Range took place prior to 1.07–1.31 Ma, a date which exceeds the age of previous geological models. Received: 12 March 1999 / Accepted: 10 February 2000  相似文献   

15.
《Tectonophysics》1987,135(4):277-288
The regional stress field and its local variation were determined for the northern part of central Switzerland (Fig. 1) by using overcoring techniques (doorstopper, triaxial strain cell) and observations of breakouts in deep boreholes. The results are compared with fault plane solutions of earthquakes and with the orientation of horizontal stylolites.In the northern part of central Switzerland the NW-SE-orientation of the maximum horizontal stress (SH) which is characteristic for Central Europe was observed only in the crystalline basement. In the Folded Jura and south of it in one well the greatest principal horizontal stress above the Triassic decollement horizon is oriented approximately in a N-S to NNE-SSW direction.This direction persists into the western Tabular Jura and the southernmost Rhine Graben. Only in the eastern part of the Tabular Jura the greatest principal horizontal stress shows a NNW-SSE to NW-SE orientation. Comparison of the near surface stress field as determined by in situ stress measurements and borehole breakouts with the directions of horizontal stylolites generated during the evolution of the Folded Jura, indicates that the orientation of the recent stress field near the earth's surface is the same as that which prevailed during the Upper Miocene to Lower Pliocene.The central part of northern Switzerland is therefore the first area in Central Europe where it is possible to demonstrate that the near surface stress field is decoupled from that in the crystalline basement. The difference in the orientation of the greatest principal horizontal stress is about 50°.  相似文献   

16.
地下洞室围岩脆性破坏时的应力特征研究   总被引:1,自引:0,他引:1  
在高应力作用下,岩爆、钻孔崩落、片帮都是地下空间硬脆围岩中常见的破坏现象,这三类现象本质上均可归于完整岩体的脆性破坏,它们分别反映了高应力作用下完整岩体不同的破坏程度。通过对前人关于岩爆判据、钻孔崩落判据和片帮应力强度比判据研究成果的类比分析可知,这些脆性破坏现象在破坏时具备相同的应力背景条件。脆性破坏的应力条件可以用地下空间周边切向最大应力与岩石单轴抗压强度之比( / )或者工程区最大主应力与岩石单轴抗压强度之比( / )来描述,两种指标本质上反映了相同的应力背景条件。对于 / , / = 0.4 ± 0.1是发生脆性破坏的应力临界条件;对于 / , / = 0.15 ± 0.05是发生脆性破坏的应力临界条件。大量的工程实例和基于Hoek-Brown强度准则的力学分析也证明了这一背景条件的正确性。这里两种指标都取了一个范围,主要是由于不同的岩体分级、岩性和工程地质条件会对指标的界定产生较为显著的影响。  相似文献   

17.
Summary   The feasibility and safety of a mining project or the choice among alternative mining methods could depend on the joint densities and orientations within the rock mass. The accurate determination of the orientation of all joints is technically difficult and often economically unrealistic. This study presents a new approach in classifying joints found in exploration boreholes as joint sets, whose statistical distribution is determined from a few hundred oriented joints in boreholes. Each non-oriented joint is classified as belonging to a set based on its “a posteriori” probability of membership in a Bayesian framework. The theoretical rate of success of the classification can be computed for each possible borehole orientation and plotted on a stereonet to determine the optimal orientation of new boreholes. The performance and limitations of this approach are investigated. An application example at the Mont Porphyre's large scale block-caving project at Gaspé Mines, Quebec, Canada, is studied.  相似文献   

18.
Borehole failure under anisotropic stresses in a sandstone is analyze numerically for various borehole sizes using a nonlinear elastic–plastic constitutive model for a Cosserat continuum. Borehole failure is identified as macroscopic failure of the borehole through the development of shear bands and breakouts. The results compare well both qualitatively and quantitatively with experimental results from polyaxial tests on Red Wildmoor sandstone. They show that the hole size effect of the borehole failure strength is independent of the far‐field stress anisotropy and follows a ? power law of the hole size. A similar scale effect equation with a ? power law is proposed for the scale effect of the maximum plastic shear strain at failure. This equation can be useful for better predicting hole‐size‐dependent failure with standard codes based on classical continua. The effect of stress anisotropy on the borehole failure stress is found to be independent of the hole size. The failure stress decreases linearly to 40% as the stress anisotropy increases. However, the maximum plastic shear strain at failure is stress anisotropy independent and therefore the critical plastic shear strain for failure is only hole‐size dependent. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Temperature was monitored in two boreholes in Kamchatka (Russia) in years 2001–2003. Ten-min reading (sampling) interval was selected for the first half-year run followed by shorter (12 days) experiment with 5-s reading interval. A similar experiment was repeated later in the test borehole Sporilov (Prague, Czech Republic), where four temperature–time series were performed with reading intervals varying from 1 to 20 s. All temperature–time series (except the record from the bottom of the hole) displayed intermittent, non-periodic oscillations of temperature of up to several hundredths of degree with sharp gradients and large fluctuations over all observed time intervals. No such oscillation was detected at the bottom of the hole. The spectral analysis revealed a high level of stochasticity in the measured signal. Calculated spectra showed “band-pass” behavior without any definite peaks, which might characterize certain periodicity. Local growth of the second moment technique revealed the presence of at least two distinct temperature-forming processes. One of them can be related to heat transfer in the structurally and compositionally complex subsurface. The second process, which presents the bulk of the measured signal, probably reflects certain intra-hole convection. We hypothesized that the oscillatory regime of such convection is responsible for the stochastic nature of measured temperatures. Results of numerical modeling describing the fluctuation of water-cells in a vertical slot support the idea of thermally unstable water column in a hole, the instability of which produces a complex oscillation system. Model solutions and their discussion is presented in Part II of this work.  相似文献   

20.
The mechanical behavior and permeability of the Tuffeau de Maastricht calcarenite were studied. Compactions bands were found to form in the “transitional” regime between brittle faulting and cataclastic flow. In order to predict the formation of compaction bands, bifurcation analysis was applied on a model developed by Lade and Kim. The numerical results proved to be in good agreement with the experimental ones where the localization point was identified to be the onset of shear-enhanced compaction (a threshold in differential stress after which significant reduction of porosity is induced). Before the onset of shear-enhanced compaction, permeability was primarily controlled by the effective mean stress, independent of the deviatoric stresses. With the onset of shear-enhanced compaction, however, coupling of the deviatoric and hydrostatic stresses induced considerable permeability and porosity reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号