首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a numerical approach is proposed for the construction of fragility curves for shallow metro tunnels in alluvial deposits, when subjected to transversal seismic loading. The response of the tunnel is calculated under quasi static conditions applying the induced seismic ground deformations which are calculated through 1D equivalent linear analysis for an increasing level of seismic intensity. The results of the present numerical analyses are compared with selected closed form solutions, highlighting the limitations of the latter, while indicative full dynamic analysis are performed in order to validate the results of the quasi-static method. The proposed approach allows the evaluation of new fragility curves considering the distinctive features of the tunnel geometries and strength characteristics, the input motion and the soil properties as well as the associated uncertainties. The comparison between the new fragility curves and the existing empirical ones highlights the important role of the local soil conditions, which is not adequately taken into account in the empirical curves.  相似文献   

2.
Hydraulic/partitioning tracer tomography (HPTT) was recently developed by Yeh and Zhu [Yeh T-CJ, Zhu J. Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones, Water Resour Res 2007;43:W06435. doi:10.1029/2006WR004877.] for estimating spatial distribution of dense nonaqueous phase liquids (DNAPLs) in the subsurface. Since discrete tracer concentration data are directly utilized for the estimation of DNAPLs, this approach solves the hyperbolic convection–dispersion equation. Solution to the convection–dispersion equation however demands fine temporal and spatial discretization, resulting in high computational cost for an HPTT analysis. In this work, we use temporal moments of tracer breakthrough curves instead of discrete concentration data to estimate DNAPL distribution. This approach solves time independent partial differential equations of the temporal moments, and therefore avoids solving the convection–dispersion equation using a time marching scheme, resulting in a dramatic reduction of computational cost. To reduce numerical oscillations associated with convection dominated transport problems such as in inter-well tracer tests, the approach uses a finite element solver adopting the streamline upwind Petrov–Galerkin method to calculate moments and sensitivities. We test the temporal moment approach through numerical simulations. Comparing the computational costs between utilizing moments and discrete concentrations, we find that temporal moments significantly reduce the computation time. We also find that tracer moment data collected through a tomographic survey alone are able to yield reasonable estimates of hydraulic conductivity, as indicated by a correlation of 0.588 between estimated and true hydraulic conductivity fields in the synthetic case study.  相似文献   

3.
The construction of flow-duration curves is a fundamental task for several activities related to water resources management. The scarcity of observed streamflow data is a diffuse problem in the real world, and flow-duration curves often need to be constructed for ungauged basins. We address this problem by regionalising the stochastic index-flow model of flow-duration curves proposed by Castellarin et al. [Castellarin A, Vogel RM, Brath A. A stochastic index flow model of flow-duration curves. Water Resour Res 2004;40:W03104. doi:10.1029/2003WR002524]. The index-flow model differs from any other stochastic model of flow-duration curves proposed in the literature because it can be used for deriving long-term as well as annual flow-duration curves. The former are constructed on the basis of several years of streamflow data, whereas the latter refer to a given water or calendar year (a typical hydrologic year or a particularly wet or dry year). We apply an extensive cross-validation procedure to quantify the uncertainty of the proposed regional model and to compare it with the uncertainty of traditional regional models of flow-duration curves proposed in the literature. The results of the study indicate that the regional index-flow model is as reliable as or more reliable than traditional regional models for estimating long-term flow-duration curves. Also, the proposed model is more versatile than previous regional models as it can be used for estimating long-term and annual flow-duration curves and for reproducing the variance of annual flow-duration curves.  相似文献   

4.
The relationships between two-dimensional image analysis of soil thin-sections and tracer breakthrough curves has been studied for a silty clay loam brown earth soil under saturated conditions. Initial tracer breakthrough is well in advance of one pore volume. Discrepancies between Quantimet image analysis and breakthrough curve characterization were related by inference to the role of infrequently occurring macropores not necessarily sampled on the two-dimensional images. A fundamental difficulty found in the use of image analysis is the uncertain nature of the relationship between the two-dimensional image and the three-dimensional pore system. Caution is needed in using Quantimet image analysis to describe gross properties of the three-dimensional pore system.  相似文献   

5.
The hydrological influence of fault zones in tectonic areas is usually difficult to depict from field data. Numerical simulation allows representation of such flow systems and an estimation of flow lines and rates. This paper reports on simulations of the groundwater flow in a range‐and‐basin area affected by a regional fault zone, which may drain or recharge an overlaying alluvial aquifer. Different hydraulic conductivity values for the range rocks, the fault‐zone, and the sedimentary infill of the basin are considered, as well as different fault‐zone widths and boundary conditions. Results show that upward and downward fluxes develop in the upper part of the fault zone, controlled by the action of the alluvial aquifer, influencing the recharge of the sedimentary basin. This paper shows the hydrological efficiency of fault zones as preferential flow; it also analyses the constraints that determine groundwater recharge to the surrounding basins. These results contribute to the understanding of hydrogeological dynamics in tectonic areas. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This study utilises the equivalent granular state parameter, ψ, as a key parameter for studying static and cyclic instability and their linkage. ψ can be considered as a generalisation of the state parameter as first proposed by Been and Jefferies so that the influence of fines content in addition to stress and density state can be captured. Test results presented in this study conclusively showed that ψ at the start of undrained shearing and ηIS, the stress ratio at onset of static instability, can be described by a single relationship irrespective of fines content for both compression and extension shearing. This single relationship is referred as instability curve. However, the instability curve in extension shearing is different from that of compression. In this paper, the capacity of the instability curve in predicting triggering of cyclic instability was evaluated experimentally. An extensive series of undrained one-way (compression) and non-symmetric two-way cyclic triaxial tests, in addition to monotonic triaxial tests in both compression and extension were conducted for this evaluation. Furthermore, a published database for Hokksund sand with fines was also used. Test results show that cyclic instability was triggered shortly after the cyclic effective stress path crossed the estimated ηIS-zone(s) as obtained from instability curve(s) irrespective of whether instability occurs in the compression or extension side.  相似文献   

7.
This work studies costs and benefits of utilizing local-grid refinement (LGR) as implemented in MODFLOW-LGR to simulate groundwater flow in a buried tunnel valley interacting with a regional aquifer. Two alternative LGR methods were used: the shared-node (SN) method and the ghost-node (GN) method. To conserve flows the SN method requires correction of sources and sinks in cells at the refined/coarse-grid interface. We found that the optimal correction method is case dependent and difficult to identify in practice. However, the results showed little difference and suggest that identifying the optimal method was of minor importance in our case. The GN method does not require corrections at the models' interface, and it uses a simpler head interpolation scheme than the SN method. The simpler scheme is faster but less accurate so that more iterations may be necessary. However, the GN method solved our flow problem more efficiently than the SN method. The MODFLOW-LGR results were compared with the results obtained using a globally coarse (GC) grid. The LGR simulations required one to two orders of magnitude longer run times than the GC model. However, the improvements of the numerical resolution around the buried valley substantially increased the accuracy of simulated heads and flows compared with the GC simulation. Accuracy further increased locally around the valley flanks when improving the geological resolution using the refined grid. Finally, comparing MODFLOW-LGR simulation with a globally refined (GR) grid showed that the refinement proportion of the model should not exceed 10% to 15% in order to secure method efficiency.  相似文献   

8.
Advances in seismic tomography lead to increasingly detailed models of the Earth that are often represented on irregular and resolution-adaptive grids. To take full advantage of such models, their assessment must progress beyond a purely visual analysis, and tools must become available for their quantitative comparison.We present a method for the spectral analysis and comparison of multi-scale tomographic models. The method is applicable to irregular grids on the sphere, and is more efficient that filters based on spherical-harmonic expansions or convolution integrals. The combination of a spherical spline representation of tomographic information with Abel-Poisson scaling enables the construction of targetted spatial filters by solving a nonlinear inverse problem for appropriate weighting coefficients. This can be readily achieved with a simulated annealing approach for the limited number of weights. Once suitable filters have been generated they can be employed to address issues such as the patterns of small-scale heterogeneity, transitional structures and comparison of independent models from a region.We illustrate our method in a series of applications where we use different bandpass filters to detect differences in the distribution of small-scale heterogeneity beneath central and eastern Europe, and to compare several recent tomographic models of the Australian region.  相似文献   

9.
The rise of an initially horizontal, buoyant cylinder of fluid through a denser fluid at low Reynolds number is used to look at the ascent of strongly tilted mantle plumes through the mantle. Such ascents are characterized by (1) the growth of instabilities and (2) the development of a thermal wake downstream. Three-dimensional numerical experiments were carried out to examine these features. An hybrid particle-in-cell finite element method was used to look at the rise of non-diffusing cylinders and, a standard finite element method was used to look at the diffusing case. First the experiments show that the timescale of the fastest growing instability vary with the Rayleigh number and the viscosity ratio. In particular the growth rate decreases as the Rayleigh number decreases, in agreement with our analysis of the laboratory experiments of Kerr et al. (2008). Second the experiments show that the length of the thermal wake increases with the Rayleigh number but the change in viscosity has almost no influence on the wake length. Applied to strongly tilted mantle plumes we conclude that such plumes cannot be unstable given the plume timescales. We also discuss the application of this conclusion to weakly tilted plumes. Besides, this study allows to predict that mantle plumes are unlikely to have developed a significant thermal wake by the time they reach the surface. Finally, the resolution that is required to allow for the growth of mantle plume tails by combined diffusion and thermal entrainment is shown to represent a challenge for the large scale mantle convection simulations.  相似文献   

10.
Stream depletion in alluvial valleys using the SDF semianalytical model   总被引:1,自引:1,他引:0  
A semianalytical method commonly used for quantifying stream depletion caused by ground water pumping was reviewed for applicability in narrow alluvial aquifers. This stream depletion factor (SDF) method is based on the analytic Glover model, but uses a numerical model-derived input parameter, called the SDF, to partly account for mathematically nonideal conditions such as variable transmissivity and nearby aquifer boundaries. Using the SDF can improve and simplify depletion estimates. However, the method's approximations introduce error that increases with proximity to the impermeable aquifer boundary. This article reviews the history of the method and its assumptions. New stream depletion response curves are presented as functions of well position within bounded aquifers. A simple modification to modeled SDF values is proposed that allows the impermeable boundary to be accounted for with image wells, but without overaccounting for boundary effects that are already reflected in modeled SDFs. It is shown that SDFs for locations closer to the river than to the aquifer boundary do not reflect impermeable-boundary effects, and thus need no modification, and boundary effects in the other portion of the aquifer follow a predictable removable pattern. This method is verified by comparing response curves using modified SDFs with response curves from an extensively calibrated numerical model of a managed ground water recharge site. The modification improves SDF-based stream depletion estimates in bounded aquifers while still benefiting from the additional information contained in SDF maps and retaining their value as standardized references for water rights administration.  相似文献   

11.
Tectonics and climate are usually seen as the main controlling factors of denudation rates, which seem to rise with the tectonic activity and to decrease when the climate becomes drier. However, the low denudation rates observed in semi‐arid to arid contexts are generally measured on orogenic plateaus where the respective influence of the flat relief and the dry climate cannot really be unravelled. The Chinese Tian Shan was chosen as a case study. In the northern piedmont of this mountain range, a series of well‐preserved Quaternary alluvial fans offer the opportunity to perform a mass balance study at the scale of several catchment areas and several hundreds of thousands of years. Based on a geometrical reconstruction of these fans, the volumes of sediments exported out of 10 drainage basins during the Middle–Late Pleistocene (from ~300 to ~12 kyr) and the Holocene (from ~12 kyr to present) have been estimated. From these volumes, an average denudation rate of ~135 m/Myr was determined in the Tian Shan Range for the last 300 kyr. In agreement with other mass balances performed in the same area, the typical denudation intensity of the northern Tian Shan is thus of a few hundred meters per million years at most, regardless of the space and time scales considered. From a comparison with denudation rates in other mountain ranges throughout the world, we suggest that a dry climate can dramatically limit the denudation intensity even in active orogenic systems with a high topographic gradient like the Tian Shan. As a result, the time required to reach equilibrium between denudation and rock uplift in these systems could be extremely long (i.e. of more than several million years). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Sediment waves or pulses can form in rivers following variations in input from landslides, debris flows, and other sources. The question as to how rivers cope with such sediment inputs is of considerable practical interest. Experimental, numerical and field evidence assembled by the authors suggests that in mountain gravel‐bed streams, such pulses show relatively little translation, instead mostly dispersing in place. This research has recently been the subject of discussion. In particular it has been suggested that (a) the equations of flow and sediment mass balance used in the analyses, and in most other morphodynamic analyses, require correction; (b) the dominance of dispersion appears only because the hyperbolic nature of the governing equations has not been adequately considered; and (c) the sediment transport equation used in the analyses does not lead to generalizable results. Here we suggest that (a) the relations for mass balance do not require the indicated correction; (b) the hyperbolic nature of the governing equations does not preclude the result of dispersion dominating translation in mountain streams; and (c) the general behaviour of an appropriate hyperbolic model of sediment waves (pulses) includes the relative roles of dispersion and translation, and is not affected by the precise choice of a sediment transport relation (as long as the choice is reasonable for the case in question). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Summary The propagation of Rayleigh waves in three dimensions in alluvial soils which do not behave like ordinary isotropic elastic solids have been discussed in this paper. The frequency equation has been solved for different soil constants.  相似文献   

14.
利用朝鲜半岛东南部地区浅层地应力数据,给出区域现今应力状态的分布特征及其与断层分布的关系.地应力数据表明,区域最大主压应力呈ENE-WSW到NE-SW向,这与地震震源机制解及欧亚板块东部构造应力方向的一阶模式一致.或许是受到断层的影响,现今应力张量在大小和方向上表现出不均匀性.区域水平主应力变化较为一致,而垂向则变化较...  相似文献   

15.
Criss RE  Criss EM 《Ground water》2012,50(4):571-577
Temporal variations in the head of wells in the alluvial aquifer along the lower Missouri River are accurately simulated by summation of linear differential terms involving daily variations in river stage and effective precipitation. Scaling parameters were optimized using a fourth order Adams-Bashforth-Moulton method, providing predictions for head that are typically accurate within ±1.5 feet (0.5 m) over intervals of 1 to 15 years. Parameter magnitudes represent the product of realistic aquifer properties and geometric factors.  相似文献   

16.
Abstract

In dealing with the transient sediment transport problem, the commonly used uncoupled model may not be suitable. The uncoupling technique is intended to separate the physical coupling phenomenon of water flow and sediment transport into two independent processes. Very often, as a result, severe numerical oscillation and solution instability problems appear in the simulation of transient sediment transport in alluvial channels. The coupled model, which simultaneously solves water flow continuity, momentum and sediment continuity equations, gives fewer numerical oscillation and solution instability problems. In this article, a coupled model using a matrix double-sweep method to solve the system of nonlinear algebraic equations has been developed. Several test runs designed on the basis of a schematic model have been performed. The numerical oscillation and solution instability problems have been investigated through a comparison with those obtained from an uncoupled model. Based on the proposed case studies, it can be concluded that, for transient bed evolution, the performance of the coupled model is much better than that of the uncoupled model. The numerical oscillation is reduced and the solution is more stable. This newly developed coupled model was also applied to the Cho-Shui River in Taiwan. This application study implied that the effect of the peaky flood wave propagation on the bed evolution could be simulated better by the coupled model than by the uncoupled model.  相似文献   

17.
Field and laboratory measurements have shown distinct characteristics of bed sediment waves under differing conditions, whilst their theoretical interpretation has emerged to be equivocal. This note aims to clarify the interpretation of evolution of bed material waves. The complete set of governing equations for the flow–sediment–morphology system is deduced to demonstrate its universally hyperbolic nature, irrespective of the sediment transport functions implemented to close the equations. The hyperbolic nature can admit not only attenuating bed material waves, but also shock‐like waves that are not unusual in the real world. It is suggested that the theory of dispersion/diffusion is not universally appropriate for evolution of bed material waves. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
In one‐dimensional mathematical models of ?uvial ?ow, sediment transport and morphological evolution, the governing equations based on mass and momentum conservation laws constitute a hyperbolic system. Succinctly, the hyperbolic nature excludes dispersion or diffusion operators, which is well known in the context of differential equations. There is no doubt that the so‐called ‘dispersion’ argument for bed material wave evolution is questionable, as we have explicitly asserted. Surprisingly, in a recent communication, the authors of the ‘dispersion’ argument suggest that dispersion is not precluded in hyperbolic systems. We provide herein further perspectives to help explain that the dispersion argument is neither appropriate nor necessary for interpreting bed material wave evolution. Also the continuity equations involved are addressed to prompt wider understanding of their signi?cance. In particular, the continuity equation of the water–sediment mixture proposed by the authors of the ‘dispersion’ argument is proved to be incorrect, and inevitably their reasoning based on it is problematic. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A model of channel response in disturbed alluvial channels   总被引:2,自引:0,他引:2  
Dredging and straightening of alluvial channels between 1959 and 1978 in West Tennessee caused a series of morphologic changes along modified reaches and tributary streams. Degradation occurred for 10 to 15 years at sites upstream of the area of maximum disturbance and lowered bed-levels by as much as 6·1 m. Following degradation, reaches upstream of the area of maximum disturbance experienced a secondary aggradation phase in response to excessive incision and gradient reduction. Aggradation downstream of the area of maximum disturbance reached 0·12 m per year with the greatest rates occurring near the stream mouths. The adjustment of channel geometry and phases of channel evolution are characterized by six process-oriented stages of morphologic development—premodified, constructed, degradation, threshold, aggradation, and restabilization. Down-cutting and toe removal during the degradation stage causes bank failure by mass wasting when the critical height and angle of the bank material is exceeded (threshold stage). Channel widening continues through the aggradation stage as the ‘slough line’ develops as an initial site of lower-bank stability. The bank profile develops three dynamic elements (1) vertical face (70° to 90°), (2) upper bank (25° to 50°), and (3) slough line (20° to 25°). Alternate channel bars form during the restabilization stage and represent incipient meandering of the channel.  相似文献   

20.
Abstract

Over-exploitation of an alluvial aquifer in India has occurred since tubewells were drilled into deeper aquifers. Field information concerning-the fall in both the water table and the piezometric heads in the deeper aquifers has been examined and a numerical model has been developed to represent a heavily exploited area. Predictions using the model suggest that the annual declines in the water table and the piezometric heads are accelerating as the water table moves into a zone having a lower specific yield. Careful monitoring of the movement of the water table is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号