首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Sedimentary cycles recorded in young sediments are often attributed to fluctuations of the Earth's climate on a 104−106-year scale which in turn is governed by periodic variations in solar insolation linked to orbital (Milankovitch) parameters. A spectacular example of cyclic stratal patterns in ancient deposits is the Middle Triassic Latemar carbonate platform (W Dolomites, N Italy). Based on spectral analyses from previous studies, a superimposition of precession (∼20 ka) and eccentricity (∼100 ka) controlled sea-level fluctuations has been suggested to account for the stacking hierarchy at Latemar, with ∼20 ka being assigned to each highest-order depositional cycle. Zircon U–Pb isotopic ages from volcanic-ash layers within the cyclic succession, corroborated by biostratigraphic constraints, suggest that the average time interval for every individual cycle is significantly smaller than the shortest Milankovitch period and therefore challenge previously published interpretations relating distinct spectral peaks to the above mentioned hierarchy. However, our new spectral data indicate that cyclicities resembling Milankovitch characteristics might exist, but on an entirely different scale. Our findings show that frequency spectra should only be interpreted in combination with robust age control. They also encourage the search for complementary mechanisms controlling carbonate deposition.  相似文献   

2.
Milankovitch theory posits that Earth's orbital cycles were the primary forcing of Pleistocene ice-age cycles through their strong influence on summer insolation at high latitudes. Accordingly, Milankovitch theory predicts ice volume should vary at both obliquity and precessional periods. However, early Pleistocene global ice volume varied mainly at the obliquity period with weak variability at the precessional period suggesting that Milankovitch theory is not sufficient to explain the ice-age cycles. Here we describe the results from a series of coupled ocean-atmosphere general circulation model experiments, using the Fast Ocean Atmosphere Model, that systematically investigate the influence of precession and obliquity on continental snowfall and potential ablation.Our model results identify three factors that magnify the influence of obliquity forcing on the global ice volume: First, high-latitude snowfall variability is dominated by changes in Earth's axial tilt. Second, hemispheric changes in net snowfall due to Earth's precession are out-of-phase, and largely cancel to produce a very small global snowfall change. Third, snowmelt variability over Antarctica responds greatly to changes in obliquity that intensify accumulation over obliquity cycle. We discuss the implications of these factors for existing hypotheses that account for the variability in the ice volume record.  相似文献   

3.
Metre‐scale cycles are a common feature in Precambrian and Phanerozoic shallow water carbonate successions, and astronomically forced changes in sea‐level (Milankovitch cycles) may have been an important driver controlling their deposition. Nevertheless, the degree to which potentially low amplitude astronomically paced sea‐level oscillations may have controlled carbonate accumulation in deep time is unclear. In this study, a stochastic model of carbonate accumulation demonstrates how metre‐scale exposure‐bound sequences can be generated under conditions of random sea‐level change. These sequences have characteristic durations close to Milankovitch cycles, despite the absence of any astronomical control on their formation. Metre‐scale sequences with sub‐Milankovitch (millennial‐scale) durations can also be generated by the model, potentially shedding light on the origin of sub‐Milankovitch sequences such as those recorded on the Middle Triassic Latemar platform of Northern Italy. Sensitivity tests demonstrate how shallow water carbonates may be very sensitive to weak (i.e. low amplitude) astronomically forced sea‐level oscillations. Notably, strong statistical evidence (P < 0·01) for astronomical cycles can be preserved in modelled successions even when astronomical forcing contributes <1% of the sea‐level variance on million year timescales. Taken together, metre‐scale cycles with Milankovitch‐scale durations in ancient carbonate successions may reveal very little about the amplitude, or even the existence, of astronomical forcing as a sea‐level driver.  相似文献   

4.
Four hierarchical cyclothems, superbundlesets, bundlesets, bundles and laminae, have been identified from the Devonian Frasnian-Famennian carbonate strata in Guangxi, South China. Their hierarchical structures, ratio relationships and sequence in conodont zones are continuous and stable and can be traced across different facies zones and sedimentary basins. Our data show that hierarchically organized superbundlesets, bundlesets, bundles and laminae correspond to the long eccentricity, eccentricity, obliquity or precession and sub-Milankovitch cycles respectively. Their periods were 400,000, 100,000, 33,333, 16,667 and 8,000-17,000 a, respectively. The ratios of long eccentricity to eccentricity, eccentricity to obliquity, and eccentricity to precession in the Devonian are 1:4, 1:3 and 1:6 respectively. Using these hierarchical Milankovitch cyclothems, chronostratigraphical division and correlation can be realized at a resolution of 100 ka or 10 ka at the Frasnian-Famennian transition. The time intervals  相似文献   

5.
认识偏心率周期的地层古气候意义   总被引:15,自引:0,他引:15  
李前裕  田军  汪品先 《地球科学》2005,30(5):519-528
介绍了偏心率周期在地层和古气候研究方面的新发展.现有地球轨道模式对250Ma以来的轨道运算误差能控制在0.2%之内, 使基于偏心率周期来划分地层年代成为可能.新的国际标准地层年代表以405ka长偏心率周期为基础来划分主要地层界线.新生代将包括E1-E162偏心率长周期, 底界年龄(65.5±0.3) Ma.这一地层年代表的建立, 标志着轨道地层学时代的到来.偏心率的100ka短周期和405ka长周期在诸多地质记录中都有反映, 特别是来自深海钻孔的物理化学古气候指标.很多古气候重大事件往往发生在偏心率周期的弱振幅时期, 表明弱振幅时期易受其他因素的干扰影响, 这些因素包括碳储库、冰盖和海平面变化、电磁场, 以及区域构造重组等等.越来越多的研究发现碳同位素在偏心率周期上与地球轨道驱动相关, 且常领先于氧同位素的变化, 表明热带碳循环过程是影响全球气候变化的关键因素之一.   相似文献   

6.
The influence of astronomically driven short‐term climate change (Milankovitch cycles) on deep‐marine turbidite systems is not well‐known, particularly in the case of long‐term greenhouse intervals with no significant glacio‐eustatic sea‐level fluctuations. This study, carried out at the Gorrondatxe section (Global Stratotype Section and Point for the base of the Lutetian Stage in the western Pyrenees), demonstrates that the characteristics of lower–middle Eocene fan‐fringe/basin‐plain turbiditic and pelagic deposits varied in line with orbitally forced fluctuations in seasonal rainfall, runoff and terrigenous input to the sea. Reduced turbiditic activity during the formation of pelagic limy precessional hemicouplets indicates subdued seasonality and low terrigenous input. Conversely, turbidity currents were more frequent, had greater energy and were more voluminous during the formation of pelagic marly hemicouplets, suggesting precessional hemicycles with strong seasonality and heavy summer rainfall. These differences at precessional time scales were enhanced at maximum eccentricity because turbiditic activity was most intense when boreal summer occurred at perihelion (i.e. maximum seasonality) but declined when it occurred at aphelion. At minimum eccentricity, with relatively weak seasonality throughout one (or more than one) precessional cycle (>21 kyr), turbiditic activity remained relatively low. The pattern observed at the Gorrondatxe fan‐fringe/basin‐plain succession implies that the orbitally forced environmental changes must also have affected the inner and middle parts of the submarine fan. The astronomical influence on terrigenous sediment input also determined the changing characteristics of the pelagic sedimentation. Thus, terrigenous sediment contribution to pelagic sedimentation fluctuated by a factor of five during opposite precessional situations at maximum eccentricity, whereas there was almost no fluctuation at minimum eccentricity.  相似文献   

7.
Well‐exposed Mesozoic sections of the Bahama‐like Adriatic Platform along the Dalmatian coast (southern Croatia) reveal the detailed stacking patterns of cyclic facies within the rapidly subsiding Late Jurassic (Tithonian) shallow platform‐interior (over 750 m thick, ca 5–6 Myr duration). Facies within parasequences include dasyclad‐oncoid mudstone‐wackestone‐floatstone and skeletal‐peloid wackestone‐packstone (shallow lagoon), intraclast‐peloid packstone and grainstone (shoal), radial‐ooid grainstone (hypersaline shallow subtidal/intertidal shoals and ponds), lime mudstone (restricted lagoon), fenestral carbonates and microbial laminites (tidal flat). Parasequences in the overall transgressive Lower Tithonian sections are 1–4·5 m thick, and dominated by subtidal facies, some of which are capped by very shallow‐water grainstone‐packstone or restricted lime mudstone; laminated tidal caps become common only towards the interior of the platform. Parasequences in the regressive Upper Tithonian are dominated by peritidal facies with distinctive basal oolite units and well‐developed laminate caps. Maximum water depths of facies within parasequences (estimated from stratigraphic distance of the facies to the base of the tidal flat units capping parasequences) were generally <4 m, and facies show strongly overlapping depth ranges suggesting facies mosaics. Parasequences were formed by precessional (20 kyr) orbital forcing and form parasequence sets of 100 and 400 kyr eccentricity bundles. Parasequences are arranged in third‐order sequences that lack significant bounding disconformities, and are evident on accommodation (Fischer) plots of cumulative departure from average cycle thickness plotted against cycle number or stratigraphic position. Modelling suggests that precessional sea‐level changes were small (several metres) as were eccentricity sea‐level changes (or precessional sea‐level changes modulated by eccentricity), supporting a global, hot greenhouse climate for the Late Jurassic (Tithonian) within the overall ‘cool’ mode of the Middle Jurassic to Early Cretaceous.  相似文献   

8.
The ice-age hypothesis of Muller and MacDonald (1995, 1997a, 1997b) has two parts: (a) The 100-kyr cycle does not owe its existence to Milankovitch forcing; and (b) variations in inclination of Earth's orbit (i.e., the orbit's angle with the solar system invariable plane) provide the mechanism sought. In support of the first proposition, Muller and MacDonald point to the paradox that the spectrum of oxygen isotope series from deep-sea sediments contains no power for two prominent eccentricity cycles, 125 and 400 kyr. In support of the second proposition, they offer a match between the SPECMAP record (Imbrie et al. 1984) and a plot of the amplitude of orbital inclination, shifted by 33 kyr. The hypothesis of Muller and MacDonald is rejected in both parts, although an influence of inclination forcing is not precluded entirely. The paradox of the missing eccentricity cycles (125 and 400 kyr) is explained by suppression of the two longer cycles, and enhancement of the one near 96 kyr, as a result of internal oscillation. A Muller–MacDonald machine for making the 100-kyr ice-age cycles, however conceived, would have to have a memory near 30 kyr to provide for phase shift between input and output. Precisely this amount of memory is sufficient to produce the needed oscillation in Milankovitch machine here applied; thus, there is no advantage, from the point of view of either necessity or simplicity, in replacing Milankovitch forcing, with its precise phasing (despite the fuzzy physics), with inclination forcing, and with its severe problems in phasing (and, thus far, no physics at all). Received: 10 June 1998 / Accepted: 2 February 1999  相似文献   

9.
This brief review provides an Earth Science perspective on present climate change (global warming) using evidence from past ice ages with details from the Quaternary ice age. It places the present (Quaternary) ice age in the context of Earth history and outlines possible causes of ice ages and the scale and style of ice age climate. Milankovitch climate forcing is described and explained as the cause of relatively predictable climatic variations within an ice age (and at other times), and this is followed by an outline of the factors likely to be responsible for short and rapid sub-Milankovitch climate variations that are superimposed on the predictable changes. Finally the anomalous, relatively constant climate of the last 11.5 ka (Holocene) is highlighted and explained in terms of human input of greenhouse gasses into the Earth's atmosphere.  相似文献   

10.
The Aptian-Albian 'Scisti a Fucoidi' varicoloured pelagic sediments in central Italy, show a 'couplet' alternation of carbonate-rich/carbonate-poor layers, which are interpreted as the sedimentary expression of precession (frequency 19–23 kyr). Carbonate content, chromatic variation, and planktonic foraminiferal abundance were analysed at a 1-cm spacing for a 10-m interval of the Piobbico core, specifically drilled through this formation. Spectral analysis of these parameters shows a prominent signal equated to the c . 100 kyr cycle of orbital eccentricity at a sedimentation rate of 5 mm kyr−1. The coherency of the spectral response of each parameter suggests that a single mechanism controlled the whole sedimentary record. Detailed study of planktonic foraminiferal distribution of the same section at 1-mm scale resolves the Milankovitch frequencies of 41 kyr and 18 to 23 kyr, equated with the obliquity and precessional cycles. But foraminiferal abundance is not in phase with carbonate content, which was largely controlled by calcareous nannofossils, but peaked at intermediate carbonate values. The proposed model for explaining the discrepancy at the precessional level is that foraminifera thrived at intermediate values of the precession index, when the environment was only moderately fertile but stable, while during highs of the precession index, mixing of the water column increased fertility and caused calcareous nannofossil blooms and restriction of planktonic foraminifera to few and tolerant species. The resulting bimodality of foraminiferal abundance per precessional cycle appears to be recorded in the spectrum by peaks at the 11 and 14 kyr levels. Cross correlation of foraminiferal abundances with the calcium carbonate curve over 1–2 Myr intervals produces discrepant results (apparent phase lags) which we attribute to differences in the response to the fundamental eccentricity cycles.  相似文献   

11.
Geological time scales are constructed by combining the stratigraphic record with radiometric dates and their standard deviations. The stratigraphic record encompasses litho-, bio-, chrono-, and magnetostratigraphy. The statistical methods employed should embody concepts and data available for the systems considered. Recently, in order to estimate the ages of 31 Mesozoic stage boundaries, use was made of a database with chronostratigraphic classifications for 340 dates, biostratigraphic data including ammonite subzones, and information on seafloor spreading. This paper is primarily concerned with the propagation of errors through the successive steps of the data analysis. The following stepwise approach was taken for combining the different types of data: (1) maximum likelihood estimation with windows set around prior stage boundary estimates, (2) averaging of estimates with variable precision including magnetochronologic data, and (3) calibration by means of cubic smoothing splines assuming equal duration of ammonite subzones. The end product is a time-scale in which the stage boundary ages are accompanied by approximate 95 per cent confidence intervals.  相似文献   

12.
旋回地层学的研究对象由海相地层逐渐转移到陆相深水地层.为了探究通过旋回地层学研究方法在陆相浅水湖盆建立高频层序格架的可能,采用频谱分析、天文调谐、“米氏”沉积速率拾取等手段对东海陆架盆地西湖凹陷黄岩区渐新统坳陷湖盆的岩相敏感曲线-GR数据开展研究.频谱分析结果显示黄岩区花港组受405 ka长偏心率周期(E)、121 ka和97 ka短偏心率周期(e)、28 ka斜率周期(O)以及约22 ka岁差周期(P)的调控.在浅水湖泊环境的富泥区,以La2004天文解决方案给出的65°N平均日照序列为参照进行天文调谐,建立了浮动天文年代标尺;在浅水三角洲环境的富砂区,通过滑动窗口频谱分析得到“米氏”沉积速率曲线,结合锆石铀铅测年资料的校验和岩石组合类型联合约束,完成高频层序格架划分.研究表明:黄岩区花港组持续时间约为10.9 Ma,可识别出27个405 ka长偏心率周期,根据偏心率滤波曲线和日照量各级次包络面的对应关系共划分11个四级层序,27个五级层序,分别对应着0.8~1.6 Ma和0.4 Ma的基准面旋回,每个旋回在沉积速率曲线上表现为高?低?高的特征.本次研究提供了一种利用“米氏”沉积速率进行高频层序格架搭建及层序?时间单元拾取的新方法,拓宽了旋回地层学的应用范围.   相似文献   

13.
曹海洋  王华  赵睿 《地球科学》2017,42(12):2299-2311
在旋回地层学研究中,高分辨率地球化学数据作为一重要的替代指标,其一般获取方式(ICP-MS或WD-XRF)较耗费时间和经费,而手持X射线衍射仪(ED-XRF)能够高效的解决这一问题,目前将ED-XRF运用在沉积地层研究中,尤其是旋回地层学研究领域中较少.以酒泉盆地青西凹陷早白垩世下沟组深湖相泥岩、白云质泥岩为研究对象,将连续采集的岩心样品通过ED-XRF测试,该测试方法能够保证在不破坏样品的前提下,并在误差允许的范围内的条件下,短时间内(5 min)完成对单一样品的测试.通过测试精确得出24种主量及微量元素的含量,将得出的地球化学特征作为旋回地层学研究的替代指标,并针对K/Al,Ca/Al,Si/Al,Fe/Al,Ti/Al,Mn/Al,Ni/Al,Zn/Al和Pb/Al的比值进行频谱分析.数据表明W2井下沟组一段(SQK1g1)地层旋回性表现出与天文旋回明显的对应关系.沉积地层中的旋回厚度比值为20.25:4.75:1.75:1.00,与米兰科维奇旋回中长偏心率、短偏心率、斜率和岁差的周期比值:400 ka:95 ka:37 ka:20 ka相对应.该地区的沉积记录受天文轨道周期的影响得到了证明,与此同时,为手持X射线衍射仪在旋回地层学中的应用开辟了新领域.   相似文献   

14.
Long sediment cores (12.5 and 13.5 m) from two lakes in Yunnan Province were used to infer the paleoclimate of southwest China over the past 50,000 yr. During the Holocene and marine isotope stage (MIS 3), bio-induced carbonate precipitation and organic matter (OM) production was high, suggesting warm temperatures and high primary productivity. In contrast, sediment inorganic carbon (IC) and organic carbon (OC) concentrations were low in last glacial deposits from 38,000 to 12,000 cal yr B.P., indicating cool temperatures and low productivity. The 50,000-yr record has alternating peaks of carbonate and coarse-grain (>38 μm) quartz that reflect warm, moist interglacial or interstadial conditions alternating with cold, dry glacial or stadial conditions, respectively. Spectral analysis of the carbonate and quartz signals reveals power concentrated at periods of 7200 and 8900 cal yr, respectively, that may reflect a nonlinear climate response to precessional forcing at a time of reduced eccentricity modulation (McIntyre and Molfino, 1996). Oxygen isotope values of calcite from Yunnan lake cores indicate the summer monsoon was weak during the last glaciation from 50,000 to 12,000 cal yr B.P. The summer monsoon intensified between 12,000 and 8000 cal yr B.P., but weakened gradually in response to insolation forcing during the mid-to-late Holocene. Our results support the Overpeck et al. (1996) model that posits a weak summer monsoon during the last glaciation that responded nonlinearly to insolation forcing when its intensity was affected by Eurasian snow cover and ice-sheet extent. The summer monsoon intensified and responded linearly to seasonal insolation forcing in the Holocene when ice volume diminished.  相似文献   

15.
We describe the environmental variation in the Banda Sea over the past 820 ka by using the magnetic parameters and oxygen isotope data from the core MD012380. Overall, characteristics of the magnetic parameters show simultaneous variation with marine isotope stage (MIS), especially in the last 420 ka. There are fewer, coarser and more oxidative magnetic minerals in glacial periods, and turn to opposite conditions in interglacial periods. Spectral results clearly present the Milankovitch periods over the last 820 ka, especially the eccentricity period (400-ka and 100-ka). However, the magnetic data shows different pattern before and after 420 ka. Thus, we segmented the time-series data into two periods: MIS 20 to MIS 12 and MIS 11 to MIS 1. During MIS 20 to MIS 12, the spectra of magnetic data show clear periods related to the obliquity (41-ka) and precession (23-ka and 19-ka), while they present only the eccentricity period (100-ka) during MIS 11 to MIS 1. This feature, which splits the late Pleistocene at around 420 ka, could be attributed to the mid-Brunhes event (MBE). In the Banda Sea, main factor controlling the variation of the magnetic minerals is considered as the fluctuation of the Indonesian Throughflow (ITF) intensity due to sea-level change. Thus, the magnetic data show clear 400-ka and 100-ka periods (main MIS cycle). Besides, the eccentricity signals are relatively dominant in the last ~420 ka, implying that the ITF might become more important after the MBE in the Banda Sea.  相似文献   

16.
华南上奥陶统宝塔组天文年代格架及其地质意义   总被引:1,自引:0,他引:1  
对华南四川盆地及周缘地区的四川省南江县桥亭剖面、重庆市南川区三泉剖面和贵州省习水县良村剖面上奥陶统宝塔组高分辨率磁化率(MS)数据进行了旋回地层学分析,识别出405 ka长偏心率、100 ka短偏心率、30 ka斜率和20 ka岁差沉积旋回,其中偏心率和岁差旋回信号最强。利用405 ka长偏心率旋回进行天文调谐后得出三条剖面宝塔组的沉积时限分别为4.17 Ma、5.64 Ma和5.05 Ma,平均沉积速率分别为7.67 m·Ma-1、4.68 m·Ma-1 和6.37 m·Ma-1,呈现出从北往南沉积时限变长,沉积速率变小的趋势,指示了北部接受沉积时间要比南部更晚,海侵从南向北推进。良村剖面宝塔组中所产牙形石Hamarodus brevirameus带和Protopanderodus insculptus带的延续时限分别为3.62 Ma和1.43 Ma;桥亭剖面三叶虫Niuchangella angustilimbata间隔带、Dislobosaspis xixiangensis延限带和未建带的延续时限分别是2.83 Ma、0.41 Ma和0.81 Ma。  相似文献   

17.
松辽盆地东岭地区泉头组高频沉积旋回的叠加型式分析   总被引:1,自引:1,他引:0  
根据自然伽马测井曲线计算的旋回厚度,采用Fischer图解识别高频旋回的叠加型式,试图揭示湖相沉积中GR测井曲线反映的泥质含量波动与气候旋回的关系。选择松辽盆地东岭地区顶底清楚,地层连续的SN109井泉头组测井曲线中作为实验数据,根据极值点法共识别出1166个高频沉积旋回,旋回厚度变化于0.25~2.75 m之间,旋回平均厚度为0.62 m;根据Fischer图解,估算高频旋回的平均周期为17.2 ka,中频旋回周期在86.1~103.3 ka之间,低频旋回周期在305~416 ka之间,分别与米兰科维奇旋回岁差周期19~24 ka,轴斜率周期85~140 ka,偏心率周期350~400 ka存在着对应关系,说明SN109井泉头组湖相沉积旋回的形成受米兰科维奇气候旋回机制的控制。  相似文献   

18.
测井曲线频谱分析在含煤地层沉积旋回研究中的应用   总被引:23,自引:0,他引:23  
利用频谱分析法,以鄂尔多斯盆地陇东地区延安组延二段为例,对发育泥炭沼泽河流体系的自然伽马测井曲线进行分析,得出地层中保存着厚度稳定的地层旋回,其厚度比值与米兰科维奇旋回比值之间有很好的一致性。因此,可以认为:米兰科维奇旋回是影响本区地层沉积旋回发育的主要因素;古气候周期性变迁决定着大面积沼泽化的曲流河—网状河流体系中高频沉积旋回的发生、发展和定格。其中偏心率周期引起的地层旋回厚度变化范围为8 72~11 2 9m;地轴倾角周期和岁差周期引起的地层旋回厚度变化范围分别为2 5 4~4 3m和1 2 3~1 91m。本区含煤层和碳质泥岩地层旋回厚度约10m,其发育受控于时间为12 3ka的偏心率周期。自然伽马曲线包含丰富的地质信息,很好地反映了由气候变化引起的地层旋回。   相似文献   

19.
The Palaeogene was the most recent greenhouse period on Earth. Especially for the Late Palaeocene and Early Eocene, several superimposed short-term hyperthermal events have been described, including extremes such as the Palaeocene?CEocene Thermal Maximum. Major faunal and floral turnovers in the marine and terrestrial realms were recorded in association with these events. High-resolution palynological analysis of the early Middle Eocene maar lake sediments at Messel, near Darmstadt, Germany, provides an insight into the dynamics of a climax vegetation during the Middle Eocene greenhouse climate in a time span without significant climatic excursions. Numerical techniques like detrended correspondence analysis and wavelet analysis have been applied to recognize cyclic fluctuations and long-term trends in the vegetation through a time interval of approximately 640?kyr. Based on the numerical zoning of the pollen diagram, three phases in the development of the vegetation may be distinguished. Throughout these phases, the climax vegetation did not change substantially in qualitative composition, but a trend towards noticeably less humid conditions probably in combination with a drop of the water level in the lake may be recognized. A shift in algal population from the freshwater dinoflagellate cyst Messelodinium thielepfeifferae to a dominance of Botryococcus in the uppermost part of the core is interpreted as a response to changes in acidity and nutrient availability within the lake. Time series analyses of pollen assemblages show that variations in the Milankovitch range of eccentricity, obliquity and precession can be distinguished. In addition, fluctuations in the sub-Milankovitch range are indicated. This demonstrates that floral changes during steady depositional conditions in the Middle Eocene of Messel were controlled by orbital forcing.  相似文献   

20.
ABSTRACT Detailed magnetostratigraphic work at the Palaeocene/Eocene boundary interval in the Zumaia section has led to a precise delineation of the position of polarity Chron C25n from −35.0 m (or −35.7 m) to −25.2 m below the base of the Carbon Isotopic Excursion that marks the Palaeocene/Eocene boundary. This chronostratigraphic constraint suggests that the lithological carbonate–marl couplets making up most of the studied section are the expression of orbital precession cycles, and confirms the expanded and continuous nature of the section, with mean sediment accumulation rates of ∼ 2.5 cm kyr−1. The new data render Zumaia a unique land-based marine section with available magnetostratigraphic data coupled to cyclostratigraphy. The revised chronostratigraphic framework presented supports previous cyclostratigraphic calibration of the latest Palaeocene geomagnetic timescale; it should facilitate better assessment of the different chemobiostratigraphic events that span this critical interval as a consequence of past climate and oceanographic change. Consequently, the Zumaia section is proposed as a candidate Global Stratotype Section and Point (GSSP) for the Palaeocene/Eocene boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号