首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Teepee Tee array of the Clark Lake Radio Observatory has been used to compare the flux of the Sun with that of the sidereal sources Tau A and Vir A at several frequencies in the range 109.0–19.0 MHz. Only the two central banks of the E-W arm of the array were used as elements of a phase switched interferometer so that the Sun could be observed as a point source and compared directly to the sidereal sources. The Sun was still partially resolved however, and appropriate corrections for this effect were made. The observations were taken at times when the Sun and either Tau A or Vir A were at the same declination. We have therefore been able to derive the values for the solar flux, without having to resort to a gain vs zenith distance correction. The observations, combined with those available in the literature, allow us to derive an accurate meter and decameter wavelength spectrum of the quiet Sun.On leave of absence from Instituto Argentino de Radioastronomía, Argentina.  相似文献   

2.
Although the field of view of the Normal Incidence Spectrometer (NIS) of the Coronal Diagnostic Spectrometer (CDS) is 4×4 arc min, it is possible to observe the full solar disk by forming a mosaic of images taken in succession. This paper describes just such a study which has been used to collect images of the Sun simultaneously in six wavelengths between 304 Ú and 630 Ú, and with a temperature coverage between 5×104 K and 2.5×106 K. A representative sample of the resulting images is presented. These data can be used to explore the origin of solar EUV variability, and examine large-scale solar features. Another use of these data is to calibrate the pointing of the CDS Offset Pointing System (OPS), by comparing them against the SOHO Extreme ultraviolet Imaging Telescope (EIT) full-disk images taken at the same time. Many joint observations are made with CDS and other SOHO instruments, and calibration of the pointing is crucial to the co-pointing of the instruments, and to the analyses of these data. Coalignment is done by fitting to a cross-correlation function, using an IDL procedure which can be applied to any CDS/NIS data set. The accuracy of an individual coalignment can be demonstrated to be in the range 1–2 arc sec. The overall accuracy of the OPS calibration is ±5 arc sec, mainly attributable to measurement error in the actuator positions. An onboard Spartan Intermediate Sun Sensor of the Lockheed design, which was intended to provide greater pointing accuracy, exhibits a time-varying calibration, possibly due to a gradual loss of sensitivity.  相似文献   

3.
Grechnev  V.V.  Lesovoi  S.V.  Smolkov  G. Ya.  Krissinel  B.B.  Zandanov  V.G.  Altyntsev  A.T.  Kardapolova  N.N.  Sergeev  R.Y.  Uralov  A.M.  Maksimov  V.P.  Lubyshev  B.I. 《Solar physics》2003,216(1-2):239-272
The Siberian Solar Radio Telescope (SSRT) is one of the world's largest solar radio heliographs. It commenced operation in 1983, and since then has undergone several upgrades. The operating frequency of the SSRT is 5.7 GHz. Since 1992 the instrument has had the capability to make one-dimensional scans with a high time resolution of 56 ms and an angular resolution of 15 arc sec. Making one of these scans now takes 14 ms. In 1996 the capability was added to make full, two-dimensional images of the solar disk. The SSRT is now capable of obtaining images with an angular resolution of 21 arc sec every 2 min. In this paper we describe the main features and operation of the instrument, particularly emphasizing issues pertaining to the imaging process and factors limiting data quality. Some of the data processing and analysis techniques are discussed. We present examples of full-disk solar images of the quiet Sun, recorded near solar activity minimum, and images of specific structures: plages, coronal bright points, filaments and prominences, and coronal holes. We also present some observations of dynamic phenomena, such as eruptive prominences and solar flares, which illustrate the high-time-resolution observations that can be done with this instrument. We compare SSRT observations at 5.7 GHz, including computed `light curves', both morphologically and quantatively, with observations made in other spectral domains, such as 17 GHz radio images, Hα filtergrams and magnetograms, extreme-ultraviolet and X-ray observations, and dynamic radio spectra.  相似文献   

4.
Several solar active regions were observed during the 1976 vernal equinox with the 3-element interferometer of the National Radio Astronomy Observatory. The element spacings for these observations were 600, 2100, and 2700 m, resulting in maximum angular resolutions of about 3 arc sec at 3.7 cm and 8.5 arc sec at 11.1 cm. We fitted the fringe visibility for each baseline pair as a function of projected baseline with a single gaussian component, and calculated the extrapolated flux at zero baseline, F 0, the FWHM source size, a, and the peak brightness temperature T b. We present physical parameters derived for the observed bursts.  相似文献   

5.
M. Simon 《Solar physics》1971,21(2):297-304
High resolution observations of the Sun at 3.3 mm, 3.5 mm, 1.35 cm, and 1.95 cm which were obtained by tracking narrow beam width antennas on the lunar limb as it occulted the Sun are described. The observations indicate that: (1) the region emitting at these wavelengths is very irregular with typical length scales smaller than one half minute of arc, (2) the number of roughness elements responsible for the irregular structure is small within an area of one half minute of arc square, and (3) the roughness elements observed at wavelengths greater than 1 cm extend to 109 cm beyond the optical limb.  相似文献   

6.
The flux of the radio quiet Sun and the brightness temperature at 408 MHz (73 cm) are derived from measurements with the E-W Nançay interferometer and the E-W arm of the Medicina North Cross. It is shown that the lowest envelopes, which defined the radio quiet Sun, correspond to transits of extended coronal holes across the disk of the Sun.  相似文献   

7.
The results of the solar radius measurements from February 2001 to November 2003 with the solar astrolabe at the TUBITAK National Observatory are presented. The mean semi-diameter for the period, corrected for systematic effects such as the Fried parameter and the zenith distance, is found to be 959.29 ± 0.01 arc sec. A comparison of the monthly averages of the solar radius with the monthly means of sunspot numbers shows that the semi-diameter of the Sun increases with an amplitude of 0.017 arc sec per year in opposite phase with solar cycle 23.  相似文献   

8.
Observations with the UVSP instrument on the SMM spacecraft were made at the polar limb and disk center for the accurate determination of Doppler shifts of the Civ 1548 Å emission line formed at 105 K in the transition region of the quiet Sun. Individual data points representing 3 arc sec square pixels yield both redshifts and blueshifts, but the mean values from four different days of observations are toward the red. The mean redshifts are in the range 4–8 km s-1 and are produced by nearly vertically directed flows; the uncertainty associated with the mean values correspond to ±0.5 km s-1. The redshift increases with brightness of the Civ line.  相似文献   

9.
Radio cool regions observed on strip scans of the Sun made at 2800 MHz with a 1.5 min arc fan beam are associated with X-ray coronal holes and are used to derive lower envelopes which are similar to spotless Sun drift curves. Fluxes are evaluated from the Ottawa-ARO solar patrol;. e.g. that of Coronal Hole 1 observed during the Skylab Mission with central meridian passage on July 25, 1973 is 66.5 s.f.u. ± 0.6%. This level is identified as that observed during sunspot minimum by comparison with the flux of 67.2 observed in July, 1964, and with the low daily values of 67.5 and 67.1 observed in April, 1975 and January, 1976. The enhancement of the quiet Sun of 3.0 s.f.u. for the optically inactive hemisphere of May 20, 1974 suggests that the radio quiet Sun may vary during the sunspot cycle.  相似文献   

10.
We present new results of heliographic observations of quiet‐Sun radio emission fulfilled by the UTR‐2 radio telescope. The solar corona investigations have been made close to the last solar minimum (Cycle 23) in the late August and early September of 2010 by means of the two‐dimensional heliograph within 16.5–33 MHz. Moreover, the UTR‐2 radio telescope was used also as an 1‐D heliograph for one‐dimensional scanning of the Sun at the beginning of September 2010 as well as in short‐time observational campaigns in April and August of 2012. The average values of integral flux density of the undisturbed Sun continuum emission at different frequencies have been found. Using the data, we have determined the spectral index of quiet‐Sun radio emission in the range 16.5–200 MHz. It is equal to –2.1±0.1. The brightness distribution maps of outer solar corona at frequencies 20.0 MHz and 26.0 MHz have been obtained. The angular sizes of radio Sun were estimated. It is found that the solar corona at these frequencies is stretched‐out along equatorial direction. The coefficient of corona ellipticity varies slightly during above period. Its mean magnitudes are equal to ≈ 0.75 and ≈ 0.73 at 20.0 MHz and 26.0 MHz, respectively. The presented results for continuum emission of solar corona conform with being ones at higher frequencies. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
A simple image forming system using a multielement interferometer for obtaining rapid pictures of solar radio bursts is described. A dispersive transmission line is used to feed the elements in series through directional couplers. Truly instantaneous pictures of solar activity can be obtained by placing a number of narrow frequency filters at the end of the I. F. amplifier in the main receiver, located at one end of the array.The two dimensional extension of this principle is examined in some detail. Multibeaming in the two arrays of a crossed grating interferometer can be combined with fast phase-scanning in one of the arrays to produce rapid pencil beam pictures. If log-periodic antennas are used, observations can even be made at widely different frequencies simultaneously. For illustration, some important parameters for simultaneous observations at 60, 90 and 120 MHz are estimated for an interferometer assumed to be located at a latitude of 30° N. The main advantage of the proposed system is that high-resolution rapid pictures of radio bursts can be obtained simultaneously at a number of frequencies with modest effort.  相似文献   

12.
We compare the millimeter, microwave, and soft X-ray emission from a number of solar flares in order to determine the properties of the high-frequency radio emission of flares. The millimeter observations use a sensitive interferometer at 86 GHz which offers much better sensitivity and spatial resolution than most previous high-frequency observations. We find a number of important results for these flares: (i) the 86 GHz emission onset appears often to be delayed with respect to the microwave onset; (ii) even in large flares the millimeter-wavelength emission can arise in sources of only a few arc sec dimension; (iii) the millimeter emission in the impulsive phase does not correlate with the soft X-ray emission, and thus is unlikely to contain any significant thermal bremsstrahlung component; and (iv) the electron energy distributions implied by the millimeter observations are much flatter (spectral indices of 2.5 to 3.6) than is usual for microwave or hard X-ray observations.  相似文献   

13.
A new method for measuring spectroscopically the rotation at the Sun's poles is described. Using solar CO lines at 4.666 µm, infrared spectra are recorded at a fixed limb distance of 4.8 arc sec while progressing along an arc ±5.7 deg from the Sun's rotational pole. Since the poles dip twice a year to about 7 arc sec from the limb, our observations can range either side of and through the vortex axis. Advantages to this technique are: (1) a low disturbing signal from supergranules owing to their superposition at the limb, (2) no ‘limb shift’ error since limb distance is constant and the CO lines have no known limb shift, (3) emphasis is on the quiet Sun since the CO molecule is confined there, (4) negligible scattered light in the IR (<1%), and (5) the improved seeing afforded by the IR. Although any definitive determination of solar rotation requires observations over an extended time span, our preliminary results suggest two features peculiar to the extreme pole: (1) the occasional apparent cessation of rotation, (2) some sort of singularity, again occasional, producing a sharp velocity signal (a vortex?) within 1 deg of the pole.  相似文献   

14.
Meteoroids that orbit the Sun encounter the Earth with speeds between 11 and 74 km/sec. However, the distribution of the velocities of meteoroids between these limits is not well known. The uncertainty is caused by the difficulty in measuring the true flux of meteors at the extrema of the velocity distribution. Whilst the most comprehensive measurements of meteor flux are those obtained using radio techniques, meteors with speeds > 50 km/sec occur at heights where the effects of initial radius of the trail and diffusion significantly reduce the radio reflection from the trails; on the other hand the high dependence of the collisional ionization probability on velocity (to the power 3.5) significantly inhibits the detection of meteors with speeds < 20 km/sec. Recent developments in meteor radar systems are now making it possible to measure the velocity of meteors at the extrema of the distribution. For meteoroids ablating at heights between 100 and 120 km the speed of entry can be measured at 2 and 6 MHz using a radar with a 1 km diameter array located near Adelaide; these observations will commence early in 1995. In the meantime a 54 MHz MST radar is being operated at a pulse repetition frequency of 1024 Hz to search for the presence of interstellar (speed > 74 km/sec) meteors. Both these radars exploit the phase information available prior to the closest-approach (to) point.  相似文献   

15.
    
The concept of simultaneous multifrequency continuum observations, successfully tested on Comet Hyakutake, was applied to Comet Hale-Bopp, using the Heinrich Hertz Submillimeter Telescope (HHT) with the four color bolometer between 250 and 870 GHz, the IRAM 30m telescope at 240 Ghz, the MPIfR 100-m telescope at 32 GHz, and the IRAM interferometer near 90 and 240 GHz. Near-simultaneous measurements were done between February 15 and April 26, 1997, mainly concentrated in mid March shortly before perigee of the comet. The measurements gave the following preliminary results: Interferometer detection of the nuclear thermal emission. If the signal at the longest interferometer spacing of 170 mis due to thermal emission from the nucleus only, its equivalent diameter is ∼49 km. If, however, this signal contains a contribution from a strongly centrally peaked halo distribution(e.g., r−2 density variation) the diameter may be as low as 35 km. The emission found interferometrically was always 5″ north and 0.1 sec east from the position predicted by Yeoman's solution 55.The comparison of the interferometric continuum emission with the simultanously obtained molecular line observations (reported on this conference) shows the origin of the strongest line emission concentrated on the nucleus. The 30-m observations show a radio halo with a gaussian FWHP of ∼11, corresponding to a diameter of 11000 km at geocentric distance of 1.2 a.u. A spectral index of ∼3.0 for the total signal, which may indicate a smaller mean particle size than for Hyakutake. Assuming an average cometary density of 0.5 gcm−3, the mass contained in the nucleus is ∼1$#x2013;3 1019 g and 1012 g in the particle halo. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
This article describes in detail a burst from PSR 0950+08 on July 29, 1992. This event was observed by two radio telescopes (separated by ~ 200 km) operating at 103 MHz. There exists a very convincing indirect evidence that at the same time the pulsar also emitted large X-ray flux. The X-ray flux during the event compares with that during a solar X-ray flare. During the event the Sun was extraordinarily quiet as the solar X-ray flux 3 · 10–7 W/m2 only was observed. The cause for the burst is quite unknown and may be complex. However, a possibility of accretion of a comet-like object by pulsar may provide reasonable explanation of the observations. These results open some interesting questions about the pulsar physics.  相似文献   

17.
The positions and motions of solar bursts in the range 20 to 60 MHz have been measured by the means of a sweep-frequency grating interferometer with angular resolution of 5 arc at 60 MHz decreasing to 15 arc at 20 MHz. The positional characteristics of the decameter wavelength bursts are discussed in terms of the commonly accepted theories of the origin of radio bursts from plasma and synchrotron radiations.  相似文献   

18.
Fivian  M.  Hemmeck  R.  Mchedlishvili  A.  Zehnder  A. 《Solar physics》2002,210(1-2):87-99
The Reuven Ramaty High-Energy Solar Spectroscopic Imager RHESSI spacecraft spins at about 15 rpm around an axis close to Sun center. Precise knowledge of the pointing and the roll angle of the rotating spacecraft is needed in order to reconstruct images with 2 arc sec resolution using the modulation patterns seen on each of the detectors behind the bi-grid rotating collimators. Therefore, the aspect system consists of two subsystems of sensors, the Solar Aspect System (SAS) and Roll Angle System (RAS). The measured data are sent to the Aspect Data Processor (ADP), where a data compression of about a factor of 1000 and a formatting into telemetry packets takes place. The transmitted data consist of `solar limb' data from the SAS and `star event' data from the RAS. Knowing the geometry of all features of the SAS, the position of the Sun center, with respect to a spacecraft fixed coordinate system, can be reconstructed. Similarly, a list of position angle marks can be generated by fitting of the star events and subsequent comparison with a star catalog. Integrating this information allows correcting and interpolating the roll angles that provides a precision of < 0.4 arc sec (pitch and yaw) and < 1 arc min (roll).  相似文献   

19.
This paper presents the results of measurements of the Crab nebula in the decametre range with an interferometer whose baseline is 2.4–3.5×103 of the wavelength. Visibility function values, which in these observations determine the contribution by the compact source to the total nebula flux, have been measured at frequencies 16.7, 20 and 25 MHz to be 0.64±0.07, 0.43±0.04 and 0.31±0.03, respectively. The spectral index of the spectrum obtained for the compact source in the range 16.7–122 MHz is 2.09±0.04. Flattening of the nebula spectrum without the compact source has been confirmed for the decametre range.  相似文献   

20.
Large dishes used in solar radio astronomy are becoming an essential tool for the analysis of low level activity and fine time structures in solar bursts. Some front-end and back-end arrangements have been added to the Itapetinga 13.7-m radome-enclosed antenna to allow for simultaneous 22 GHz and 44 GHz observations; 22 GHz right- and left-handed circular polarization (or two linear orthogonal), with sensitivities of the order of 0.03 s.f.u., and time resolution of 1 ms. Full Sun maps can be obtained every 6 min, and selected active region maps every 3 min. Spatial angular definition of positions of active-region hot spots is close to 10 arc sec. This system is being used in a number of specific investigations, in SMM satellite related research, and in other internationally coordinated works. Examples of results are shown.In memoriam, 1942–1981.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号