首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SPIRIT complex onboard the CORONAS-F satellite has routinely imaged the Sun in the 171, 175, 195, 284, and 304 Å spectral bands since August 2001. The complex incorporates two telescopes. The Ritchey-Chretien telescope operates in the 171, 195, 284, and 304 Å bands and has an objective similar to that of the SOHO/EIT instrument. The Herschel telescope obtains solar images synchronously in the 175 and 304 Å bands with two multilayer-coated parabolic mirrors. The SPIRIT program includes synoptic observations, studies of the dynamics of various structures on the solar disk and in the corona up to 5 solar radii, and coordinated observations with other spaceborne and ground-based telescopes. In particular, in the period 2002–2003, synoptic observations with the SPIRIT Ritchey-Chretien telescope were coordinated with regular 6-hour SOHO/EIT observations. Since June 2003, when EIT data were temporarily absent (SOHO keyholes), the SPIRIT telescope has performed synoptic observations at a wavelength of 175 A. These data were used by the Solar Influence Data Analysis Center (SIDC) at the Royal Observatory of Belgium for an early space weather forecast. We analyze the photometric and spectral parameters of the SPIRIT and EIT instruments and compare the integrated (over the solar disk) EUV fluxes using solar images obtained with these instruments during the CORONAS-F flight from August 2001 through December 2003.  相似文献   

2.
Six solar flares were detected by the AVS-F apparatus onboard the CORONAS-F satellite in January 2005. We discuss the temporal profiles and energy spectra of the solar flares of January 20, 17, and 15, 2005 (class X7.1, X3.8, and X2.6, respectively) on the AVS-F data. The active region NOAA 10720 was the source of these flares. The spectra of the flares of January 17 and 20, 2005 contain nuclear lines, a positron line, and a line due to neutron capture line, while only the positron and neutron capture lines can be identified in the spectrum of the flare of January 15, 2005. The spectral features corresponding to these lines were observed during the whole duration of the flares. Analysis of the temporal profile of the flare of January 20, 2005 with a 1-ms temporal resolution in the energy range 0.1–20 MeV reveals the presence of a thin structure (at the 99% confidence level) with typical timescales of 7 to 35 ms.  相似文献   

3.
The results of analysis of the trajectory parameters of the orbit of the CORONAS-F spacecraft since its launch (July 2001) and to the present time are reported. Two independent methods are used to compute a prediction for the active lifetime of the satellite in the near-Earth orbit for the period from 2005 through 2006.  相似文献   

4.
The SPR-N polarimeter onboard the CORONAS-F satellite allows the X-ray polarization degree to be measured in energy ranges of 20–40, 40–60, and 60–100 keV. To measure the polarization, the method based on the Thompson scattering of solar X-ray photons in beryllium plates was used; the scattered photons were detected with a system of six CsI(Na) scintillation sensors. During the observation period from August 2001 to January 2005, the SPR-N instrument detected the hard X-rays of more than 90 solar flares. The October 29, 2003, event showed a significant polarization degree exceeding 70% in channels of E = 40–60 and 60–100 keV and about 50% in the 20-to 40-keV channel. The time profile of the polarization degree and the projection of the polarization plane onto the solar disk were determined. For 25 events, the upper limits of the part of polarized X-rays were estimated at 8 to 40%. For all the flares detected, time profiles (with a resolution of up to 4 s), hard X-ray radiation fluxes, and spectral index estimates were obtained.  相似文献   

5.
The AVS-F apparatus onboard the CORONAS-F satellite (operated from July 31, 2001, to December 6, 2005) was intended for investigation of solar hard X-ray and gamma-ray radiation and for registration of gamma-ray bursts. The AVS-F apparatus constitutes a system for processing the data from two detectors: SONG-D (a CsI(Tl) scintillation detector 200 mm in diameter and 100 mm in height, fully surrounded by plastic anticoincidence shield) and RPS-1 (a solid state CdTe detector 4.9 mm × 4.9 mm in size). Over 60 solar flares stronger than M1.0 class by GOES classification were registered during the period from August 2001 to February 2005. Most flares showed gamma-ray emission during the periods when a rise in the X-ray flux was observed by the GOES instruments. Some flares produced gamma-rays only at maximum X-ray emission; for some flares, the durations of gamma-ray and X-ray emissions were the same. Up to six complexes of spectral lines were detected in some solar flares. The AVS-F instrument analyzes temporal profiles of low-energy gamma-ray emission with a temporal resolution of 1 ms within the first 4.096 seconds of solar flares. The preliminary analysis of such temporal profiles for seven solar flares revealed time regularities with scales from 7 to 35 ms in the 0.1-to 20-MeV energy range only for the flare of January 20, 2005, at a confidence level of 99%.  相似文献   

6.
The paper reviews observations and the most important results obtained with the CORONAS-F satellite over more than three years of its orbiting in 2001–2004. The observations and the related new results concern global oscillations of the Sun, active regions and solar flares, the lower corona, ultraviolet and X-ray solar radiation, and solar cosmic rays.  相似文献   

7.
The paper presents a brief review of the instruments developed for measurement of ionizing extreme UV solar radiation at wavelengths of less than 130 nm onboard the CORONAS-I and CORONAS-F satellites and summarizes the observation data. The main goal of the study was to obtain information concerning variations of fluxes of solar radiation and solar flares at various wavelengths in the extreme ultraviolet. SUFR radiometers based on the thermoluminescent method were mounted onboard both CORONAS satellites (CORONAS-I and CORONAS-F). They performed measurements at λ < 130 nm. Spectral measurements in the 30.4-nm line were made by the photoelectronic spectrometer VUSS tested on CORONAS-I. Spectral measurements in the waveband including the H Lα line (121.6 nm) were conducted by the VUSS-L instrument (a Lyman alpha spectrophotometer) onboard the CORONAS-F satellite. The basic characteristics of the instruments, which were supposed to be used in a system of space weather monitoring on patrol satellites of the hydrometeorological service of Russia, are presented. The main data on the solar radiation flux at λ < 130 nm for minimum and maximum solar activity are given for quiet conditions and during solar flares.  相似文献   

8.
The results of measuring UV radiation onboard the CORONAS-F spacecraft during solar flares in 2001–2003 are considered. Some conclusions from the analysis of variations of solar-flare emission in several spectral intervals, namely, in soft X-rays, in the 10-to 130-nm range, and in the band near 120 nm, are discussed. The data were obtained by the VUSS-L and SUFR instruments. Time and energy characteristics of flares recorded onboard the CORONAS-F spacecraft are compared to the GOES measurements in the interval 0.1–0.8 nm and to the SOHO measurements of UV radiation in the 26-to 34-nm band. In particular, it is demonstrated that UV radiation is generated several (1–10) minutes before X-ray emission for most flares considered in the study. It is shown that the energy of flare emission in the extreme ultraviolet is usually not greater than ~10% of its preflare level and that energy fluxes in different wavelength ranges are related by a power law. Such an analysis makes it possible to better understand the mechanism of flare development.  相似文献   

9.
The main results of the SPIRIT experiment on imaging spectroscopy of the Sun in the soft X-ray and extreme vacuum UV range are presented. The results were obtained onboard the CORONAS-F satellite, which has been operating since July 2001. More than 40 thousand observation sessions were performed during the experiment. About a million solar images and spectra (more than 250 Gb of information) were obtained, including monotemperature images of the solar atmosphere in six spectral regions, corresponding to temperatures from 0.05 to 2 MK; full-Sun spectral images (spectroheliograms) in more than 150 lines (177–207 Å and 285–335 Å, T from ~0.05 to 20 MK); images of the full Sun in the monochrome Mg XII line (8.42 Å, T ~ 10 MK); images of the solar corona at a distance of up to five solar radii; continuous series (up to 20 days long) of observations with high time resolution (40–100 s); observations of the flare dynamics, including the preflare, initial, and main phases, with a resolution of 7 s, and data on the absorption of X-ray and XUV solar radiation in the upper atmosphere of the Earth. The study was performed for the maximum of the 11-year solar activity cycle and for its decrease phase.  相似文献   

10.
The RESIK instrument is an X-ray spectrometer with bent crystals onboard the CORONAS-F satellite. It was used to observe the spectra of solar flares, active regions, and quiet corona. During the period of the instrument’s operation, many spectra were collected in four energy channels covering the wavelength range from 3.2 to 6.1 Å. For the present analysis, we selected solar flares of various X-ray classes (B, C, and M in the GOES notation), which were observed during moderate level of solar activity (from January to March 2003). The analysis of the RESIK spectra fulfilled with different techniques allowed us to determine the temperature, emission measure, and temperature distribution of the differential emission measure, as well as to examine their time variability.  相似文献   

11.
We present some methods of X-ray data analysis employed in our laboratory for deducing the physical parameters of flaring plasma. For example, we have used a flare well observed with Polish instrument RESIK aboard Russian CORONAS-F satellite. Based on a careful instrument calibration, the absolute fluxes in a number of individual spectral lines have been obtained. The analysis of these lines allows us to follow the evolution of important thermodynamic parameters characterizing the emitting plasma throughout this flare evolution.  相似文献   

12.
Thirty active regions were observed on the Sun during the period from October 19 to November 20, 2003. Hard X-ray and gamma-ray radiation was detected from four active regions (10484, 10486, 10488, and 10490): 14 solar flares stronger than M5.0 according to the GOES classification were recorded during this period by detectors onboard the Geostationary Operational Environmental Satellite (GOES), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and other satellites. Five of these flares (and also the M2.7 flare of October 27, 2003) were also observed by the AVS-F apparatus onboard the CORONAS-F satellite. This paper discusses the time profiles and energy spectra of the solar flares of October 26, 2003 (M7.6), and October 29, 2003 (X10), and of the initial phase of the flare of November 4, 2003 (X18), obtained by the AVS-F instrument during the passage of the satellite over the regions near the geomagnetic equator. The spectra of the M7.6 flare of October 26, 2003, and of the initial phase of the X18 flare of November 4, 2003, in the energy band from 0.1 to 17 MeV contain no lines, whereas the spectrum of the flare of October 29, 2003, exhibits nuclear lines and the 2.2-MeV line during the entire flare gamma-ray emission registration. We also report the time profiles of the flare of October 29, 2003, in the energy bands corresponding to the continuum in the energy band 0.3–0.6 MeV, the nuclear lines of 56Fe, 24Mg, 20Ne, 28Si, 12C, and 16O, and the 2.2-MeV neutron-capture line. The analysis of these temporal profile periodograms shows the presence of a thin structure with characteristic scales from 34 to 158 s at the 99% confidence level. The AVS-F apparatus analyzes temporal profiles of low-energy gamma-ray emission with a temporal resolution of 1 ms within the first 4.096 seconds of solar flares. The analysis of the data reveals no regularities in the time series on time scales ranging from 2 to 100 ms at a confidence level of 99% for these three solar flares.  相似文献   

13.
The results of an experimental study of the variations in the intensity of the fluxes of the Earth radiation belt (ERB) particles in 0.3–6 and 1–50 MeV energy intervals for electrons and protons, respectively, are reported. ERBs were studied during strong magnetic storms from August 2001 through November 2003. The results of the CORONAS-F mission obtained during the magnetic storms of November 6 (D st = ?257 nT) and November 24, 2001 (D st = ?221 nT), October 29–30 (D st = ?400 nT) and November 20, 2003 (D st = ?465 nT) are analyzed. The electron flux is found to decrease abruptly in the outer radiation belt during the main phase of the magnetic storms under consideration. During the recovery phase, the outer radiation belt is found to recover much closer to Earth, near the boundary of the penetration of solar electrons during the main phase of the magnetic storm. We associate the decrease in the electron flux with the abrupt decrease of the size of the magnetosphere during the main phase of the storm. Note that, in all cases studied, the Earth radiation belts exhibited rather long (several days) variations. In those cases where solar cosmic-ray fluxes were observed during the storm, protons with energies 1–5 MeV could be trapped to form an additional maximum of protons with such energies at L >2.  相似文献   

14.
The CORONAS-I and CORONAS-F data on variations in the ionizing shortwave ultraviolet (UV) solar radiation (EUV radiation) at wavelengths of less than 130 nm and near the H Lyman-alpha line are presented. The CORONAS-I data refer to the period close to solar minimum (the index F 10.7 = 80?100), and the CORONAS-F measurements were held close to solar maximum (F10.7 = 140?280). The UV data are compared to those from the UARS and SOHO satellites and to the results obtained from the ionospheric measurements of ionosphere critical frequencies.  相似文献   

15.
Results of the search and investigations of the periodic processes in the high-temperature plasma of solar flares are presented. Such plasma with a temperature of more than 5 million K is formed mainly in the corona and is observed on the images of the Sun as sources of soft X rays (SX). In the paper, data from the Russian SPIRIT experiment on the satellite CORONAS-F, that occurred from August 2001 to December 2005, are used. A unique duration and temporal resolution of the observation of the Sun in the SX range were used during the experiment. As a consequence of the processing of these data, especially, several thousand images of the NOAA active regions 9825 and 9830 obtained from February 19 to 22, 2009, stable oscillations with a period of 5–20 min in radiation from flares were successfully discovered and the connection between the type of flare and its power spectrum was established. An interpretation of the obtained results is presented.  相似文献   

16.
A technique for updating global models of the electron density N in real time is developed. It employs the ionospheric part of the Doppler shift due to the rate of change of the total electron content determined at one site from measurements of signals from the radio beacons aboard low-orbit satellites. This technique enables corrections of the Chiu model over a region of about 1,000 km in a North-South direction. To study a possibility of predicting N in an East-West direction using the corrected model, we employ the measurements of satellite signals received at three sites spaced up to 2,000 km. For updating global N models, it is determined that spacing between correction sites can be up to about 3,000 to 4,000 km.  相似文献   

17.
We briefly overview results of our study of the large-scale solar activity associated with coronal mass ejections (CMEs). The observational material is constituted with data of the SPIRIT telescope aboard the CORONAS-F satellite in the three EUV channels 175, 284, and 304 Å. In particular, we consider a powerful geoeffective event of November 4, 2003, which was not observed by the SOHO/EIT telescope, a series of extremely powerful events of October 2003, and an event of November 18, 2003, with filament eruption. The efficiency of combined analysis of the SPIRIT and EIT data is demonstrated. The analysis confirms the coincidence of many dimmings in different spectral channels, including coronal lines with different excitation temperatures and the transition-region line, as well as the global character and homology of dimmings in recurrent events. The higher cadence SPIRIT observations at 304 Å reveal a slowly propagating large-scale darkening probably caused by absorption of emission in the dense, cold plasma of an eruptive filament.  相似文献   

18.
The dynamics of energetic radiation, i.e., particles of radiation belts and galactic and solar cosmic rays in Earth’s environment during solar and geomagnetic disturbances, is analyzed in a review based on the CORONAS-F experimental data.  相似文献   

19.
Large-scale hot features were detected and observed several times high in the solar corona in the high-temperature Mg XII line (T = 5–20 MK, T max = 10 MK) with the soft X-ray telescope of the SPIRIT instrumentation complex onboard the CORONAS-F spacecraft. These features look like a spider up to 300000 km in size and live up to a few days. Their bright cores observed at heights were from 0.1 to 0.3 solar radii are connected with active regions by darker legs, giant loops. These features are disposed above arcades, which are simultaneously observed in cooler emission lines sensitive to temperatures of 1 to 2 MK. For the core of such a feature observed December 28–29, 2001, Zhitnik et al. (2003a) estimated an electron temperature of 10 MK and a number density of n e ≈ 1010 cm?3. A high activity and an association with eruptive phenomena were found for such features in continuous (up to 20-day) observations with a cadence of 0.6–1.7 min. In the present paper, we discuss the relation of such features to coronal structures, which are known from previous studies. We identify such off-limb features observed with SPIRIT on October 22, November 12, and December 28–29, 2001, with hot upper parts of post-eruptive arcades. The results of multifrequency analysis of these features based on the data obtained in various spectral ranges by different instruments (Yohkoh/SXT, SOHO/EIT, SOHO/LASCO, Nobeyama and SSRT radioheliographs) are briefly discussed. We address the physical conditions of the long-term existence of giant hot coronal structures. It is demonstrated that the post-eruptive energy release must be prolonged and the condition β ? 1 is not satisfied in these structures. It is argued that the so-called “standard flare model” should be better considered as a “standard post-eruptive energy release model.”  相似文献   

20.
The dynamics of the boundary of the penetration of solar energetic particles (electrons and protons) to Earth’s magnetosphere during solar flares and related geomagnetic disturbances in November 2001 and October–November 2003 is analyzed using CORONAS-F data. The relationship between the penetration boundary, the geomagnetic activity indices, and the local magnetic time is investigated. The correlation coefficient between the invariant latitude of the penetration boundary and the K p and D st indices for electrons with energies ranging from 0.3 to 0.6 MeV in the dayside sector is demonstrated to be higher than that in the nightside sector. The correlation coefficient for protons with energies from 1 to 5 MeV is higher in the nightside sector as compared to the dayside sector. For protons with energies from 50 to 90 MeV, the correlation is high at all MLT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号