首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Analyses indicate that the Atlantic Ocean seasurface temperature (SST) was considerably colder at the beginning than in the middle of the century. In parallel, a systematic change in the North Atlantic sea-level pressure (SLP) pattern was observed. To find out whether the SST and SLP changes analyzed are consistent, which would indicate that the SST change was real and not an instrumental artifact, a response experiment with a low-resolution (T21) atmospheric GCM was performed. Two perpetual January simulations were conducted, which differ solely in the Atlantic Ocean (40° S-60° N) SST: the cold simulation utilizes the SSTs for the period 1904–1913; the warm simulation uses the SSTs for the period 1951–1960. Also, a control run with the model's standard SST somewhat between the cold and warm SST was made. For the response analysis, a rigorous statistical approach was taken. First, the null hypothesis of identical horizontal distributions was subjected to a multivariate significance test. Second, the level of recurrence was estimated. The multivariate statistical approaches are based on hierarchies of test models. We examined three different hierarchies: a scale-dependent hierarchy based on spherical harmonics (S), and two physically motivated ones, one based on the barotropic normal modes of the mean 300 hPa flow (B) and one based on the eigenmodes of the advection diffusion operator at 1000 hPa (A). The intercomparison of the cold and warm experiments indicates a signal in the geostrophic stream function that in the S-hierarchy is significantly nonzero and highly recurrent. In the A-hierarchy, the low level temperature field is identified as being significantly and recurrently affected by the altered SST distribution. The SLP signal is reasonably similar to the SLP change observed. Unexpectedly, the upper level stream-function signal does not appear to be significantly nonzero in the B-hierarchy. If, however, the pairs of experiments warm versus control and cold versus control are examined in the B-hierarchy, a highly significant and recurrent signal emerges. We conclude that the cold versus warm response is not a small disturbance that would allow the signal to be described by eigenmodes of the linear system. An analysis of the three-dimensional structure of the signal leads to the hypothesis that two different mechanisms are acting to modify the model's mean state. At low levels, local heating and advection are dominant, but at upper levels the extratropical signal is a remote responce to modifications of the tropical convection.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dilmenil.AWI Publication no. 254  相似文献   

2.
3.
4.
Dust particles frequently become mixtures of mineral dust and sea salt during their transport in the marine boundary layer, consequently growing in size, which causes changes in their settling velocities. In this study, the effect of sea salt on the gravitational settling of dust particles is investigated. Results show that the adhering of sea salt to dust particles can dramatically increase the gravitational settling of the particles, in particular if the particles become larger than 3–4 μm. Estimates with the observational data from six dust events in southwestern Japan revealed that, due to sea salt adhering, the gravitational settling flux of mineral dust increased approximately 14–17% in well-mixed events and 4–6% in less-mixed events, indicating a potential significant effect of sea salt on dust settling and the importance of considering this effect in the schemata of particle gravitational settling when mapping dust flux to the ocean.  相似文献   

5.
6.
Mineral dust aerosols represent an active component of the Earth’s climate system, by interacting with radiation directly, and by modifying clouds and biogeochemistry. Mineral dust from polar ice cores over the last million years can be used as paleoclimate proxy, and provide unique information about climate variability, as changes in dust deposition at the core sites can be due to changes in sources, transport and/or deposition locally. Here we present results from a study based on climate model simulations using the Community Climate System Model. The focus of this work is to analyze simulated differences in the dust concentration, size distribution and sources in current climate conditions and during the Last Glacial Maximum at specific ice core locations in Antarctica, and compare with available paleodata. Model results suggest that South America is the most important source for dust deposited in Antarctica in current climate, but Australia is also a major contributor and there is spatial variability in the relative importance of the major dust sources. During the Last Glacial Maximum the dominant source in the model was South America, because of the increased activity of glaciogenic dust sources in Southern Patagonia-Tierra del Fuego and the Southernmost Pampas regions, as well as an increase in transport efficiency southward. Dust emitted from the Southern Hemisphere dust source areas usually follow zonal patterns, but southward flow towards Antarctica is located in specific areas characterized by southward displacement of air masses. Observations and model results consistently suggest a spatially variable shift in dust particle sizes. This is due to a combination of relatively reduced en route wet removal favouring a generalized shift towards smaller particles, and on the other hand to an enhanced relative contribution of dry coarse particle deposition in the Last Glacial Maximum.  相似文献   

7.
 Decadal time scale climate variability in the North Pacific has implications for climate both locally and over North America. A crucial question is the degree to which this variability arises from coupled ocean/atmosphere interactions over the North Pacific that involve ocean dynamics, as opposed to either purely thermodynamic effects of the oceanic mixed layer integrating in situ the stochastic atmospheric forcing, or the teleconnected response to tropical variability. The part of the variability that is coming from local coupled ocean/atmosphere interactions involving ocean dynamics is potentially predictable by an ocean/atmosphere general circulation model (O/A GCM), and such predictions could (depending on the achievable lead time) have distinct societal benefits. This question is examined using the results of fully coupled O/A GCMs, as well as targeted numerical experiments with stand-alone ocean and atmosphere models individually. It is found that coupled ocean/atmosphere interactions that involve ocean dynamics are important to determining the strength and frequency of a decadal-time scale peak in the spectra of several oceanic variables in the Kuroshio extension region off Japan. Local stochastic atmospheric heat flux forcing, integrated by the oceanic mixed layer into a red spectrum, provides a noise background from which the signal must be extracted. Although teleconnected ENSO responses influence the North Pacific in the 2–7 years/cycle frequency band, it is shown that some decadal-time scale processes in the North Pacific proceed without ENSO. Likewise, although the effects of stochastic atmospheric forcing on ocean dynamics are discernible, a feedback path from the ocean to the atmosphere is suggested by the results. Received: 23 January 2000 / Accepted: 10 January 2001  相似文献   

8.
9.
Summary The most significant solar spectral radiation bursts that occurred during more than twelve-years observation period at an high altitude station are analyzed. It is shown that the number and amplitudes of solar spectral bursts increase when the solar activity (SA) maximum is approaching. A plausible mechanism of short-term variations of extra-atmospheric solar spectral irradiance (ETSSI) is discussed. It appears that a burst of ETSSI arises when the Earth is sporadically irradiated by a strong flux of induced violet-blue high coming out of magnetic flux tubes in the active region (AR) of the Sun. We confirm earlier conclusions that on the time-scale of decades there is a close relationship between variations in the areas of faculae, the solar constant, and surface air temperature. On the basis of these results we suggest that at the end of the 1930s, when the Sun was very active, its effective output was about 0.4%, and the surface temperature in the Northern hemisphere about 0.4°C, higher than in the first decade of the 20th century.With 5 Figures  相似文献   

10.
The NCEP twentieth century reanalyis and a 500-year control simulation with the IPSL-CM5 climate model are used to assess the influence of ocean-atmosphere coupling in the North Atlantic region at seasonal to decadal time scales. At the seasonal scale, the air-sea interaction patterns are similar in the model and observations. In both, a statistically significant summer sea surface temperature (SST) anomaly with a horseshoe shape leads an atmospheric signal that resembles the North Atlantic Oscillation (NAO) during the winter. The air-sea interactions in the model thus seem realistic, although the amplitude of the atmospheric signal is half that observed, and it is detected throughout the cold season, while it is significant only in late fall and early winter in the observations. In both model and observations, the North Atlantic horseshoe SST anomaly pattern is in part generated by the spring and summer internal atmospheric variability. In the model, the influence of the ocean dynamics can be assessed and is found to contribute to the SST anomaly, in particular at the decadal scale. Indeed, the North Atlantic SST anomalies that follow an intensification of the Atlantic meridional overturning circulation (AMOC) by about 9 years, or an intensification of a clockwise intergyre gyre in the Atlantic Ocean by 6 years, resemble the horseshoe pattern, and are also similar to the model Atlantic Multidecadal Oscillation (AMO). As the AMOC is shown to have a significant impact on the winter NAO, most strongly when it leads by 9 years, the decadal interactions in the model are consistent with the seasonal analysis. In the observations, there is also a strong correlation between the AMO and the SST horseshoe pattern that influences the NAO. The analogy with the coupled model suggests that the natural variability of the AMOC and the gyre circulation might influence the climate of the North Atlantic region at the decadal scale.  相似文献   

11.
The ocean response to surface temperature transients is simulated with the use of the Hamburg large-scale geostrophic (LSG) ocean general circulation model (OGCM). The transition, from the present to a climate corresponding to a doubling of the atmospheric CO2 content, is compared with the reversed transition. For the Atlantic, the time scale for the deep ocean to adjust to the temperature changes was similar for both transitions. In the Pacific, the time scale is shorter for the present to warm transition than for the reverse case, a result of increased production of Antarctic bottom water (AABW) during the warm climate. While the transition from cold to warm climate shows no secular variability, the reversed transition generates considerable variability on time scales of 300–400 years. For the warm climate, oscillations with periods of 45 years are found in the Southern Ocean. Results of principal oscillation pattern (POP) analysis indicate that these oscillations are due to interaction between convection in the Southern Ocean and advected salinity anomalies in the Antarctic Circumpolar Current (ACC) and the Southern Pacific Ocean. Received: 19 September 1995 / Accepted: 15 March 1996  相似文献   

12.
ResponseProcessofOceantoAtmosphericForcingandOptimalResponseFrequencyintheCZOceanModelNiYunqi(倪允琪),ZouLi(邹力)andWuAiming(吴爱明)(...  相似文献   

13.
The interannual to decadal variability of precipitation and daily maximum and daily minimum temperature (TMAX and TMIN) in southern Brazil for the 1913–2006 period is investigated using indices for these variables. Relations of these indices and the sea surface temperature (SST) variability in the eastern equatorial Pacific (Niño 3.4 index) and southwestern subtropical Atlantic (SSA index) are also investigated. Analyses are based on the Morlet wavelet transform. The interannual precipitation variability during the 1913–2006 period is mostly due to the high variances that occurred in specific sub-periods. The TMAX and TMIN indices also show significant interannual variability. The coherency and phase difference analyses of the precipitation index and the SST indices show higher coherency with the Niño 3.4 than with the SSA index. On the other hand, examining the coherencies and phase difference between the temperature indices and the SST indices, weaker coherencies with the Niño 3.4 index than with the SSA index are noted. These differences are discussed in the context of previous results. The new results here, with possible application for climate monitoring tasks, refer to the spectral differences between TMIN and TMAX.  相似文献   

14.
15.
Summary In this study, it is demonstrated that the amplitude of the equatorial upper-ocean zonal current anomaly induced by the fast-varying wind forcing (shorter than a year) is much greater than that induced by the slowly varying wind forcing (longer than 2 year), and the center of maximum zonal current anomaly shifts from the central Pacific to the western Pacific with an increase in the timescale of wind forcing. As a result, the zonal advective feedback (the zonal advection of mean sea surface temperature by anomalous current) in a slowly varying climate system becomes weaker and barely induces a low-frequency mode such as El Niño-Southern Oscillation. On the other hand, both amplitude and zonal location of the maximum thermocline anomaly are little changed by the change in the timescale of wind forcing – confined at the strong equatorial upwelling region of the eastern Pacific. Accordingly, the thermocline feedback (the vertical advection of anomalous subsurface temperature by the mean upwelling) is more favorable to generate a low-frequency mode.The relative roles of these two feedbacks are further explored under the coupled-system context. The eigen analysis of the stripped-down version of an intermediate ocean-atmosphere coupled model shows that by altering the regime space from the weakly coupled to the strongly coupled, the dominant process that leads the leading eigen mode changes from the zonal advective feedback to the thermocline feedback, and at the same time the frequency of the leading mode also changes from the high-frequency to the low-frequency. It implies that each feedback tends to favor the different timescale coupled mode.  相似文献   

16.
17.
Northern China has been subject to increased heatwave frequency (HWF) in recent decades, which deteriorates the local droughts and desertification. More than half a billion people face drinking water shortages and worsening ecological environment. In this study, the variability in the western Tibetan Plateau snow cover (TPSC) is observed to have an intimate linkage with the first empirical orthogonal function mode of the summer HWF across China. This distinct leading mode is dominated by the decadal to inter-decadal variability and features a mono-sign pattern with the extreme value center prevailing over northern China and high pressure anomalies at mid- and upper troposphere over Mongolia and the adjacent regions. A simplified general circulation model is utilized to examine the possible physical mechanism. A reduced TPSC anomaly can induce a positive geopotential height anomaly at the mid- and upper troposphere and subsequently enhance the climatological high pressure ridge over Mongolia and the adjacent regions. The subsidence associated with the high pressure anomalies tends to suppress the local cloud formation, which increases the net radiation budget, heats the surface, and favors more heatwaves. On the other hand, the surface heating can excite high pressure anomalies at mid- and upper troposphere. The latter further strengthens the upper troposphere high pressure anomalies over Mongolia and the adjacent regions. Through such positive feedback effect, the TPSC is tied to the interdecadal variations of the northern China HWF.  相似文献   

18.
Recent studies show that mid-latitude SST variations over the Kuroshio-Oyashio Extension influence the atmospheric circulation. However, the impact of variations in SST in the Gulf Stream region on the atmosphere has been less studied. Understanding the atmospheric response to such variability can improve the climate predictability in the North Atlantic Sector. Here we use a relatively high resolution (~1°) Atmospheric General Circulation Model to investigate the mechanisms linking observed 5-year low-pass filtered SST variability in the Gulf Stream region and atmospheric variability, with focus on precipitation. Our results indicate that up to 70 % of local convective precipitation variability on these timescales can be explained by Gulf Stream SST variations. In this region, SST and convective precipitation are strongly correlated in both summer (r = 0.73) and winter (r = 0.55). A sensitivity experiment with a prescribed local warm SST anomaly in the Gulf Stream region confirms that local SST drives most of the precipitation variability over the Gulf Stream. Increased evaporation connected to the anomalous warm SST plays a crucial role in both seasons. In summer there is an enhanced local SLP minimum, a concentrated band of low level convergence, deep upward motion and enhanced precipitation. In winter we also get enhanced precipitation, but a direct connection to deep vertical upward motion is not found. Nearly all of the anomalous precipitation in winter is connected to passing atmospheric fronts. In summer the connection between precipitation and atmospheric fronts is weaker, but still important.  相似文献   

19.
Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years.It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cover over QXP not only in the interannual variation but also in the decadal variation. A clear relationship exists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four climate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号