首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rubidium and strontium determinations are reported for Godhra and geographically related granites from central Gujarat. The whole rock data define a Rb-Sr isochron corresponding to a common age of 955±20 m.y. and initial Sr ratio of 0·7130±0·001. This age is distinctly older than the age of 735 m.y. reported for the Erinpura suite of rocks from Mount Abu in western Rajasthan and from Idar in northern Gujarat. There are at least two generations of post-Delhi intrusive rocks in the Gujarat precambrian. Biotites associated with these granites have the same age as the whole-rocks within experimental error indicating the absence of significant metamorphic heating since the time of emplacement. It is significant that rocks of similar age occur in the Rajasthan Precambrian mainly in the axial zone of the Aravalli Mountains.  相似文献   

2.
Rb-Sr isochron ages have been determined for two suites of Precambrian dikes in the Bidadi-Harohalli area of southeast Mysore State. Whole-rock samples of unmetamorphosed dolerites yield an age of 2420±246 (2σ) m.y., which is a minimum value for the intruded Peninsular Gneiss and Closepet Granite. The dolerite magma originated in the mantle, as indicated by the initial 87Sr/86Sr ratio of 0.7012±0.0010 (2σ). A suite of alkaline dikes, also referred to as felsite and feldspar porphyry dikes, has an age of 832±40 (2σ) m.y., which correlates with the intrusion of the Chamundi Hill Granite and the feldspar porphyry dikes near Srirangapatnam. One of the alkaline dikes has a K-Ar age of 810±25 m.y., indicating an absence of subsequent thermal events in the area.  相似文献   

3.
Archaean crustal thickness for the Dharwar craton is estimated using potash index and Rb?Sr crustal thickness grid. The volcanics of the Dharwar greenstone belts appear to have evolved in a less than 20 km thick crust. Whereas the tonalite-trondhjemite pebbles of the Dharwar conglomerates (3250±150 m.y.) were derived from gneisses that evolved in a crust less than 20 km thick, the bulk of the peninsular gneisses and associated granitoids were emplaced in a crust 25 to 35 km thick. The 2000 m.y. old Closepet granite suite was emplaced in a crust thicker than 30 km. It is deduced that the continental crust in the region thickened from 15 to 35 km during a span of about 1000 m.y. between 3250±150 to 2000 m.y. ago. Calculations show that Archaean gecthermal gradients in Dharwar craton were three to four times steeper when compared to the present 10.5°C/km. The thin crust and the steep geothermal gradients are reflected by the emplacement of high magnesia basalts, layered igneous complexes and the strong iron enrichment trend shown by Dharwar metavolcanics.  相似文献   

4.
Proposed igneous and metamorphic ages of the shergottites, a suite of achondritic basaltic meteorites, are examined in terms of the shergottites' petrography and mineral chemistry. No metamorphic or hydrothermal event appears capable of resetting the refractory Sr and Nd isotopic systems of the shergottites since the time of their igneous crystallization. The approximately concordant Rb-Sr (180 ± 20 m.y.) and U-Th-Pb (190 ± 30 m.y.) internal “isochrons” are thus interpreted as representing the time of igneous crystallization. The Sm-Nd internal “isochrons” which yield older apparent ages also show large scatter and are regarded as artifacts of the shergottites' complex igneous history. Rubidium-Sr, Sm-Nd and Pb-Pb wholerock “isochrons” are interpreted as mixing lines and are reasonably attributed to igneous processes such as wall-rock assimilation and magma mixing. If the shergottites are indeed less than 200 m.y. old, they represent the youngest known extraterrestrial basalts. This conclusion is supportive of the hypothesis that the SNC meteorites are samples of the planet Mars.  相似文献   

5.
The Adelaide System forms the uppermost Precambrian sequence in South Australia and the Wooltana Volcanics lie near its base. Though affected by Palaeozoic metamorphism, the least‐altered samples give a minimum age of 850 ± 50 m.y., so that the base of the System is about 900 m.y. old or more. The unmetamorphbsed Roopena Volcanics of northeastern Eyre Peninsula are 1,345 ± 30 m.y. old and if correlated with the Wooltana Volcanics the base of the system becomes about 1,400 m.y. old. The data for the Wooltana Volcanics are consistent with this, provided that even the least‐altered total‐rock samples were open systems during the later metamorphism. Ages of basement in the Mount Painter and Olary districts (1,600 m.y.) and data for Willouran shales overlying the Wooltana Volcanics can fit both minimum and maximum estimates for the Volcanics.

Lower Cambrian shales give a range of 530–690 m.y.; though some Palaeozoic isotopic movement occurred, the ages are approximately correct. Shales from the top of the Torrensian Series range from 660–840 m.y. (700 m.y. preferred value). If the base of the system is at 1,400 m.y., this is surprisingly young. It suggests either a hiatus between the Wooltana Volcanics and the Torrensian or that the correlation of the former with the Roopena Volcanics is wrong (and that the base is at about 900 m.y.). Alternatively, the shales may be abnormally updated.

The Gawler Range Volcanics of Eyre Peninsula have been dated accurately at 1,535 ± 25 m.y. and illitic shale from the penecontemporaneous Corunna Conglomerate gives nearly the same value. These ages indirectly set a maximum for the age of the base of the system, as stratigraphy suggests that they are older. Granites underlying the Gawler Range Volcanics are about 1,600 m.y. old; some may be 1,800 m.y. old.

Final Palaeozoic metamorphism in the northern Flinders Ranges was at 465 m.y. The ages of several post‐orogenic intrusions are given.  相似文献   

6.
Situated within the crystalline metamorphic complex of Champtoceaux NE of Nantes, the orthogneiss of La Picherais (near St Mars-du-Désert, Loire Atlantique, France) show relicts of a granulite facies paragenesis. Comparison with other granulitic rocks in the Hercynian fold-belt suggest possible ages ranging from Lower Proterozoic to Phanerozoic. The Rb-Sr whole rock method yields an errorchron of 570±110 m.y. for the Picherais orthogneiss, whereas the U-Pb zircon method indicates an upper intersection on Concordia at 1,880±120 m.y. and a lower intersection at 423±10 m.y. Several interpretations are possible for these data: the granite emplacement age was (1) 1,900 m.y. ago. (2) more likely Upper Proterozoic — Lower Palaeozoic. The zircons concordant at 1,900 m.y. were either present in the granitic magma at its time of origin or were introduced into the magma during emplacement. These zircons could be derived from sedimentary horizons such as found in the Lower Ordovician sandstones of the Armorican massif whose zircon age data are presented here.  相似文献   

7.
A detailed Rb‐Sr total‐rock and mineral and U‐Pb zircon study has been made on suites of Proterozoic silicic volcanic rocks and granitic intrusions, from near Mt Isa, northwest Queensland. Stratigraphically consistent U‐Pb zircon ages within the basement igneous succession show that the oldest recognized crustal development was the outpouring of acid volcanics (Leichhardt Metamorphics) 1865 ± 3 m.y. ago, which are intruded by coeval, epizonal granites and granodiorites (Kalkadoon Granite) whose pooled U‐Pb age is 1862 +27 ‐21 m.y. A younger rhyolitic suite (Argylla Formation) within the basement succession has an age of 1777 ± 7 m.y., and a third acid volcanic unit (Carters Bore Rhyolite), much higher again in the sequence, crystallized 1678 ± 1 m.y. ago.

All of these rocks are altered in various degrees by low‐grade metamorphic events, and in at least one area, these events were accompanied by, and can be partly related to, emplacement of a syntectonic, foliated granitic batholith (Wonga Granite) between 1670 and 1625 m.y. ago. Rocks that significantly predate this earliest recognized metamorphism, have had their primary Rb‐Sr total‐rock systematics profoundly disturbed, as evidenced by 10 to 15% lowering of most Rb‐Sr isochron ages, and a general grouping of many of the lowered ages (some of which are in conflict with unequivocal geological relationships) within the 1600–1700 m.y. interval. Such isochrons possess anomalously high initial 87Sr/86Sr ratios, and some have a slightly curved array of isotopic data points. Disturbance of the Rb‐Sr total‐rock ages is attributed primarily to mild hydrothermal leaching, which resulted in the loss of Sr (relatively enriched in 87Sr in the Sr‐poor (high Rb/Sr) rocks as compared with the Sr‐rich rocks).  相似文献   

8.
Pb isotopic ages of some Precambrian rocks from North China were determined. New data from the Chuanlinggou Formation of the Great Wall Group in the Yanshan region, together with published data, show that their whole-rock Pb-Pb isochron age is 1,922±92 (δ) m.y. Thus, 2,000±100 m.y. as the lowest age of the Sinian Geochronological Scale of China is important. In view of the fact that the whole-rock Pb-Pb isochron age from the Liaohe Group in Liaoning Province is estimated to be 1,977±49 (δ) m.y., which is in agreement with the possible maximum deposition age calculated from Rb?Sr data, we prefer to consider the Liaohe Group to be Sinian rather than pre-Sinian in age. Zircon, apatite and other minerals from the Tiejiashan granitic gneiss at Anshan, Liaoning Province, lie on two U-Pb discordant lines with ca. 3,300 and 2,800 m.y. respectively. Zircon, on the discordia with 3,300 m.y., is non-magnetic and free from dark inclusions. Apatite with common Pb isotopic composition, lying on the line of older age, is close to the concordia, indicating that it has not undergone any geological thermal events since it was formed. Zircon and apatite with inclusions and magnetism lie on the discordia of younger age. A U-Pb age of ca. 3,300 m.y. for the Tiejiashan granitic gneiss seems to be possible. However, it is necessary to examine the ages of these rocks with Rb?Sr and other methods in the future. A precursory Precambrian Geochronological Scale of China is propsed based on the Sinian Geochronological Scale of China published in 1977[1] as well as on new data from this study.  相似文献   

9.
王松山 《地质科学》1983,(4):315-323
同位素地质年龄标准样的建立,是一项重要的基础工作,它在检查和比较各种实验流程,衡量各种定年方法的可信度,标定同位素稀释剂等方面,都是必不可少的。从1977年初开始,我国同位素地质标准样小组着手建立K-Ar法标准样。为了外检,笔者曾将ZBH-25黑云母、ZBJ角闪石带到澳大利亚国立大学地球科学院进行测定。这两个样品的K-Ar稀释法年龄、40Ar/39Ar坪年龄及40Ar/39Ar等时年龄的一致性表明,这些矿物结晶以后,未受过热的挠动,也不存在过剩氩,是作标准样的理想样品。本文还介绍样品中放射成因40Ar的析出特征,并指出40Ar可能有两种存在状态,它们各具不同的晶格能。  相似文献   

10.

Based on the evolutionary theory of U-Pb isotopic system, we have studied the genetic model for a uranium deposit occurring in carbonate-silicolite-pelite. The data show that the U-deposit is characterized by a multi-stage evolution with respect to its U-Pb isotopic system, and the mechanism of its genesis can be explained by later repeated superimposition of mine-ralization which took place at about 200±10m. y., 100±10m. y., 60±10m. y. and 11±1m. y. ago. These mineralization stages are closely related to regional tectonic activities.

  相似文献   

11.
The Gaik Granite is a part of the Ladakh batholith outcropping between Gaik and Kiari in NW Himalaya. This is a pink porphyritic granite rich in biotite and poor in hornblende. Rb-Sr analyses have been made on six whole-rock samples of the Gaik Granite. Though the samples are poorly enriched in radiogenic Sr, they define a reliable isochron corresponding to an age of 235±13 (2σ) m.y. and initial87Sr/86Sr ratio of 0·7081±0·0004 (2σ). Biotite, plagioclase and potash feldspar fractions separated from two of the samples have yielded a much younger mineral isochron at 30±1·5 m.y. indicating a nearly complete redistribution of Sr isotopes between mineral phases at a time much later than the primary emplacement of the granite. The present results show that at least some components of the Ladakh batholith are of Permo-Triassic age. These rocks were isotopically re-equilibrated on a mineral scale during Upper Oligocene in response to the Himalayan orogeny.  相似文献   

12.
Fission‐track ages have been determined on sphene and apatite from 28 granitic intrusions across the western half of Victoria. The sphene ages compare closely with independent K‐Ar biotite ages for the same intrusions, where these are available, and are invariably older than apatite ages by 35 to 135 m.y. This is in accord with the effective geological track annealing temperatures for these two minerals which are estimated to be 260 ± 20°C and 80 ± 10°C respectively. Both sphene and apatite ages decrease from west to east across western Victoria, the sphenes ranging from 470 ± 28 to 355 ± 19 m.y. The Wando Vale granodiorite and Dergholm granite from the Dundas Tableland of far‐western Victoria have sphene ages of 470 ± 28 m.y. and 452 ±16 m.y. respectively, clearly suggesting a relationship to the Ordo‐vician granitic rocks of southeastern South Australia. Fission‐track ages from the numerous post‐tectonic granites in the Ballarat Trough fall into two distinct groups. Rocks from the western area have sphene ages in the relatively narrow range 393 ± 14 m.y. suggesting emplacement in the Early Devonian time whereas those in the east have sphene ages of 362 ± 7 m.y. (near the Devonian‐Carboniferous boundary). Over the temperature interval recorded by sphene‐apatite pairs, cooling of the granitic rocks was very slow ranging from 0.8 to 5.3°C/m.y. Cooling in this range was probably controlled by uplift and erosion of overburden during a long period of post‐tectonic relaxation. Corresponding uplift rates are estimated to be 0.03 to 0.18 km/ m.y. assuming a normal continental geothermal gradient of 30°C/km. Below 80°C average cooling and uplift rates were probably about l°C/m.y. and 0.03 km/m.y. respectively so that cooling was essentially complete within about 80 m.y. of the apatite ages.  相似文献   

13.
Palaeomagnetic correlation in southern Africa predicts that the age of the Mashonaland dolerites of Rhodesia is confined within the limits of the age of the Waterberg System of South Africa, viz., between 1,950 m.y. and about 1,750 m.y. Rb-Sr data from the dolerites confirm this prediction. One sample gave a mineral isochron of 1,850 ± 20 m.y., which may be the true age of emplacement and is certainly a reliable minimum estimate for it. Total rock samples from nine dykes define an isochron of age 1,910 ± 280 m.y. and initial 87Sr/86Sr of 0.705 ? 0.002. In addition to variation in initial 87Sr/86Sr between dykes, there is also variation between minerals within single dykes presumeably due to contamination during crystallization and/or deuteric alteration.  相似文献   

14.
The Bathurst batholith is a complex of massive granitic intrusions cutting across deformed early and middle Palaeozoic rocks of the Lachlan Fold Belt of New South Wales. An adamellite from Dunkeld, near the western edge of the batholith, has yielded K‐Ar ages of 304 ± 4 m.y. (total‐rock) and 301 ± 6 m.y. (biotite).

Recalculated radiometric ages on rocks from the eastern end (Hartley) and northern edge (Yetholme), together with the new data from the western end (Dunkeld) of the Bathurst batholith yield a mean age of emplacement of 310 m.y. (8 values, standard deviation = 6.8 m.y.). This age is supported by Re‐Os data from molybdenite at Yetholme. As yet these data do not allow establishment of temporal relationships between separate intrusive phases of the Bathurst batholith, although the Durandal Adamellite at Yetholme appears to be the oldest phase yet dated.  相似文献   

15.
Extensive exploration and mining at Kambalda, Western Australia has revealed a conformable mafic-ultramafic succession consisting of a sulphide ore bearing ultramafic layer located between metabasalt units. Geochemical and Rb-Sr, U-Pb isotopic analyses have been carried out on two 70–140 m sections of drill core from the metabasalts and U-Pb isotopic analyses have been made on sulphide ore samples. Greenschist metamorphism of the metabasalts is dated at 2610 ± 30 m.y. and was approximately isochemical except for addition of H2O and CO2 and a differential mobilization of K and Rb within the units. The addition of H2O and CO2 is believed to have taken place shortly after extrusion of the metabasalts in a submarine environment resulting in an early greenschist metamorphism. The later 2600 m.y. event is correlated with a high thermal regime also detected at Kalgoorlie 50 km to the north. A Pb-Pb isochron age of 2720 ± 105 m.y. may represent the metamorphic event or the time of emplacement of the metabasalts. New Sm-Nd data (Chauvelet al.; claqué--Longet al.) suggest the mafic volcanics are 3200 m.y. old. If true large scale homogenization of Pb isotopes is required. Alternatively the mafic sequence may be only slightly older than 2800 m.y. and the Sm-Nd data does not have time significance.  相似文献   

16.
Zircon ages from major lithologies of the Zentralgneis suggest that much of the Variscan magmatism in the Tauern Window is older than previously suggested. In the southeast Tauern Window a tonalite has been dated at 314±7 m.y. and a granodioritic biotite augen gneiss at 313±10 m.y. Two granodiorites from the Granatspitzkern yielded zircon data consistent with a similar age. These zircon data require re-interpretation of some previously published Rb-Sr whole rock ages and raise the possibility that Alpine metamorphism caused more widespread disturbance of Rb-Sr whole rocks than commonly supposed. Rb-Sr data on fabric-forming white micas from two banded gneisses give ages close to 220 m.y., indicating the foliation in these rocks is pre-Alpine and has not been greatly affected by Alpine recrystallisation.  相似文献   

17.
The Ormakam-Moldhesten granite, from the Stavanger area, South Norway, has been dated by the Rb-Sr whole rock method. The isochron ages obtained (1180 m.y., 1243 ±160m.y. and 1534±125 m.y.) show that the granite complex is of Precambrian age. The 1543 m. year age is thought to refer to a period of early granulite facies metamorphism, the 1180 m.y. isochron age is taken as the crystallisation age of a later intrusion of biotite granite. This is within the limits of error of the 1160 m.y. metamorphic event shown earlier to have affected the paragneisses in the area. The results demonstrate clearly the allochthonous position of the gneisses and granitic intrusives overlying the fossiliferous Cambrian beds in the Stavanger area. The tectonostratigraphic succession in this area is thus consistent with the observation of Precambrian nappes to the north (Hardangervidda-Ryfylke area).  相似文献   

18.
RbSr isotopic analyses of 10'whole-rock samples from the controversial peralkaline Norra Kärr complex of southern Sweden suggest an age (1580±62 m.y.) considerably older than had previously been anticipated, and indicate an initial 87Sr/86Sr ratio of 0.7072±0.0035 (errors at 2σ). The isotopic data are consistent with a primary magmatic origin for the Norra Kärr agpaites, but data from 8 mineral separates show that they have experienced at least one period of metamorphic disturbance since the original intrusion; the last episode of isotopic readjustment must have occurred after 1250 m.y. before present, and is attributed to the Sveconorwegian (Grenville) metamorphism.  相似文献   

19.
The Table Hill Volcanics of the Officer Basin were first dated as approximately 1100 m.y. from Rb‐Sr model ages for total‐rock samples of basalt from the Yowalga No. 2 bore. Later regional mapping, however, places the Volcanics as Marinoan (very late Precambrian) or younger, and receives support from discordant K‐Ar ages ranging from 330 m.y. to 445 m.y. New total‐rock analyses confirm the original Rb‐Sr data, but analyses of separated minerals do not confirm the low value for the initial 87Sr/86Sr that had been assumed to calculate the 1100 m.y. model age. Instead, apparently‐unaltered primary pyroxenes indicate that the initial 87Sr/86Sr could be as high as 0.718. Combined with the total‐rock results, this yields an apparent age for the basalt of 575 ± 40 m.y. It is possible in principle that the high 87Sr/86Sr in the pyroxenes could be due to Sr isotope exchange during a Palaeozoic metamorphism, but there is absolutely no field or petrological evidence for such an event. Consequently, and in view of the stratigraphic evidence for their age, the Rb‐Sr data are best interpreted as signifying an original extrusion of the basalts at 575 ± 40 m.y., together with a prehistory of the magma that includes contamination with radiogenic Sr and alkalis from Precambrian crustal material.  相似文献   

20.
Most of the rocks of the Murrumbidgee Batholith have a Rb‐Sr age of 424 ± 2 m.y. This is considered to be the time of emplacement. A small difference in the ages (4 ± 2 m.y.) between the northern and southern parts of the batholith is attributed to thermal effects caused by a slightly later time of emplacement of some of the intrusions or to a short cooling interval. Final intrusive activity ended by 414 ± 4 m.y. Younger mineral ages for some intrusions are related to later local meta‐morphic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号