首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MT and reflection: an essential combination   总被引:3,自引:0,他引:3  
Summary. At many localities in the world there have been coincident comprehensive electromagnetic (EM) studies and seismic reflection profiles conducted. Unfortunately, over many more regions the seismic reflection images are interpreted without the constraints afforded by electrical conductivity information. This paper is an attempt to convince the reader that a collocated magnetotelluric (MT) study should, in almost every case, be made wherever a seismic reflection survey is undertaken. Examples are shown from six studies in which the EM results aided the geological/tectonic interpretations of the seismic sections.
Also, difficulties with the MT technique are discussed, and the interpretations of conducting zones within the lower crust are examined. Finally, a generalised model is proposed for the continental crust that may account for both the reflectivity and conductivity of the zone at the top of the lower crust.  相似文献   

2.
《Basin Research》2018,30(Z1):124-141
The structural complexity of back‐arc basins is related to the evolution of the associated subduction system. Here, we present an integrated geophysical and geological study that constrains the 3D spatial variability of magmatic activity along the Tyrrhenian back‐arc basin. We use wide‐angle seismic and gravity data, acquired in 2010 within the MEDOC experiment along a ~300 km‐long NW‐SE transect that extends from SE Sardinia Island to the NW Sicily continental margin, across the Cornaglia Terrace. The geophysical transect is coincident with a seismic reflection line from the Italian CROP experiment that we have re‐processed. The geophysical results, together with available basement dredges, support a basement along the profile fundamentally composed of continental‐type rocks, locally affected by subduction‐related magmatism. The continental nature of this region contrasts with the nature of the basement inferred along two geophysical cross‐sections located to the north of the Cornaglia Terrace in which seismic velocity of the lower crust supports significant magmatic crustal accretion. The comparison of these three cross‐sections supports that the highest magmatic activity occurred in the central and most extended region of the basin, whereas it was less important in the North and practically nonexistent in the South. These observations indicate abrupt variations of magmatism during the basin formation. As in other back‐arcs, the temperature, water content and composition of the mantle might have played an important role in such variation, but they fail to explain the abruptness of it. We propose that the interaction of the overriding continental lithospheres of Adria and Africa with the Apenninic‐Calabrian subduction system caused changes in slab rollback and trench retreat dynamics, which in turn resulted in variations of back‐arc stretching and magmatism. Based on our observations, we suggest that the Cornaglia Terrace formation process might share some similarities with the formation of oceanic crust in the Red Sea.  相似文献   

3.
Summary. Fold belts form due to shortening of deep basins on oceaic and continental crust. Basins on the oceanic crust should be characterized by a pronounced seismic anisotropy in the mantle lithosphere. Deep basins on the continental crust may develop from the stretching or the destruction of the lower crust under asthenospheric upwelling. These processes can produce seismic anisotropy in both the crust and mantle lithosphere. The character of the anisotropy is different for different basin forming processes. Considerable anisotropy should also arise from compression of the crust and mantle in fold belts. The formation of fold belts produces the original seismic anisotropy in continental lithosphere.  相似文献   

4.
Deep seismic reflection profiles across the western Barents Sea   总被引:1,自引:0,他引:1  
Summary. The continental crust beneath the western Barents Sea has been acoustically imaged down to Moho depths in a large scale deep seismic reflection experiment. A first-order pattern of crustal reflectivity has been established and the thickness of the crust determined. A number of features with important implications for the tectonics of the area have been discovered. The results are presented in the form of two transects.  相似文献   

5.
The deep seismic reflection profile Western Approaches Margin (WAM) cuts across the Goban Spur continental margin, located southwest of Ireland- This non-volcanic margin is characterized by a few tilted blocks parallel to the margin. A volcanic sill has been emplaced on the westernmost tilted block. The shape of the eastern part of this sill is known from seismic data, but neither seismic nor gravity data allow a precise determination of the extent and shape of the volcanic body at depth. Forward modelling and inversion of magnetic data constrain the shape of this volcanic sill and the location of the ocean-continent transition. The volcanic body thickens towards the ocean, and seems to be in direct contact with the oceanic crust. In the contact zone, the volcanic body and the oceanic magnetic layer display approximately the same thickness. The oceanic magnetic layer is anomalously thick immediately west of the volcanic body, and gradually thins to reach more typical values 40 km further to the west. The volcanic sill would therefore represent the very first formation of oceanic crust, just before or at the continental break-up. The ocean-continent transition is limited to a zone 15 km wide. The continental magnetic layer seems to thin gradually oceanwards, as does the continental crust, but no simple relation is observed between their respective thinnings.  相似文献   

6.
New multichannel seismic reflection data were collected over a 565 km transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350 km of the profile: (1) continental crust; (2) transitional basement and (3) oceanic crust. Continental crust thins over a wide zone (∼160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastwards beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landwards by a basement high that may consist of serpentinized peridotite and seawards by a pair of basement highs of unknown crustal origin. Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle, although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landwards of magnetic anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ∼138 Ma (Valanginian) in the south (southern Newfoundland Basin) to ∼125 Ma (Barremian–Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.  相似文献   

7.
Summary. Deep seismic reflection profiling, as well as geologic studies, indicate that extensional basins are a common feature of continental crust. The wide-spread occurrence of extensional basins, combined with published models on the effects of extension on lower crustal rocks, suggests that extensional processes play an important role in the evolution of continental crust. Extension is now recognized to have been the last major tectonic event to affect approximately 50% of the United States. This observation and (he preservation of extensional features in areas which have experienced subsequent episodes of compression, suggests that extensional processes may lead to a strengthening of continental crust. In areas of active extension such as the western United States, seismic and petrologic data, as well as theoretical modeling of heat flow data, suggests that the lower crust may be predominantly intrusive igneous material emplaced during extension and that the present Mohorovicic discontinuity formed during extension. Although the interpretation of the various data is somewhat speculative, we suggest that the volume of continental material in some areas has doubled as a result of extension. Thus, extension may result in the addition of a significant amount of new material to the continents.  相似文献   

8.
Expanding spread profile at the northern Jan Mayen Ridge   总被引:1,自引:0,他引:1  
An expanding spread seismic profile at the central northern Jan Mayen Ridge, ESP-5, has yielded a crustal seismic velocity distribution which is similar to observations from the thinned continental crust at the Norwegian continental margin. The profile reveals a post-early Eocene sedimentary sequence, about 1. 5 km thick, overlying 1 km of volcanic extrusives and interbedded sediments. Below, there are about 3 km of pre-opening sediments above the seismic basement. The results indicate that the main ridge block is underlain by a thinned crust, possibly only 13.5 km thick. The results are compatible with a continental nature for the main ridge complex.  相似文献   

9.
Assessing seismic hazard in continental interiors is difficult because these regions are characterized by low strain rates and may be struck by infrequent destructive earthquakes. In this paper, we provide an example showing that interpretations of seismic cross sections combined with other kinds of studies such as analysis of microseismicity allow the whole seismogenic source area to be imaged in this type of region. The Middle Durance Fault (MDF) is an 80-km-long fault system located southeastern France that has a moderate but regular seismicity and some palaeoseismic evidence for larger events. It behaves as an oblique ramp with a left-lateral-reverse fault slip and has a low strain rate. MDF is one of the rare slow active fault system monitored by a dedicated dense velocimetric short period network. This study showed a fault system segmented in map and cross section views which consists of staircase basement faults topped by listric faults ramping off Triassic evaporitic beds. Seismic sections allowed the construction of a 3-D structural model used for accurate location of microseismicity. Southern part of MDF is mainly active in the sedimentary cover. In its northern part and in Alpine foreland, seismicity deeper than 8 km was also recorded meaning active faults within the crust cannot be excluded. Seismogenic potential of MDF was roughly assessed. Resulting source sizes and estimated slip rates imply that the magnitude upper limit ranges from 6.0 to 6.5 with a return period of a few thousand years. The present study shows that the coupling between 3-D fault geometry imaging and accurate location of microseismicity provides a robust approach to analyse active fault sources and consequently a more refined seismic hazard assessment.  相似文献   

10.
Geophysical data from the Amazon Cone Experiment are used to determine the structure and evolution of the French Guiana and Northeast Brazil continental margin, and to better understand the origin and development of along-margin segmentation. A 427-km-long combined multichannel reflection and wide-angle refraction seismic profile acquired across the southern French Guiana margin is interpreted, where plate reconstructions suggest a rift-type setting.
The resulting model shows a crustal structure in which 35–37-km-thick pre-rift continental crust is thinned by a factor of 6.4 over a distance of ∼70  km associated with continental break-up and the initiation and establishment of seafloor spreading. The ocean–continent boundary is a transition zone up to 45  km in width, in which the two-layered oceanic-type crustal structure develops. Although relatively thin at 3.5–5.0  km, such thin oceanic crust appears characteristic of the margin as a whole.
There is no evidence of rift-related magmatism, either as seaward-dipping sequences in the reflection data or as a high velocity region in the lower crust in the P -wave velocity model, and as a such the margin is identified as non-volcanic in type. However, there is also no evidence of the rotated fault block and graben structures characteristic of rifted margins. Consequently, the thin oceanic crust, the rapidity of continental crustal thinning and the absence of characteristic rift-related structures leads to the conclusion that the southern French Guiana margin has instead developed in an oblique rift setting, in which transform motion also played a significant role in the evolution of the resulting crustal structure and along-margin segmentation in structural style.  相似文献   

11.
During May 1990 and January-February 1991, an extensive geophysical data set was collected over the Côte d'Ivoire-Ghana continental margin, located along the equatorial coast of West Africa. The Ghana margin is a transform continental margin running subparallel to the Romanche Fracture Zone and its associated marginal ridge—the Côte d'Ivoire-Ghana Ridge. From this data set, an explosive refraction line running ∼ 150 km, ENE-WSW between 3°55'N, 3°21'W and 4°23'N, 2°4'W, has been modelled together with wide-angle airgun profiles, and seismic reflection and gravity data. This study is centred on the Côte d'Ivoire Basin located just to the north of the Côte d'Ivoire-Ghana Ridge, where bathymetric data suggest that a component of normal rifting occurred, rather than the transform motion observed along the majority of the equatorial West African margin.
Traveltime and amplitude modelling of the ocean-bottom seismometer data shows that the continental Moho beneath the margin rises in an oceanward direction, from ∼ 24 km below sea level to ∼ 17 km. In the centre of the line where the crust thins most rapidly, there exists a region of anomalously high velocity at the base of the crust, reaching some 8 km in thickness. This higher-velocity region is thought to represent an area of localized underplating related to rifting. Modelling of marine gravity data, collected coincident with the seismic line, has been used to test the best-fitting seismic model. This modelling has shown that the observed free-air anomaly is dominated by the effects of crustal thickness, and that a region of higher density is required at the base of the crust to fit the observed data. This higher-density region is consistent in size and location with the high velocities required to fit the seismic data.  相似文献   

12.
Large Igneous Provinces (LIP) are of great interest due to their role in crustal generation, magmatic processes and environmental impact. The Agulhas Plateau in the southwest Indian Ocean off South Africa has played a controversial role in this discussion due to unclear evidence for its continental or oceanic crustal affinity. With new geophysical data from seismic refraction and reflection profiling, we are able to present improved evidence for its crustal structure and composition. The velocity–depth model reveals a mean crustal thickness of 20 km with a maximum of 24 km, where three major units can be identified in the crust. In our seismic reflection records, evidence for volcanic flows on the Agulhas Plateau can be observed. The middle crust is thickened by magmatic intrusions. The up to 10 km thick lower crustal body is characterized by high seismic velocities of 7.0–7.6 km s−1. The velocity–depth distribution suggests that the plateau consists of overthickened oceanic crust similar to other oceanic LIPs such as the Ontong-Java Plateau or the northern Kerguelen Plateau. The total volume of the Agulhas Plateau was estimated to be 4 × 106 km3 of which about 10 per cent consists of extruded igneous material. We use this information to obtain a first estimate on carbon dioxide and sulphur dioxide emission caused by degassing from this material. The Agulhas Plateau was formed as part of a larger LIP consisting of the Agulhas Plateau itself, Northeast Georgia Rise and Maud Rise. The formation time of this LIP can be estimated between 100 and 94 (± 5) Ma.  相似文献   

13.
Abstract Rifted margin architecture along part of the southern Gabonese margin is interpreted from four deep-penetration, multichannel seismic reflection (MCS) profiles. A series of synthetically faulted crustal blocks are identified, separated by dominantly seaward-dipping fault zones formed during Cretaceous rifting between Africa and South America. Extensional strain ratios are ≅ 1.5. These faults appear either to transect the entire crustal section or are interrupted by discontinuous zones of midcrustal reflections which may represent detachments.
Outer acoustic basement highs are situated just seaward of the continental slope. On the combined basis of seismic geometry, an associated positive magnetic anomaly and an increase in free-air gravity, these outer highs are interpreted to mark faulted transitions from rifted continental crust to 'proto-oceanic crust', presumably composed of mafic volcanic rocks and possibly slivers of attenuated continental crustal blocks. The outer edge of Aptian salt lies °165 km south-west of the edge of the continental shelf. The salt forms an° 1.5-km-thick horizon overlying the outer highs, and it may be autochthonous there, suggesting salt was deposited contemporaneously with emplacement of proto-oceanic crust.
Differential subsidence and tilting between continental rift-blocks during post-rift margin subsidence has resulted in a sympathetic terrace-ramp geometry in overlying Aptian salt. Salt terraces form above tops of crustal blocks, where salt tends to rise vertically, creating pillows and diapirs. Ramps connecting terraces tend to form above seaward-facing fault zones; salt flowage there has been both lateral and vertical, creating triangular diapirs along the footwalls of growth faults. Most of these growth-faults sole within the salt base, but a few continue into the interpreted synrift succession.  相似文献   

14.
Hatton Bank (northwest U.K.) continental margin structure   总被引:1,自引:0,他引:1  
Summary. The continent-ocean transition near Hatton Bank was studied using a dense grid of single-ship and two-ship multichannel seismic (mcs) profiles. Extensive oceanward dipping reflectors in a sequence of igneous rocks are developed in the upper crust across the entire margin. At the landward (shallowest) end the dipping reflectors overlie continental crust, while at the seaward end they are formed above oceanic crust. Beneath the central and lower part of the margin is a mid-crustal layer approximately 5 km thick that could be either stretched and thinned continental crust or maybe newly formed igneous crust generated at the same time as the dipping reflector sequence. Beneath this mid-crustal layer and above a well defined seismic Moho which rises from 27 km (continental end) to 15 km (oceanic end) across the margin, the present lower crust comprises a 10–15 km thick lens of material with a seismic velocity of 7.3 to 7.4 km/s. We interpret the present lower crustal lens as underplated igneous rocks left after extraction of the extruded basaltic lavas, A considerable quantity of new material has been added to the crust under the rifted margin. The present Moho is a new boundary formed during creation of the margin and cannot, therefore, be used to determine the amount of thinning.  相似文献   

15.
Deep seismic reflectors in the Campos basin, offshore Brazil   总被引:1,自引:1,他引:0  
Summary. Some deep crustal features underlying the Campos basin are best recognized in a few reflection seismic sections that have been reprocessed recently to 10 s two-way traveltime. A prominent climbing-to-the-basin reflector is interpreted as the Moho, and a relatively steep fracture zone is, probably, the first example so far of an extensional fault crossing the whole crust and offsetting the Moho. Further constraints on the deep structure of the basin are provided by estimating the thinning of the crust from shallow seismic data and gravity modelling, and by cross-plotting backstripped subsidence curves against curves predicted by the lithospheric stretching model.  相似文献   

16.
Summary. The 300 km ECORS - Bay of Biscay profile was carried out along the Aquitaine shelf and comprised a complete set of experiments including zero-offset and 7.5 km constant offset vertical seismic reflection and six expanding spread profiles. Large offset recordings were fundamental for the definition of the layered lower crust and the Moho, while ESPs provided decisive complementary information for the geological interpretation. These data show a strong variation in crustal thickness from about 20 km beneath the rifted Parentis basin, a failed arm of the oceanic Bay of Biscay, up to 35 km to the north below the Armorican shelf, in the Hercynian domain, and to the south below the Cantabria shelf, in the vicinity of the Pyrenean deformation front. The results have important implications for the behaviour of the crust during the formation of rifted sedimentary basins and during continental collision.  相似文献   

17.
Summary. The crustal structure beneath the exposed terranes of southern Alaska has been explored using coincident seismic refraction and reflection profiling. A wide-angle reflector at 8–9 km depth, at the base of an inferred low-velocity zone, underlies the Peninsular and Chugach terranes, appears to truncate their boundary, and may represent a horizontal decollement beneath the terranes. The crust beneath the Chugach terrane is characterized by a series of north-dipping paired layers having low and high velocities that may represent subducted slices of oceanic crust and mantle. This layered series may continue northward under the Peninsular terrane. Earthquake locations in the Wrangell Benioff zone indicate that at least the upper two low-high velocity layer pairs are tectonically inactive and that they appear to have been accreted to the base of the continental crust. The refraction data suggest that the Contact fault between two similar terranes, the Chugach and Prince William terranes, is a deeply penetrating feature that separates lower crust (deeper than 10 km) with paired dipping reflectors, from crust without such reflectors.  相似文献   

18.
The North Canterbury region marks the transition from Pacific plate subduction to continental collision in the South Island of New Zealand. Details of the seismicity, structure and tectonics of this region have been revealed by an 11-week microearthquake survey using 24 portable digital seismographs. Arrival time data from a well-recorded subset of microearthquakes have been combined with those from three explosions at the corners of the microearthquake network in a simultaneous inversion for both hypocentres and velocity structure. The velocity structure is consistent with the crust in North Canterbury being an extension of the converging Chatham Rise. The crust is about 27 km thick, and consists of an 11 km thick seismic upper crust and 7 km thick seismic lower crust, with the middle part of the crust being relatively aseismic. Seismic velocities are consistent with the upper and middle crust being composed of greywacke and schist respectively, while several lines of evidence suggest that the lower crust is the lower part of the old oceanic crust on which the overlying rocks were originally deposited.
The distribution of relocated earthquakes deeper than 15 km indicates that the seismic lower crust changes dip markedly near 43S. To the south-west it is subhorizontal, while to the north-east it dips north-west at about 10. Fault-plane solutions for these earthquakes also change near 43S. For events to the south, P -axes trend approximately normal to the plate boundary (reflecting continental collision), while for events to the north, T -axes are aligned down the dip of the subducted plate (reflecting slab pull). While lithospheric subduction is continuous across the transition, it is not clear whether the lower crust near 43S is flexed or torn.  相似文献   

19.
Summary. The stretching and thinning of the continental crust, which occurs during the formation of passive continental margins, may cause important changes in the velocity structure of such crust. Further, crust attenuated to a few kilometres' thickness, can be found underlying 'oceanic' water depths. This paper poses the question of whether thinned continental crust can be distinguished seismically from normal oceanic crust of about the same thickness. A single seismic refraction line shot over thinned continental crust as part of the North Biscay margin transect in 1979 was studied in detail. Tau— p inversion suggested that there are differences between oceanic and continental crust in the lower crustal structure. This was confirmed when synthetic seismograms were calculated. The thinned continental crust (β± 7.0) exhibits a two-gradient structure in the non-sedimentary crust with velocities between 5.9 and 7.4 km s−1; an upper 0.8 s−1 layer overlies a 0.4 s−1 layer. No layer comparable to oceanic layer 3 was detected. The uppermost mantle also contains a low-velocity zone.  相似文献   

20.
Summary. A long seismic refraction profile was carried out between southern Israel and Cyprus. The seismic energy was generated by 33 sea shots each of 0.8 t explosives and was recorded by land stations in Israel and Cyprus and by ocean bottom seismographs deployed along the profile.
The results showed that the continental crust of southern Israel thins towards the Mediterranean underneath a northward thickening sedimentary cover. Cyprus is underlain by a 35 km thick continental crust thinning south-wards and extending to Mt Eratosthenes. Between Mt Eratosthenes and the Israel continental shelf the crystalline crust is composed of high velocity (6.5 km s-1)material and is about 8 km thick. It is covered by 12–14 km of sediments and may represent a fossil oceanic crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号