首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
史凯 《现代地质》2010,24(2):214-220
通过对苏州澄湖SC1孔沉积物的粒度、磁化率、孢粉和有孔虫等的实验分析,并结合沉积物的岩性构造特征以及AMS 14C测年数据,探讨了晚更新世晚期以来苏州澄湖地区的气候波动特征以及海侵、海退沉积巡回序列。研究发现该区域气候与世界气候波动性一致,具有温暖湿润-冷而略干-温暖湿润-暖热潮湿-温凉略干-温暖湿润的波动变化特征;晚更新世晚期以来具有两个海相沉积地层,一为晚更新世晚期海侵(约为34 kaBP),另一为全新世中期海侵((6 955±50)aBP);整个剖面缺失硬粘土层,与之对应的则是两海相地层之间的泥砂互层;沉积环境经历了晚更新世晚期海侵期河床、河漫滩相-末次冰期干冷期河流湖沼相-全新世早期河口湾亚相-全新世中期滨浅海相-全新世晚期淡水湖沼相的演变过程。  相似文献   

2.
Phytolith data from Poyang Lake, southern China, indicate that significant natural and human‐induced vegetational changes have occurred in the middle Yangtze River valley, the likely hearth of rice (Oryza sativa L.) domestication, during the Late Pleistocene and Holocene periods. During the Late Pleistocene (from >13,500 to ca. 10,500 yr B.P.) the climate was cooler and drier than today's. Oryza appears to have been a natural component of the vegetation at that time, but may not have been well adapted to the glacial climatic conditions. The early Holocene climate may have been wetter and more markedly seasonal that at present, and wild Oryza species may have been distributed further north than seen today. By 4000 yr B.P., rice agriculture appears to have been well developed in the middle Yangtze River Valley. Environmental factors such as atmospheric CO2 concentrations and the seasonality of precipitation and temperature in addition to overall cooler and drier Pleistocene climates may have significantly influenced human exploitation of Oryza during the Late Pleistocene and early Holocene in southern China. © 2000 John Wiley & Sons, Inc.  相似文献   

3.
王丽媛  辛蔚  程捷 《古地理学报》2014,16(2):239-248
根据腾格里沙漠西北缘青土湖ZK1孔晚第四纪以来沉积物孢粉组合、磁化率特征和光释光年代的研究,恢复了该区的植被面貌,论述了青土湖地区自中更新世晚期以来的气候变迁特征。研究结果表明,该地区中更新世晚期可划分为凉干和暖湿2个阶段;晚更新世可划分为暖湿和凉干2个阶段,并且与深海氧同位素曲线反映的末次间冰期、末次冰期的次一级气候旋回特征相吻合;全新世该地区主要经历了从暖湿到凉干的气候波动。  相似文献   

4.
黄河源区第四纪地质研究的新进展   总被引:8,自引:1,他引:8  
通过对黄河源区的钻孔、自然露头的研究, 建立了黄河源区的第四纪地层层序。第四纪地层可划分为下更新统、中更新统、上更新统和全新统。下更新统为河湖相沉积; 中更新统主要有湖积物、冰碛物和冰水沉积物; 上更新统主要有湖积物、冰碛物、冰水沉积物、洪积物和河流沉积物; 全新统主要由河流沉积物、洪积物和湖积物构成。黄河源区的冰期可划分为3期, 即末次冰期、倒数第二次冰期、倒数第三次冰期, 末次冰期又可分为2个冰阶。黄河源区的湖泊演化可划分为早更新世、中更新世和晚更新世—全新世3个阶段: 早更新世的湖泊范围小; 中更新世的湖泊范围明显扩大, 在位置上也较早更新世的湖泊南移; 晚更新世的湖泊经历了两次的扩张—收缩变化, 到了全新世, 除现今还发育的几个湖泊外, 大多数地区的湖水已退出, 基本上转变为河流环境。在晚更新世末期到全新世初期, 封闭黄河源区的多石峡被切开, 湖水外泄, 现今的黄河形成了, 同时发生了袭夺长江水系的水流。  相似文献   

5.
The Mau Forest Complex is Kenya's largest fragment of Afromontane forest, providing critical ecosystem services, and has been subject to intense land use changes since colonial times. It forms the upper catchment of rivers that drain into major drainage networks, thus supporting the livelihoods of millions of Kenyans and providing important wildlife areas. We present the results of a sedimentological and palynological analysis of a Late Pleistocene–Holocene sediment record of Afromontane forest change from Nyabuiyabui wetland in the Eastern Mau Forest, a highland region that has received limited geological characterization and palaeoecological study. Sedimentology, pollen, charcoal, X-ray fluorescence and radiocarbon data record environmental and ecosystem change over the last ~16 000 cal a bp. The pollen record suggests Afromontane forests characterized the end of the Late Pleistocene to the Holocene with dominant taxa changing from Apodytes, Celtis, Dracaena, Hagenia and Podocarpus to Cordia, Croton, Ficus, Juniperus and Olea. The Late Holocene is characterized by a more open Afromontane forest with increased grass and herbaceous cover. Continuous Poaceae, Cyperaceae and Juncaceae vegetation currently cover the wetland and the water level has been decreasing over the recent past. Intensive agroforestry since the 1920s has reduced Afromontane forest cover as introduced taxa have increased (Pinus, Cupressus and Eucalyptus).  相似文献   

6.
腾格里沙漠西北缘青土湖中更新世晚期以来沉积环境变迁   总被引:1,自引:0,他引:1  
王丽媛  程捷  辛蔚  昝立宏 《现代地质》2013,27(4):949-958
以腾格里沙漠西北缘青土湖钻孔ZK1为研究对象,通过对钻孔沉积物的光释光年代、粒度、磁化率等研究,揭示了该湖泊自中更新世晚期以来的环境变迁。研究结果表明:该地区中更新世晚期经历了干冷→暖湿两个阶段,晚更新世经历了湿暖→干冷两个阶段,与深海氧同位素的末次间冰期、末次冰期气候旋回特征吻合,全新世主要经历了干冷→暖湿的气候波动。反映了腾格里沙漠西北缘晚第四纪的气候波动变化特征,特别是为本区中更新世晚期以来的气候环境变化的研究提供了依据。  相似文献   

7.
根据福建九龙江河口ZK1孔及ZK7孔沉积物AMS(Accelerator Mass Spectrometry,加速器质谱测年技术) 14C测年、古地磁和剖面特征分析,进行该地区的第四纪地层划分,依据粒度特征,结合磁化率、微体古生物和Sr/Ba等环境代用指标进行沉积相分析,重建了该区晚第四纪的古环境演变历史。结果表明:(1)九龙江河口第四纪沉积时代为晚更新世中期至全新世晚期。(2)上更新统沉积可划分为下部龙海组洪冲积相和上部东山组河漫滩相沉积,中间有10 ka的沉积间断,末次冰期又再遭受风化剥蚀作用,推测有5~6 ka的风化剥蚀期。(3)全新统最早沉积年代约为14 ka BP,依次出现河口湾相、河口砂坝—分汊河道相、潮滩相沉积。(4)根据年代学数据和沉积相变化,重塑了该区晚第四纪沉积环境变化过程,为该区的第四纪研究和工程地质工作提供了参考依据。  相似文献   

8.
Late Pleistocene and Holocene vegetational and climatic change have been studied palynologically at a site at 1750 m elevation in the subandean vegetation belt near Popayán, in the southern Colombian Andes. Time control on the pollen record is based on six AMS 14C ages, ranging from possibly Middle Pleniglacial time (around 50000 yr BP) to 1092 ± 44 yr BP. Because of the presence of two hiatuses only the Middle Pleniglacial and Late Holocene periods (the last 2300 yr BP) are represented. Pollen data indicate the presence of closed subandean forest during glacial time. Changes in the contribution of pollen originating from the uppermost and lowermost subandean forest belts, changes in the contribution of a number of other subandean forest taxa, and changes in species composition between the three pollen zones, suggest that the climate during the Middle Pleniglacial was markedly colder, and perhaps also wetter, than during the Late Holocene. Pollen assemblages from the Late Holocene indicate that the landscape has been affected by deforestation and agriculture since at least 2300 yr BP, but that human impact decreased in the last 780 yr BP. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
We present results of study of Holocene and Late Pleistocene deposits recovered on the underwater Akademichesky Ridge in Lake Baikal. The change in mineral composition and grain size in the bottom sediment core is closely consistent with the change of major diatom complexes marking the Holocene–Late Pleistocene boundary. A high content of chloritoid (up to 14.6%) has been found among the heavy minerals of the sand fraction of Late Pleistocene clays. The concentration of chloritoid in Holocene mud is no higher than 1.2%. The source of chloritoid is chloritoid shales of the Anaya Formation (Upper Proterozoic), widespread in the watershed of the Primorsky Ridge in the upper reaches of the Lena and Anaya Rivers. Chloritoid was transported to the area of the Akademichesky Ridge by predominant western and northwestern winds, which is also evidenced from the absence of mechanical impacts on the surface of its grains. The high contents of chloritoid in the Late Pleistocene sediments are due to the more intense eolian transportation at that time as compared with the Holocene.  相似文献   

10.
Kuzmin, Y. V. 2009: Extinction of the woolly mammoth (Mammuthus primigenius) and woolly rhinoceros (Coelodonta antiquitatis) in Eurasia: Review of chronological and environmental issues. Boreas, 10.1111/j.1502‐3885.2009.00122.x. ISSN 0300‐9483. The current evidence for date and environmental preferences of the extinction of two middle–late Pleistocene megafaunal species, the woolly mammoth (Mammuthus primigenius Blum.) and woolly rhinoceros (Coelodonta antiquitatis Blum.), is presented in this review. It is suggested that extinction of these large herbivores in Eurasia was closely related to landscape changes near the Pleistocene–Holocene boundary (c. 12 000–9000 uncalibrated radiocarbon years ago, yr BP), mainly involving the widespread forest formations in the temperate and arctic regions of northern Eurasia and the loss of grasslands crucial to the existence of woolly mammoth and rhinoceros. However, some woolly mammoth populations survived well into the Holocene (up to c. 3700 yr BP), showing that the process of final extinction was fairly complex, with delays in some regions of up to several millennia. The possible role of Palaeolithic humans in the extinction of Late Pleistocene megafauna is also considered.  相似文献   

11.
Woody, subalpine shrubs and grasses currently surround Lake Rutundu, Mount Kenya. Multiple proxies, including carbon isotopes, pollen and grass cuticles, from a 755‐cm‐long core were used to reconstruct the vegetation over the past 38 300 calendar years. Stable carbon‐isotope ratios of total organic carbon and terrestrial biomarkers from the lake sediments imply that the proportion of terrestrial plants using the C4 photosynthetic pathway was greater during the Late Pleistocene than in the Holocene. Pollen data show that grasses were a major constituent of the vegetation throughout the Late Pleistocene and Holocene. The proportion of grass pollen relative to the pollen from other plants was greatest at the last glacial maximum (LGM). Grass cuticles confirm evidence that C4 grass taxa were present at the LGM and that the majority followed the cold‐tolerant NADP‐MEC4 subpathway. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Hanken, N.‐M., Uchman, A. & Jakobsen, S. L. 2012 (January): Late Pleistocene–early Holocene polychaete borings in NE Spitsbergen and their palaeoecological and climatic implications: an example from the Basissletta area. Boreas, Vol. 41, pp. 42–55. 10.1111/j.1502‐3885.2011.00223.x. ISSN 0300‐9483 Limestone and dolomite bedrock surfaces, together with blocks derived from these underlying bedrocks, at Basissletta, NE Spitsbergen, contain Late Pleistocene–early Holocene, shallow‐marine, spionid polychaete borings Caulostrepsis taeniola Clarke, Caulostrepsis contorta Bromley & D'Alessandro, and Maeandropolydora isp. The borings occur about 9–78 m above present sea level, and this is the northernmost known occurrence of these trace fossils. 14C dating of wood, whalebone and bivalves in the vicinity and in neighbouring areas indicates that the borings have a radiocarbon age spanning from about 7 to 11 ka. Recent borings of these ichnotaxa have not been found in the sea around Spitsbergen. The presence of the fossil borings indicates that invasion of boring polychaetes to the northern part of the Barents Sea region was limited to a Late Pleistocene–early Holocene temperature optimum. The presence of Caulostrepsis and Maeandropolydora on subaerially exposed shallow‐water Pleistocene–Holocene bedrock surfaces in arctic areas can be a valuable tool with which to evaluate both postglacial emergence and climatic oscillations because they indicate a summer surface water temperature of at least 8 °C.  相似文献   

13.
The wild horse Equus ferus was one of the most frequent species of the Late Pleistocene large ungulate fauna in Eurasia and played an important role in the subsistence of human groups, especially at the end the Late Glacial. It is frequently assumed that E. ferus became extinct in Europe at the beginning of the Holocene because of the development of woodlands and loss of open habitats. Because of its preference for open habitats and in spite of its adaptability, the appearance or disappearance of the wild horse could therefore be a suitable palaeoecological indicator for the opening of the Holocene primeval woodlands. We revised the dating and reliability of the subfossil record and dated several bones by atomic mass spectrometry 14C dating. From the beginning of the Holocene (9600 cal a BC) to the end of the Atlantic Period (3750 cal a BC) there are 207 archaeological sites with wild horse records available in Europe. E. ferus survived the Pleistocene Holocene transition in Europe, but the spatiotemporal dynamics of populations fluctuated remarkably in the early and middle Holocene. Small and sparse populations increasingly became extinct during the early Holocene, until between 7100 and 5500 cal a BC the wild horse was almost absent in central parts of the European Lowlands. Particular conditions in natural open patches in the canopy forests, chalklands and floodplains may have maintained the local survival of the horse in some regions of the Lowlands, however. In the Late Atlantic, between 5500 and 3750 cal a BC the range of the wild horse was again extended. It re‐immigrated into central and western Europe, probably as a consequence of increasing landscape opening by Neolithic peoples. The data presented here may be a valuable part of the debate on the degree of openness of the early and middle Holocene landscape. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The record of Almoloya Lake in the Upper Lerma basin starts with the deposition of the late Pleistocene Upper Toluca Pumice layer. The data from this interval indicate a period of climatic instability that lasted until 8500 cal yr B.P., when temperature conditions stabilized, although moisture fluctuations continued until 8000 cal yr B.P. Between 8500 and 5000 cal yr B.P. a temperate climate is indicated by dominance of Pinus. From 5000 to 3000 cal yr B.P. Quercus forest expanded, suggesting a warm temperate climate: a first indication of drier environmental conditions is an increase in grassland between 4200 and 3500 cal yr B.P. During the Late Holocene (3300 to 500 cal yr B.P.) the increase of Pinus and grassland indicates temperate dry conditions, with a considerable increase of Pinus between 1100 and 950 cal yr B.P. At the end of this period, humidity increased. The main tendency during the Holocene was a change from humid to dry conditions. During the Early Holocene, Almoloya Lake was larger and deeper; the changing humidity regime resulted in a fragmented marshland, with the presence of aquatic and subaquatic vegetation types.  相似文献   

15.
A Late‐glacial–Holocene pollen record was obtained from a 3.96 m sediment core taken from Lake St Clair, central Tasmania. Modern vegetation and pollen analyses formed the basis for interpretation of the vegetation and climate history. Following deglaciation and before ca. 18450 yr BP Podocarpus lawrencei coniferous heath and Astelia–Plantago wet alpine herbfield became established at Lake St Clair. A distinct Poaceae‐Plantago peak occurs between 18450 and 11210 yr BP and a mean annual temperature depression from ca. 6.2°C to 3°C below present is inferred for this period. The marked reduction in Podocarpus and strong increase of Poaceae suggests reduced precipitation levels during the period of widespread deglaciation (ca. 18.5–11 kyr BP). The local Late Pleistocene–Holocene non‐forest to forest biostratigraphical boundary is dated at 11.2 kyr BP. It is characterised by expansion of the subalpine taxa Athrotaxis/Diselma with Nothofagus gunnii, and by the establishment of Nothofagus cunninghamii with Eucalyptus spp. A ‘Phyllocladus bulge’ prior to the expansion of Nothofagus cunninghamii, reported at other Tasmanian sites, is not present at Lake St Clair. Nothofagus cunninghamii cool temperate rainforest peaked at 7800 yr BP, probably under wetter climatic conditions than present. The maximum development of rainforest in the early–middle Holocene may indicate that the temperature was slightly warmer than present, but the evidence is not definitive. The expansion of Eucalyptus spp. and Poaceae after 6000 yr BP may be partly a disclimax effect as a result of Aboriginal burning, but appears also to reflect reduced precipitation. The changes in vegetation and inferred climate can be explained by major changes in synoptic patterns of southern Australia and the adjacent southwest Pacific. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
《Quaternary Science Reviews》1999,18(10-11):1151-1171
We constructed a radiometrically calibrated proxy record of Late Pleistocene and Holocene climate change exceeding 230,000 yr duration, using pollen profiles from two cores taken through age-equivalent dry lakes—one core having greater age control (via 230Th alpha mass-spectrometry) and the other having greater stratigraphic completeness. The better dated of these two serial pollen records (Searles Lake) served as a reference section for improving the effective radiometric age control in a nearby and more complete pollen record (Owens Lake) because they: (1) are situated ∼90 km apart in the same drainage system (on, and immediately leeward of, the eastern flank of the Sierra Nevada), and (2) preserved strikingly similar pollen profiles and concordant sequences of sedimentological changes. Pollen assemblages from both lakes are well preserved and diverse, and document serial changes in Late Pleistocene and Holocene plant zone distribution and composition in the westernmost Great Basin; they consist of taxa now inhabiting montane forest, woodland, steppe, and desert-scrub environments. The studied core intervals are interpreted here to be the terrestrial equivalent of marine δ18O stages 1 through 9; these pollen profiles now appear to be among the best radiometrically dated Late Pleistocene records of terrestrial climate change known.  相似文献   

17.
Precise dating of the activity of Late Pleistocene to Holocene neo‐tectonic structures is crucial to quantify the rate of deformation in low‐seismicity regions. Sardinia is a relatively stable continental fragment set in the middle of the tectonically active Western Mediterranean belt. This paper provides evidences of significant uplift of northwest Sardinia that support an ongoing tectonic activity since the Marine Isotopic Stage 7 (MIS 7; ca. 220 ka). In particular, it documents for the first time Late Pleistocene to Holocene tectonics based on luminescence dating of travertine sealing a major NNE‐SSW fault.  相似文献   

18.
This paper focuses on a borehole, Xichen-1 well, drilled on the Chenhang Island, Xisha Islands in the South China Sea. Mineralogical, petrographic, stable isotopic and minor-element data from the Holocene to Pleistocene interval (0–179 m ) in the Xichen-1 well are discussed in detail. The 400-m-long core is divisible into four mineralogical facies: a high-Mg calcitic aragonite facies (0–16.91 m, Holocene), an aragonitic low- Mg calcite facies (16.91–30.60 m, Late Pleistocene), a low- Mg calcitic facies (30.60–179 m, Middle-Early Pleistocene) and a low- Mg calcitic and dolomitic facies (179–400 m, Early Pleistocene–Late Miocene). The Holocene section has much higher whole-rock δ18O and δ13C values and Mg and Sr content than the non-dolomitized Pleistocene limestones (16.91–179 m). The 16.91–165 m interval is characterized by a relatively invariant oxygen isotopic composition and very heterogeneous carbon isotopic composition. Between 165 and 179 m, there is a positively correlated increase of whole-rock δ18O and δ18C with depth, and Mg content also shows a gradual increase with depth. Petrographic data demonstrate that the Pleistocene reef sequence has been extensively affected by meteoric waters. We conclude that the Late Pleistocene section (16.91–30.60 m) and the Middle-Early Pleistocene section (30.60–165 m) have suffered incomplete and complete meteoric diagenesis, respectively, and that the Early Pleistocene interval (165–179 m) was diagenetically altered in a meteoric–marine mixing environment.  相似文献   

19.
青海湖是我国最大的内陆湖盆,对气候变化十分敏感,而滩坝是青海湖滨浅湖带最为发育的沉积类型之一,其滩坝分布规律对晚更新世以来的古气候演化具有重要指示意义。在对青海湖一郎剑剖面进行实地考察的基础之上,对滩坝的分布规律及沉积特征进行精细解剖。通过分析总结前人相关测年数据,并与青海湖滩坝分布规律进行对比,发现青海湖湖平面升降对滩坝分布有明显的控制作用,建立了18 ka以来青海湖滩坝的演化过程,并将近18 ka以来青海湖湖平面升降史分为4个阶段:(1)更新世末温湿期,湖平面在海拔3 197~3 202 m附近波动;(2)全新世冷干期,湖平面近乎干涸;(3)全新世大暖期,湖平面处于全新世以来的最高值,约为3 212 m;(4)全新世凉湿期,湖平面回落到3 200 m附近,并在近2. 5 ka湖平面加速下降。在晚更新世和晚全新世时,湖平面在海拔3 202 m附近波动时间较长,在该海拔范围内,形成了规模较大的复合滩坝;在早全新世,青海湖平面最低,多发育风成黄土和潟湖沉积;在中全新世,湖平面最高,形成了距离现今湖平面最远的数列单体滩坝。  相似文献   

20.
Sediments from Rapid Lake document glacial and vegetation history in the Temple Lake valley of the Wind River Range, Wyoming over the past 11,000 to 12,000 yr. Radiocarbon age determinations on basal detrital organic matter from Rapid Lake (11,770 ± 710 yr B.P.) and Temple Lake (11,400 ± 630 yr B.P.) bracket the age of the Temple Lake moraine, suggesting that the moraine formed in the late Pleistocene. This terminal Pleistocene readvance may be represented at lower elevations by the expansion of forest into intermontane basins 12,000 to 10,000 yr B.P. Vegetation in the Wind River Range responded to changing environmental conditions at the end of the Pleistocene. Following deglaciation, alpine tundra in the Temple Lake valley was replaced by a Pinus albicaulis parkland by about 11,300 14C yr B.P. Picea and Abies, established by 10,600 14C yr B.P., grew with Pinus albicaulis in a mixed conifer forest at and up to 100 m above Rapid Lake for most of the Holocene. Middle Holocene summer temperatures were about 1.5°C warmer than today. By about 5400 14C yr B.P. Pinus albicaulis and Abies became less prominent at upper treeline because of decreased winter snowpack and higher maximum summer temperatures. The position of the modern treeline was established by 3000 14 C yr B.P. when Picea retreated downslope in response to Neoglacial cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号