首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydraulic properties of the crystalline basement   总被引:1,自引:1,他引:1  
Hydraulic tests in boreholes, up to 4.5 km deep, drilled into continental crystalline basement revealed hydraulic conductivity (K) values that range over nine log-units from 10−13−10−4 m s−1. However, K values for fractured basement to about 1 km depth are typically restricted to the range from 10−8 to 10−6 m s−1. New data from an extended injection test at the KTB research site (part of the Continental Deep Drilling Program in Germany) at 4 km depth provide K=5 10−8 m s−1. The summarized K-data show a very strong dependence on lithology and on the local deformation history of a particular area. In highly fractured regions, granite tends to be more pervious than gneiss. The fracture porosity is generally saturated with Na–Cl or Ca–Na–Cl type waters with salinities ranging from <1 to >100 g L−1. The basement permeability is well within the conditions for advective fluid and heat transport. Consequently, fluid pressure is hydrostatic and a Darcy flow mechanism is possible to a great depth. Topography-related hydraulic gradients in moderately conductive basement may result in characteristic advective flow rates of up to 100 L a−1 m−2 and lead to significant advective heat and solute transfer in the upper brittle crust. An erratum to this article can be found at  相似文献   

2.
 P–V–T measurements on magnesite MgCO3 have been carried out at high pressure and high temperature up to 8.6 GPa and 1285 K, using a DIA-type, cubic-anvil apparatus (SAM-85) in conjunction with in situ synchrotron X-ray powder diffraction. Precise volumes are obtained by the use of data collected above 873 K on heating and in the entire cooling cycle to minimize non-hydrostatic stress. From these data, the equation-of-state parameters are derived from various approaches based on the Birch-Murnaghan equation of state and on the relevant thermodynamic relations. With K′0 fixed at 4, we obtain K0=103(1) GPa, α(K−1)=3.15(17)×10−5 +2.32(28)×10−8 T, (∂KT/∂T)P=−0.021(2) GPaK−1, (dα/∂P)T=−1.81×10−6 GPa−1K−1 and (∂KT/∂T)V= −0.007(1) GPaK−1; whereas the third-order Birch-Murnaghan equation of state with K′0 as an adjustable parameter yields the following values: K0=108(3) GPa, K′0=2.33(94), α(K−1)=3.08(16)×10−5+2.05(27) ×10−8 T, (∂KT/∂T)P=−0.017(1) GPaK−1, (dα/∂P)T= −1.41×10−6 GPa−1K−1 and (∂KT/∂T)V=−0.008(1) GPaK−1. Within the investigated P–T range, thermal pressure for magnesite increases linearly with temperature and is pressure (or volume) dependent. The present measurements of room-temperature bulk modulus, of its pressure derivative, and of the extrapolated zero-pressure volumes at high temperatures, are in agreement with previous single-crystal study and ultrasonic measurements, whereas (∂KT/∂T)P, (∂α/∂P)T and (∂KT/∂T)V are determined for the first time in this compound. Using this new equation of state, thermodynamic calculations for the reactions (1) magnesite=periclase+CO2 and (2) magnesite+enstatite=forsterite+CO2 are consistent with existing experimental phase equilibrium data. Received September 28, 1995/Revised, accepted May 22, 1996  相似文献   

3.
Alaknanda and Bhagirathi (AB) river basins in the Himalayan region in India expose lithologies comprising mainly of granites, low–high-grade metamorphics, shales and carbonates which, in conjunction with the monsoon rains and glacial melt, control water chemistry and dissolved elemental flux rates. In the present study, we monitored two locations: (a) Srinagar on the Alaknanda river and (b) Maneri on the Bhagirathi river for daily variations in total suspended sediments, major ions and dissolved silica over one complete year (July 2004–June 2005). Based on long-term discharge data, discharge-weighted composition and dissolved elemental flux rates (with respect to Ca, Mg, HCO3, Si) of the river were estimated. The information thus obtained has substantially added up to the existing chemical data of these rivers and has refined the flux rates. Our high-frequency samples provide informations such as (a) water chemical compositions that show a large temporal and spatial variation and (b) carbonate lithology that controls water chemistry predominantly. The dissolution kinetics of various lithologies namely leucogranite, gneiss, quartzite, phyllite and shale of the AB river basins were studied through batch experiments at controlled temperature (25 and 5°C) and pH (8.4) condition. In laboratory, these lithologies undergo slow rates of dissolution (10−13 to 10−15 mol/m2 s), while field weathering rates based on dissolved elemental flux rates in the AB rivers are much higher (10−8 to 10−9 mol/m2 s). Extremely high physical weathering rates in AB rivers, which enhance chemical weathering significantly, mainly attribute this wide discrepancy in laboratory-derived rates of representative basin rocks and dissolved elemental fluxes in the field. However, laboratory-simulated experiments facilitate to quantify elemental release rates, understand the kinetics of the dissolution reactions, and compare their roles at individual level.  相似文献   

4.
The high-pressure X-ray diffraction study of a natural arsenopyrite was investigated up to 28.2 GPa using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at National Synchrotron Light Source, Brookhaven National Laboratory. The 16:3:1 methanol–ethanol–water mixture was used as a pressure-transmitting medium. Pressures were measured using the ruby-fluorescence method. No phase change has been observed up to 28.2 GPa. The isothermal equation of state (EOS) was determined. The values of K 0, and K′ 0 refined with a third-order Birch–Murnaghan EOS are K 0 = 123(9) GPa, and K′ 0 = 5.2(8). Furthermore, we confirm that the linear compressibilities (β) along a, b and c directions of arsenopyrite is elastically isotropic (β a  = 6.82 × 10−4, β b  = 6.17 × 10−4 and β c  = 6.57 × 10−4 GPa−1).  相似文献   

5.
 Hydrogen and oxygen isotope analyses have been made of hydrous minerals in gabbros and basaltic xenoliths from the Eocene Kap Edvard Holm intrusive complex of East Greenland. The analyzed samples are of three types: (1) primary igneous hornblendes and phlogopites that crystallized from partial melts of hydrothermally altered basaltic xenoliths, (2) primary igneous hornblendes that formed during late–magmatic recrystallization of layered gabbroic cumulates, and (3) secondary actinolite, epidote and chlorite that formed during subsolidus alteration of both xenoliths and gabbros. Secondary actinolite has a δ18O value of −5.8‰ and a δD value of −158‰. These low values reflect subsolidus alteration by low–δ18O, low–δD hydrothermal fluids of meteoric origin. The δD value is lower than the −146 to −112‰ values previously reported for amphiboles from other early Tertiary meteoric–hydrothermal systems in East Greenland and Scotland, indicating that the meteoric waters at Kap Edvard Holm were isotopically lighter than typical early Tertiary meteoric waters in the North Atlantic region. This probably reflects local climatic variations caused by formation of a major topographic dome at about the time of plutonism and hydrothermal activity. The calculated isotopic composition of the meteoric water is δD=−110 ± 10‰, δ18O ≈−15‰. Igneous hornblendes and phlogopites from pegmatitic pods in hornfelsed basaltic xenoliths have δ18O values between −6.0 and −3.8‰ and δD values between −155 and −140‰. These are both much lower than typical values of fresh basalts. The oxygen isotope fractionations between pegmatitic hornblendes and surrounding hornfelsic minerals are close to equilibrium fractionations for magmatic temperatures, indicating that the pegmatites crystallized from low–δ18O partial melts of xenoliths that had been hydrothermally altered and depleted in 18O prior to stoping. The pegmatitic minerals may have crystallized with low primary δD values inherited from the altered country rocks, but these values were probably overprinted extensively by subsolidus isotopic exchange with low–δD meteoric–hydrothermal fluids. This exchange was facilitated by rapid self–diffusion of hydrogen through the crystal structures. Primary igneous hornblendes from the plutonic rocks have δ18O values between +2.0 and +3.2‰ and δD values between −166 and −146‰. The 18O fractionations between hornblendes and coexisting augites are close to equilibrium fractionations for magmatic temperatures, indicating that the hornblendes crystallized directly from the magma and subsequently underwent little or no oxygen exchange. The hornblendes may have crystallized with low primary δD values, due to contamination of the magma with altered xenolithic material, but the final δD values were probably controlled largely by subsolidus isotopic exchange. This inference is based partly on the observation that coexisting plagioclase has been extensively depleted in 18O via a mineral–fluid exchange reaction that is much slower than the hydrogen exchange reaction in hornblende. It is concluded that all hydrous minerals in the study area, whether igneous or secondary, have δD values that reflect extensive subsolidus isotopic equilibration with meteoric–hydrothermal fluids. Received: 22 March 1994 / Accepted: 26 January 1995  相似文献   

6.
Whole rock and mineral stable isotope and microprobe analyses are presented from granitoids of the North Chilean Precordillera. The Cretaceous to Tertiary plutonic rocks contain important ore deposits and frequently display compositional and textural evidence of hydrothermal alteration even in barren rocks. Deuteric alteration includes replacement of biotite and amphibole by chlorite and epidote, sericitization and saussuritization of feldspars, and uralitization of clinopyroxene and/or amphibole. While whole rock compositions are not significantly affected, compositional variations in amphiboles suggest two types of hydrothermal alteration. Hornblende with actinolitic patches and rims and tight compositional trends from hornblende to Mg-rich actinolite indicate increasing oxygen fugacity from magmatic to hydrothermal conditions. Uralitic amphiboles exhibiting irregular Mg-Fe distribution and variable Al content are interpreted as reflecting subsolidus hydration reactions at low temperatures. The δD values of hydrous silicates vary from −63 to −105‰. Most δ18O values of whole rocks are in the range of 5.7 to 7.7‰ and are considered normal for igneous rocks in the Andes. These δ18O values also coincide well with the oxygen isotope composition of geochemically similar recent volcanics from the Central Andean Volcanic Zone (δ18O = 7.0–7.4‰). Only one sample in this study (δ18O = 3.0‰) appears to be depleted by isotope exchange with light meteoric water at high temperatures. The formation of secondary minerals in all other intrusions is mainly the product of deuteric alteration. This also holds true for the sample from El Abra, the only pluton associated with mineralization. This indicates the dominant role of a magmatic rather than a meteoric fluid in the alteration of the Cretaceous and Tertiary granitoids in northern Chile. Received: 8 July 1998 / Accepted: 15 April 1999  相似文献   

7.
Short and high frequency internal waves, propagating through horizontal gradients of temperature formed by long and low-frequency waves, induce vertical transferof heat with effective coefficients 10−4 – 10−3 m2/s and lead to a fine structure formation. Horizontal turbulence with seals of order 100 m produce the same effect in the presence of internal waves. The same is true for other substances, such as salt, oxygen, organic matter. It is suggested that this augmenting of vertical transports due to internal waves is an essential factor for high biological productivity in shelf zones.  相似文献   

8.
We report on a suite of diamonds from the Cretaceous Collier 4 kimberlite pipe, Juina, Brazil, that are predominantly nitrogen-free type II crystals showing complex internal growth structures. Syngenetic mineral inclusions comprise calcium- and titanium-rich phases with perovskite stoichiometry, Ca-rich majoritic-garnet, clinopyroxene, olivine, TAPP phase, minerals with stoichiometries of CAS and K-hollandite phases, SiO2, FeO, native iron, low-Ni sulfides, and Ca–Mg-carbonate. We divide the diamonds into three groups on the basis of the carbon isotope compositions (δ13C) of diamond core zones. Group 1 diamonds have heavy, mantle-like δ13C (−5 to −10‰) with mineral inclusions indicating a transition zone origin from mafic protoliths. Group 2 diamonds have intermediate δ13C (−12 to −15‰), with inclusion compositions indicating crystallization from near-primary and differentiated carbonated melts derived from oceanic crust in the deep upper mantle or transition zone. A 206Pb/238U age of 101 ± 7 Ma on a CaTiSi-perovskite inclusion (Group 2) is close to the kimberlite emplacement time (93.1 ± 1.5 Ma). Group 3 diamonds have extremely light δ13C (−25‰), and host inclusions have compositions akin to high-pressure–temperature phases expected to be stable in pelagic sediments subducted to transition zone depths. Collectively, the Collier 4 diamonds and their inclusions indicate multi-stage, polybaric growth histories in dynamically changing chemical environments. The young inclusion age, the ubiquitous chemical and isotopic characteristics indicative of subducted materials, and the regional tectonic history, suggest a model in which generation of sublithospheric diamonds and their inclusions, and the proto-kimberlite magmas, are related genetically, temporally and geographically to the interaction of subducted lithosphere and a Cretaceous plume.  相似文献   

9.
Possible types of anion-cation packing of mineral surface were evaluated. Their role was estimated for the decoration of minerals with gold under vacuum (process simulating crystallization on a surface), mineral growth and intergrowth, adsorption, surface diffusion, and other surface processes. It was shown that there are two distinct types (I and II) of mineral surfaces differing in the character of crystallization of gold nanoparticles during decoration. Type I includes surfaces showing predominant formation of gold nanoparticles (5–15 nm) on growth (dissolution, evaporation) steps, dislocations, and point defects. These surfaces are represented by packed layers of O−2 anions, alternating anions and cations, and identical atoms. Type II includes surfaces with the statistical distribution (109–12 cm−2) of gold nanoparticles (5–30 nm). Such patterns are characteristic of surfaces with packing of OH groups, OH in combination with O−2, and with the statistical distribution of anions and cations. Type I surfaces show low adsorption capacity and a large extent of diffusion on them (∼103–4 nm). In contrast, type II surfaces have high adsorption capacity and low (∼50 nm) surface diffusion. Minerals dominated by type I surfaces grow by the layer and spiral mechanisms, and those dominated by type II surfaces grow by the normal mechanism. Original Russian Text ? N.D. Samotoin, L.O. Magazina, 2006, published in Geokhimiya, 2006, No. 10, pp. 1068–1084.  相似文献   

10.
Mafic rocks of a Permian crust to mantle section in Val Malenco (Italy) display a multi-stage evolution: pre-Alpine exhumation to the ocean floor, followed by burial and re-exhumation during Alpine convergence. Four prominent generations of amphiboles were formed during these stages. On the basis of microstructural investigations combined with electron microprobe analyses two amphibole generations can be assigned to the pre-Alpine decompression and two to the Alpine metamorphic P–T evolution. The different amphiboles have distinct NaM4, Ca, K and Cl contents according to different P–T conditions and fluid chemistry. Analysing these mixed amphiboles by the 39Ar−40Ar stepwise heating technique yielded very complex age spectra. However, by correlating amphibole compositions directly obtained from the electron microprobe with the components deduced from the release of Ar isotopes during stepwise heating, obtained ages were consistent with the geological history deduced from field and petrological studies. The two generations of pre-Alpine amphiboles gave distinguishable Triassic to Late Jurassic/Early Cretaceous ages (≈225 and 130–140 Ma respectively). High-NaM4 amphiboles have higher isotopic ages than low-NaM4 ones, in agreement with their decompressional evolution. The exhumation of the Permian crust to mantle section is represented by the former age. The latter age concerns Cl-dominated amphibole related to an Early Cretaceous oceanic stage. For the early Alpine, pressure-dominated metamorphism we obtained a Late Cretaceous age (83–91 Ma). The later, temperature-dominated overprint is significantly younger, as indicated by 39Ar−40Ar ages of 67–73 Ma. These Late Cretaceous ages favour an Adriatic origin for the Malenco unit. Our data show that 39Ar−40Ar dating combined with detailed microprobe analysis can exploit the potential to relate conditions of amphibole formation to their respective ages. Received: 1 March 1999 / Accepted: 18 August 2000  相似文献   

11.
Twenty-six groundwater samples were collected from the Eastern Thessaly region and analysed by ICP-ES for these elements: Al, As, P, Pb, Zn, Mn, Fe, Cr, Sb, Cu, Na, Br, Cl, Si, Mg, Ag, Be, Bi, Dy, Er, Eu, Au, Ge, Ho, In, Ir, Os, Pt, Re, Rh, Ru, Lu, Hf, Hg, Tm, Zr and Nb. The objectives of the study were to assess the level of water contamination with respect to the EC and the USEPA health-based drinking water criteria. The geology of the studied area includes schists, amphibolites, marbles of Palaeozoic age, ophiolites, limestones of Triassic and Cretaceous age, Neogene and Quaternary deposits. The element ranges for groundwater samples are: Al 7–56 μg l−1, As 1–125 μg l−1, Br 6–60 μg l−1, Cl 500–25,000 μg l−1, Cr 1–6 μg l−1, Cu 1–15 μg l−1, Fe 10–352 μg l−1, Mg 2,940–40,100 μg l−1, Mn 0–8 μg l−1, Na 3,650–13,740 μg l−1, P 20–48 μg l−1, Pb 0–7 μg l−1, Sb 0–21 μg l−1, Si 3,310–13,240 μg l−1 and Zn 7–994 μg l−1. The results of groundwater analyses from the region of Eastern Thessaly showed elevated concentrations of As and Sb. Factor analysis explained 77.8% of the total variance of the data through five factors. Concentration of Br, Cl, Mg, Na and Si is directly related to the presence of saltwater in the aquifer, so grouping of these variables in factor 1 probably reflects the seawater intrusion. Al, As and Sb are known to form complexes in the environment, so grouping of these elements in factor 2 indicates their similar geochemical behaviour in the environment. The high negative loading of Mn in factor 2 indicates the presence of manganese oxides–hydroxides in the study area. Pb and Zn are associated together in sulphide mineralisation; so grouping of these elements in factor 3 reflects the sulphide mineralization paragenesis in the Melivoia area. P and Cu are associated together in phosphate fertilizers; so grouping of these variables in factor 4 could be related to agricultural practices. Cr, Fe, Mn and Mg are associated together in iron and manganese oxides–hydroxides and the weathering products of the olivine of the ultrabasic rocks; so grouping of these elements in factor 5 reflects the lithology of the area. There is a natural contamination of groundwaters with elevated concentrations of As and Sb due to the presence of the arsenopyrite and stibnite mineralisation in the Melivoia, Sotiritsa and Ano Polydendri areas. Contamination over the health-based drinking water guidelines given by EC and EPA has been investigated from nine sampling sites out of 26 of Eastern Thessaly region.  相似文献   

12.
The Zhangye Basin, located in arid northwest China, is an important agricultural and industrial center. In recent years rapid development has created an increased demand for water, which is increasingly being fulfilled by groundwater abstraction. Detailed knowledge of the geochemical evolution of groundwater and water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To this end, a hydrochemical investigation was conducted in the Zhangye Basin. Types of shallow groundwater in the Zhangye Basin were found to be HCO3 , HCO3 –SO4 2−, SO4 2−–HCO3 , SO4 2−–Cl, Cl–SO4 2− and Cl. The deep aquifer groundwater type was found to be HCO3–SO42− throughout the entire area. Ionic ratio and saturation index calculations suggest that silicate rock weathering and evaporation deposition are the main processes that determine the ionic composition in the study area. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. In the study area, the compositions of the stable isotopes δ18O and δD in groundwater samples were found to range from −4.00 to −9.28‰ and from −34.0 to −65.0‰, respectively. These values indicate that precipitation is the main recharge source for the groundwater system; some local values indicate high levels of evaporation. Tritium analysis was used to estimate the ages of the different groundwaters; the tritium values of the groundwater samples varied from 3.13 to 36.62 TU. The age of the groundwater at depths of less than 30 m is about 5–10 years. The age of the groundwater at depths of 30–50 m is about 10–23 years. The age of the groundwater at depths of 50–100 m is about 12–29 years. For groundwater samples at depths of greater than 100 m, the renewal time is about 40 years.  相似文献   

13.
Water active rocks consist of minerals that hold water in their crystalline structure and in pore spaces. Free water from drilling fluid can be attracted by the formation depending on the potential differences between pore space and drilling fluid. The fluid movement into the formation or out of the formation can lead to a change in effective stress, thus causing wellbore failures. In all previous studies it is found that the solute transport from or to the formation is primarily controlled by diffusion process and the effect of advection on solute transfer is negligible for a range of very low permeable shale formations (>10−5 mD). In this study a range of permeable shale formations (10−5 to 10−3 mD) commonly encountered in drilling oil and gas wells are considered to investigate the solute transfer between drilling fluid and formation due to advection. For this purpose a finite element model of fully coupled chemo-hydro-mechanical processes was developed. Results of this study revealed that the solute transfer between the drilling fluid and the shale formation is controlled primarily by permeability of the shale formations. For the range of shale formations studied here, there exists a threshold permeability below which the solute transfer is dominated by diffusion process and above which by fluid in motion (fluid flow). Results from the numerical experiments have shown that when the permeability of shales is greater than this threshold permeability, the chemical potential gradient between the pore fluid and drilling fluid reaches equilibrium faster than that when the permeability of shales is below this threshold value. Also it has been found that when advection is taken into account, effective radial and tangential stresses decrease around the wellbore, particularly near the wellbore wall where the solute concentration has reached near equilibrium.  相似文献   

14.
Horizontal, vertical and temporal distribution of a cyclonic (counterclockwise) eddy, where biological productivity is high, downstream of the Tsushima Islands in the eastern channel of the Tsushima Straits in November 2007 was revealed using conductivity–temperature–depth and acoustic Doppler current profiler data. The eddy had a horizontal scale of approximately 40–60 km, and the accompanying baroclinic current was more than 15 cm s−1 at the edge of the eddy. The island-induced cyclonic eddy moved east-northeastward at about 10 km day−1 (∼10 cm s−1) along the Tsushima Warm Current and was intensified by the barotropic instability in the current shear. The cyclonic eddy with high surface chlorophyll a concentrations intensified in the vicinity of the Tsushima Islands and was advected by the Tsushima Warm Current towards the southwestern Japan Sea.  相似文献   

15.
An in situ synchrotron X-ray diffraction study was carried out on ε-FeOOH at room temperature up to a pressure of 8.6 GPa using the energy-dispersive method. The linear compressibility was determined to be β a  = 1.69(3) × 10−3 GPa−1, β b  = 2.86(6) × 10−3 GPa−1, and β c  = 1.73(5) × 10−3 GPa−1. The b-axis of the unit cell is more compressible than the a and c axes. The pressure–volume data were fitted to a third-order Birch–Murnaghan equation of state. The best fit was found using a room temperature isothermal bulk modulus of K 0 = 126(3) GPa and its pressure derivative K′ = 10(1).  相似文献   

16.
Stratigraphic relations, detailed petrography, microthermometry of fluid inclusions, and fine-scale isotopic analysis of diagenetic phases indicate a complex thermal history in Tithonian fluvial sandstones and lacustrine limestones of the Tera Group (North Spain). Two different thermal events have been recognized and characterized, which are likely associated with hydrothermal events that affected the Cameros Basin during the mid-Cretaceous and the Eocene. Multiple stages of quartz cementation were identified using scanning electron microscope cathodoluminescence on sandstones and fracture fills. Primary fluid inclusions reveal homogenization temperatures (Th) from 195 to 350°C in the quartz cements of extensional fracture fillings. The high variability of Th data in each particular fluid inclusion assemblage is related to natural reequilibration of the fluid inclusions, probably due to Cretaceous hydrothermal metamorphism. Some secondary fluid inclusion assemblages show very consistent data (Th = 281–305°C) and are considered not to have reequilibrated. They are likely related to an Eocene hydrothermal event or to a retrograde stage of the Cretaceous hydrothermalism. This approach shows how multiple thermal events can be discriminated. A very steep thermal gradient of 97–214°C/km can be deduced from δ18O values of ferroan calcites (δ18O −14.2/−11.8‰ V-PDB) that postdate quartz cements in fracture fillings. Furthermore, illite crystallinity data (anchizone–epizone boundary) are out of equilibrium with high fluid inclusion Th. These observations are consistent with heat-flux related to short-lived events of hydrothermal alteration focused by permeability contrasts, rather than to regional heat-flux associated with dynamo-thermal metamorphism. These results illustrate how thermal data from fracture systems can yield thermal histories markedly different from host-rock values, a finding indicative of hydrothermal fluid flow.  相似文献   

17.
The Santa Rosa mylonite zone developed predominantly from a granodiorite protolith in the eastern margin of the Peninsular Ranges batholith. A wide variation in K−Ar biotite dates within the zone is shown to reflect the times of cooling through closure temperatures whose variability is chiefly a result of deformation-induced reduction in grain size. We suggest that such variation generally may be exploited to place constraints on the timing of deformation episodes. Previous workers have shown that deformation in the Santa Rosa mylonite zone involved the formation of mylonites and an imbricate series of low-angle faults which divide the area into structural units. Field work, petrographic studies, and TEM analysis of deformation mechanisms in biotite show that the granodiorite mylonite, the lowermost structural unit, formed below the granodiorite solidus. The granodiorite mylonite varies from protomylonite to ultramylonite, with regions of high strain distributed heterogeneously within the zone. Previously reported biotite and hornblende K−Ar dates from the granodiorite protolith below (82–89 Ma) and the Asbestos Mountain granodiorite above (61–68 Ma) the mylonite zone indicate dramatically dissimilar thermal histories for the lowermost and uppermost structural units. Other workers' fission track dates on sphene, zircon, and apatite from the granodiorite mylonite and the Asbestos Mountain granodiorite suggest thermal homogenization and rapid cooling to ∼100° C by ca 60 Ma. Within and adjacent to the mylonite zone, K−Ar dates on 5 samples of biotite from variably deformed granodiorite range from 62–76 Ma; dates are not correlated with structural depth but clearly decrease with degree of deformation and concomitant grain size reduction. 40Ar/39Ar incremental heating analyses of biotite from the granodiorite protolith reveals no evidence of excess argon and produces a relatively flat age spectrum. 40Ar/39Ar incremental heating analysis of biotite from the granodiorite mylonite discloses discordance consistent with 39Ar recoil loss. K analysis of samples, allowing K−Ar dates to be calculated, is therefore recommended as an adjunct to 40Ar/39Ar step heating analysis in rocks that have experienced similar deformation. During mylonitization, biotite grain size reduction through intracrystalline cataclasis results in estimated grain dimensions as small as 0.05 μm locally within porphyroclasts as large as 1 mm. Because biotite compositions are relatively Uniform (Fe/[Fe+Mg+Mn+Ti+AlVI]=0.47–0.52) and show no systematic variation with grain size, compositional dependence of activation energy and diffusivity can be eliminated as sources of variation in Ar retention. Ar closure temperatures, calculated with appropriate diffusion parameters for the observed grain sizes, are in the range ∼220–280° C and define a cooling curve consistent with a thermal history intermediate between those of the granodiorite protolith below and the Asbestos Mountain granodiorite above the mylonite zone. Changes in the slope of the cooling curve indicate that the main deformation episode initiated at or above ca 330° C (∼80 Ma), above the closure temperature for thermally activated diffusion of argon in biotite, and continued to a minimum of ca 220–260° C (∼62 Ma).  相似文献   

18.
The Liuyuan area,which is located on the southern margin of the Beishan orogenic belt,develops abundant Early Paleozic granitoids.SHRIMP zircon U-Pb dating yielded a weighted mean 206Pb/238U age of 421±8 Ma for the Liuyuan granodiorite(Zhao Zehui et al.,2007),implying its Late Silurian intrusion.Geochemical compositions showed that the Liuyuan granodiorite is characterized by high SiO2(65.01%-67.31%),A12O3(17.17%-18.05%) and Na2O(Na2O/K2O=1.67-1.87) but low Mg# contents calculated as 100×Mg2+/(Mg2++∑Fe2+) from 28.77 to 31.15,as well as being enriched in Sr(472×10-6-517×10-6) but depleted in Yb(1.2×10-6-1.42×10-6) and Y(12.8×10-6-14×10-6).The REEs are characterized by right-inclined patterns with LREE enrichment,HREE depletion and slightly negative Eu anomalies(Eu/Eu*=0.91-0.97).Major and trace elements indicate that the granodiorite is an adakite.The Nb/Ta values of the granodiorite vary from 10.80 to 18.01 and Nb/U from 6.32 to 10.09,both lying between the values of the crust and the mantle.The rock has low εNd(t) values(-2.5--0.8) and high ISr(0.706321-0.706495).Geochemical and Sr-Nd isotopic compositions indicate that the Liuyuan granodiorite is possibly derived from partial melting of thickening lower crust,related to mantle underplating.The Yb-Ta and Y+Nb-Rb discriminant diagrams imply the Liuyuan granodiorite intruded in a local extensional tectonic setting during late collision.Combined with previous studies on geochronology,geochemistry and tectonic setting of granitoids,we interprete that the constraint of this adakite in the Liuyuan area indicates that the tectonic setting may have transformed from collision to extension during the Early Devonian.  相似文献   

19.
210Pb geochronologies of Cd, Cu, Hg, and Pb fluxes were obtained from the intertidal mudflat sediments of the coastal lagoons Chiricahueto, Estero de Urías, and Ohuira in the Mexican Pacific. The Cu and Hg sediment concentrations at the three lagoons fell within the ranges of 6–76 μg g−1 and 0.1 to 592 ng g−1, respectively; Chiricahueto and Estero de Urías sediments had comparable Cd and Pb concentrations within the ranges of 0.2–2.1 μg g−1 and 10–67 μg g−1, respectively; whereas in Ohuira lagoon, Cd concentrations were lower (0.1–0.5 μg g−1) and Pb concentrations were higher (115–180 μg g−1) than in the other lagoons. The metal fluxes (μg cm−2 y−1) for the three lagoons fell within the ranges of 0.02–0.15 for Cd, 0.7–6.0 for Cu, 0.001–0.045 for Hg, and 0.7–20 for Pb. The Hg pollution in Estero de Urías was attributed to the exhausts of the thermoelectric plant of Mazatlan and the metal enrichment in Chiricahueto and Ohuira was related to the agrochemical wastes from the croplands surrounding these lagoons.  相似文献   

20.
2 study area was assessed with respect to its heavy-metal load on the basis of the current guideline values. The heavy-metal loads of the soils in the study area have ranges of <0.2–200 mg kg−1 for Cd, <10–30,000 mg kg−1 for Pb, 7–10,000 mg kg−1 for Cu and 50–55,000 mg kg−1 for Zn. Mobility of the heavy metals was determined by extraction at different pH values. The acid neutralisation capacity (ANCx) at these pH values was also determined to estimate the probability that the pH can drop to pH=x. The ANC values in the study area ranged from 6 to 3000 mmol H+ kg−1, from −33 to 800 mmol H+ kg−1 and from −74 to 160 mmol H+ kg−1 for ANC3.5, ANC5.0 and ANC6.2, respectively. Together with pedological data, the extraction experiments permit differentiation between soil units that have been placed in the same environmental hazard class on the basis of total heavy-metal loads. Received: 10 August 1998 · Accepted: 14 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号