首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 105 毫秒
1.
The geochemical composition of sandstones in the sedimentary basin is controlled mainly by the tectonic setting of the provenance, and it is therefore possible to reveal the tectonic setting of the provenance and the nature of source rocks in terms of the geochemical composition of sandstones. The major elements, rare-earth dements and trace elements of the Mesozoic-Cenozoic sandstones in the Lanping Basin are studied in this paper, revealing that the tectonic settings of the provenance for Mesozoic-Cenozoic sedimentary rocks in the Lanping Basin belong to a passive continental margin and a continental island arc. Combined with the data on sedimentary facies and palaeogeography, it is referred that the eastern part of the basin is located mainly at the tectonic setting of the passive continental margin before Mesozoic, whereas the western part may be represented by a continental island arc. This is compatible with the regional geology data. The protoliths of sedimentary rocks should be derived from the upper continental crust, and are composed mainly of felsic rocks, mixed with some andesitic rocks and old sediment components. Therefore, the Lanping Mesozoic-Cenozoic Basin is a typical continental-type basin. This provides strong geochemical evidence for the evolution of the paleo-Tethys and theb asin-range transition.  相似文献   

2.
Geochemical analysis of sandstones from the Sardar Formation (from two stratigraphic successions) in east-central Iran were used for identification of geochemical characterization of sandstones, provenance and tectonic setting. Sandstones in the two lithostratigraphic successions have similar chemical compositions suggesting a common provenance. Bulk-rock geochemistry analysis of Carboniferous sandstones from Sardar Formation indicates that they are mainly quartz dominated and are classified as quartzarenites, sublitharenites and subarkoses, derived from acid igneous to intermediate igneous rocks. Discrimination function analysis indicates that the sandstones of Sardar Formation were derived from quartzose sedimentary provenance in a recycled orogenic setting. Also, major and trace elements in sandstones of Sardar Formation (e.g., K2O/Na2O vs. SiO2) indicate deposition in a stable passive continental margin (PM). Chemical index of alteration (CIA) for these rocks (> 65%) suggests a moderate to relatively high degree of weathering in the source area.  相似文献   

3.
The Asmari Formation deposited in the Zagros foreland basin during the OligoceneMiocene. Lithologically, the Asmari Formation consists of limestone, dolomitic limestone, dolomite, argillaceous limestone, some anhydrite(Kalhur Member) and sandstones(Ahwaz Member). This study is based on the analysis of core samples from four subsurface sections(wells Mn-68, Mn-281, Mn-292 and Mn-312) in the Marun Oilfield in the Dezful embayment subzone in order to infer their provenance and tectonic setting of the Ahwaz Sandstone Member. Petrographical data reveal that the Ahwaz Sandstone comprises 97.5% quartz, 1.6% feldspar, and 0.9% rock fragments and all samples are classified as quartz arenites. The provenance and tectonic setting of the Ahwaz Sandstone have been assessed using integrated petrographic and geochemical studies. Petrographic analysis reveals that mono- and poly-crystalline quartz grains from metamorphic and igneous rocks of a craton interior setting were the dominant sources. Chemically, major and trace element concentrations in the rocks of the Ahwaz Sandstone indicate deposition in a passive continental margin setting. As indicated by the CIW′ index(chemical index of weathering) of the Ahwaz Sandstone(average value of 82) their source area underwent "intense" recycling but "moderate to high" degree of chemical weathering. The petrography and geochemistry results are consistent with a tropical, humid climate and low-relief highlands.  相似文献   

4.
The Early-Middle Devonian Shugouzi Formation in the Quruqtagh block consists mainly of clastic rocks.However,their provenance has been scarcely studied since it was named.Geochemistry of clastic rocks was commonly used to interpret the provenance.Detrital heavy mineral analyses help frame the U-Pb age from zircon grains,integrated with geochemical data from detrital tourmaline and spinels.These techniques were used to characterize components of the sediment flux and define erosion areas in the Qurugtagh block,further providing evidence about the tectonic evolution of the South Tianshan and Tarim plate.The maximum depositional age constrained by detrital zircon dating was Early-Middle Devonian.Multiple diagrams for sedimentary provenance using major and trace elements indicate that continental island arc-related felsic rocks were the major source rocks for the Shugouzi Formation.Detrital tourmalines are dravite and schorl.The results of detrital tourmaline electron probe microanalysis(EPMA)show that the source rocks are mainly metasedimentary rocks and granitoids.The detrital chromian spinels within the sediments are characterized by high chroumium(Cr#)and varying magnesium(Mg#).The discrimination plots reveal that these spinels were sourced from island arc magmatic rocks.The laser ablation inductively-coupled plasma mass spectrometry(LA-ICP-MS)U-Pb chronology of detrital zircons suggests that the sediments were derived mainly from 414-491 Ma and 744-996 Ma magmatic rocks.Paleocurrent restoration,sandstone geochemistry,EPMA,and detrital zircon geochronology indicate that the source rocks were predominantly derived from Late Ordovician and Devonian magmatic rocks and subordinately from recycled Neoproterozoic magmatic rocks.Comprehensive analyses of the source areas suggest that a remnant arc still existed in the Early Devonian and the Shugouzi Formation was deposited in a passive continental margin.  相似文献   

5.
Petrographical and geochemical methods were combined to investigate the provenance, geodynamic and weathering history of the Shurijeh sandstones, Kopet-Dagh Basin. The point-counting method and XRF technique are used for modal and geochemical analyses. Based on petrographical examinations, it seems that the Shurijeh sandstones are mainly deposited in the craton interior and recycled orogen belts. In addition to petrographical investigation, geochemical analyses (major oxides and trace elements) of Late Jurassic-Early Cretaceous rocks reveal that the sedimentation processes are performed in a passive continental margin. Such interpretation is supported with geodynamic and paleogeographical studies of the Kopeh-Dagh basin during this time. The geochemical investigations suggested that the composition of probable source rocks mostly was acidic-intermediate with minor mafic igneous rocks. Based on the above, Paleo-Tethys remnants and their collision-related granitoids, in the south and west of Mashhad, may have been the source area for these rocks. CIA values, which range from 63.8 to 94.9 in samples, are suggesting a moderate to relatively high degree of alteration (weathering) in the source area. Therefore, petrographical and paleogeographical studies of siliciclastic rocks can be used for the provenance, tectonic setting and paleoweathering studies in the source area.  相似文献   

6.
An integrated petrographic and geochemical study of the sandstones of the Maastrichtian-aged in the Orhaniye (Kazan-Ankara-Turkey) was carried out to obtain more information on their provenance, sedimentological history and tectonic setting. Depending on their matrix and mineralogical content, the Maastrichtian sandstones are identified as lithic arenite/wacke. The Dikmendede sandstones derived from types of provenances, the recycled orogen and recycled transitional. The chemical characteristics of the Dikmendede sandstones, i.e., fairly uniform compositions, high Th/U ratios (>3.0), negative Eu anomalies (Eu/Eu* 0.72–0.99) and Th/Sc ratios (mostly less than 1.0), favor the OUC (old upper continental crust) provenance for the Dikmendede sandstones. The SiO2/Al2O3, Th/Sc (mostly <1.0) and La/Sc (<4.0) ratios are; however, slightly lower than typical OUC, and these ratios may suggest a minor contribution of young arc-derived material. The rare earth element (REE) pattern, and La/Sc versus Th/Co plot suggests that these sediments were mainly derived from felsic source rocks. The Dikmendede sandstones have high Cr (123–294 ppm) and Ni (52–212 ppm) concentrations, Cr/Ni ratio of 1.93, and a medium correlation coefficient between Cr and Ni and corresponding medium to high correlation of both (Cr and Ni, respectively) elements with Co. These relationships indicate a significant contribution of detritus from ophiolitic rocks. As rare earth element data are available for the Dikmendede sandstones, the Eu/Eu* is compared with LaN/YbN. Samples plot in the area of overlapping between continental collision, strike-slip and continental arc basins. The predominantly felsic composition of the Dikmendede sandstones is supported by the REE plots, which show enriched light REE, negative Eu anomaly and flat or uniform heavy REE. The Dikmendede sandstones have compositions similar to those of the average upper continental crust and post-Archean Australian shales. This feature indicates that the sediments were derived mainly from the upper continental crust. The Dikmendede sandstones have chemical index of alteration (CIA) values of 28–49, with an average of 40 indicating a low degree of chemical weathering in the source area. The compositional immaturity of the analyzed sandstone samples is typical of subduction-related environments, and their SiO2/Al2O3 and K2O/Na2O ratios and Co, Sc, Th and Zr contents reflect their oceanic and continental-arc settings. The Dikmendede sandstones were developed as flysch deposits derived from mixed provenance in a collision belt.  相似文献   

7.
Major,trace and rare earth element(REE) concentrations of Late Triassic sediments(finegrained sandstones and mudstones) from Hongcan Well 1 in the NE part of the Songpan-Ganzi Basin, western China,are used to reveal weathering,provenance and tectonic setting of inferred source areas. The Chemical Index of Alteration(CIA) reflects a low to moderate degree of chemical weathering in a cool and somewhat dry climate,and an A-CN-K plot suggests an older upper continental crust provenance dominated by felsic to intermediate igneous rocks of average tonalite composition.Based on the various geochemical tectonic setting discrimination diagrams,the Late Triassic sediments are inferred to have been deposited in a back-arc basin situated between an active continental margin(the Kunlun-Qinling Fold Belt) and a continental island arc(the Yidun Island Arc).The Triassic sediments in the study area underwent a rapid erosion and burial in a proximal slope-basin environment by the petrographic data. while the published flow directions of Triassic lurbidites in the Aba-Zoige region was not supported Yidun volcanic arc source.Therefore,we suggest that the Kunlun-Qinling tcrrane is most likely to have supplied source materials to the northeast part of the Songpan-Ganzi Basin during the Late Triassic.  相似文献   

8.
http://www.sciencedirect.com/science/article/pii/S1674987113000352   总被引:1,自引:0,他引:1  
The Yidun Group extends from the Shangri-La region to the south and the Changtai region to the north,and is an important component of the Triassic Yidun arc in the eastern Tibetan plateau.It is composed of the Lieyi,Qugasi,Tumugou and Lanashan Formations from the base upward.Both the Lieyi and Lanashan Formations consist dominantly of black or gray slate and sandstone,whereas the Qugasi and Tumugou Formations have variable amounts of mafic to felsic volcanic rocks and turfs accompanied with gray slate and sandstone.Sandstone from the Yidun Group has variable CIA values from 55 to 76,indicative of mild to moderate weathering condition for the source rocks.All the sandstones define a general weathering trend nearly parallel to the A-CN boundary in the A-CN-K triangular diagram,implying limited effect of diagenetic and post-depositional K-metasomatism.Dominant detrital quartz and feldspar grains of the sandstones suggest predominantly felsic sources.Relatively high Y/Ni and low Cr/V ratios of sandstones from the Yidun Group indicate more contribution from felsic than mafic sources.Similarly,the Yidun sandstones have Co/Th and La/Sc ratios generally similar to upper continental crust (UCC) and cluster between UCC and felsic sources,indicating felsic rocks as primary sources.Granodiorite represents the average chemical composition of sources as evaluated by extending the predicted weathering trend back to the feldspar join in A-CN-K diagram.Prominently high Zr/Sc ratio or Hf concentration and Paleoproterozoic Nd modal ages (1.94-2.21 Ga)point to input of recycling components derived from old sedimentary source in a relatively stable tectonic setting.  相似文献   

9.
Silurian sandstone in Tarim Basin has good reservoir properties and active oil and gas shows, especially thick widely-distributed bituminous sandstone. Currently, the Silurian was found containing both bitumen and conventional reservoirs, with petroleum originating from terrestrial and marine source rocks. The diversity of their distribution was the result of "three sources, three stages" accumulation and adjustment processes. "Three sources" refers to two sets of marine rocks in Cambrian and Middle-Upper Ordovician, and a set of terrestrial rock formed in Triassic in the Kuqa depression. "Three stages" represents three stages of accumulation, adjustment and reformation occurring in Late Caledonian, Late Hercynian and Late Himalayan, respectively. The study suggests that the Silurian bitumen is remnants of oil generated from Cambrian and Ordovician source rocks and accumulated in the sandstone reservoir during Late Caledonian-Early Hercynian and Late Hercynian stages, and then damaged by the subsequent two stages of tectonic uplift movements in Early Hercynian and Pre-Triassic. The authors presumed that the primary paleo-reservoirs formed during these two stages might be preserved in the Silurian in the southern deep part of the Tabei area. Except for the Yingmaili area where the Triassic terrestrial oil was from the Kuqa Depression during Late Himalayan Stage, all movable oil reservoirs originated from marine sources. They were secondary accumulations from underlying Ordovician after structure reverse during the Yanshan-Himalayan stage. Oil/gas shows mixed-source characteristics, and was mainly from Middle-Upper Ordovician. The complexity and diversity of the Silurian marine primary properties were just defined by these three stages of oil-gas charging and tectonic movements in the Tabei area.  相似文献   

10.
This study was conducted to distinguish the compositions and provenance of sandstones and siltstones in the Ek1-Es3 members of Huimin (惠民) depression. The samples have been analyzed for petrographic, major element and selected trace element compositions (including REE). The results show that the sandstones from the first member of Kongdian (孔店) Formation (Ek1) have higher quartz compositions than those from the fourth member (Es4) and the third member (Es3) of Shahejie (沙河街) Formation. The alkali feldspar/plagioclase ratio in the A-CN-K diagrams decreases in the order Ek1>Es4>Es3, which suggests that the Ek1 member had a more alkali feldspar-rich granitoid source and more intense weathering of the source than the Es4 and Es3 members. The mineral distributions in the A-CN-K diagrams also indicate that the sandstones and slltstones in the three members underwent K-metasomatism. Extrapolation of the sandstones and siltstones back to the plaginclase-alkali feldspar line in the A-CN-K diagram suggests a high average plagioclase to alkali feldspar ratio in the provenance (tonalite to granite). In addition, the chemical index of weathering (CIW) and chemical index of alteration (CIA) parameters of the sandstones and siltstones suggest that the weathering of the first cycle material was intense, and the CIW decreases in the order Ek1>Es4>Es3. Trace element ratios suggest all the sedimentary rocks were mostly derived from granitoids. Elemental ratio plots (e.g., Th/Sc vs. Eu/Eu*) of sandstones and siltstones suggest a mix of a granodiorite-tonalite source as a source of the sandstones and siltstones. The sandstones and siltstones of Es3 and Es4 members also contain higher Eu/Eu* and lower Th/Sc ratios than the sandstones and siltstones of Ek1 member. As is consistent with the petrography, it suggests that the sandstones and siltstones of Es3 and Es4 members are derived from a source with less granite and more granodiorite-tonalite than the sandstones and siltstones of Ek1 member.  相似文献   

11.
准噶尔盆地南缘中-新生界碎屑成份特征与构造期次   总被引:8,自引:4,他引:4  
准噶尔盆地南缘晚侏罗世-早白垩世早期、晚白垩世及晚新生代发育的近源粗碎屑沉积显示构造活动的存在。野外剖面及镜下碎屑成份统计表明:砾岩的砾石成份、砂岩碎屑成份的物源属性主要是再旋回造山带和晚古生代的岩浆弧,但盆地南缘东段与西段的岩屑组成及物源属性存在较大的差异。其中,沉积岩岩屑在晚侏罗世—早白垩世早期、晚白垩世和晚新生代发生了相应的增加,显示盆缘沉积岩物源的隆升—剥蚀作用和构造活动的相对活跃。砂岩碎屑特征、重矿物相对含量及重矿物组合特征证明盆地南缘东、西两段的物源属性存在较大差异,特别是不稳定重矿物的增加显示晚侏罗世-早白垩世早期、晚白垩世和晚新生代为构造相对活跃的构造环境。综合中-新生界沉积碎屑特征及差异分析,准噶尔盆地南缘中-新生代盆山格局发生了3次较大的转变过程,分别对应于上述3个时期。中-新生代3次构造活动对含油气系统形成具有重要控制作用,构造活动期次与油气藏形成、调整的期次也有良好的对应关系。  相似文献   

12.
酒西盆地中新生代碎屑组分特征及指示意义   总被引:2,自引:0,他引:2       下载免费PDF全文
通过岩石碎屑成分分析,研究酒西盆地砂砾岩储集层沉积碎屑成分特征对物源属性、盆-山格局演化及油气成藏特征的指示意义。研究表明,酒西盆地下白垩统下沟组砂岩成分成熟度低,物源构造属性以再旋回造山带和部分岩浆弧为特征,物源岩石类型主要为中酸性岩浆岩和变质岩(沉积岩碎屑极少),岩石成分及其组合显示盆地东、西部的物源差异明显;古近系白杨河组在岩石成分、岩屑组成上与下白垩统下沟组砂岩有较大不同,显示物源属性的明显改变。物源属性的改变在一定程度上反映构造格局分异、盆-山格局的演变历程,控制了酒西盆地内油气富集和晚期成藏特征。碎屑成分特征在一定程度上决定了储集层的储集空间类型及裂缝发育规律,值得进一步深入研究。  相似文献   

13.
秦岭造山带中分布于商丹和勉略缝合带之间的泥盆系,发育有众多Au、Ag和Pb-Zn矿床,长期以来备受关注。对于泥盆系物源和形成环境认识始终存在不同认识。砂岩碎屑组成、碎屑重矿物、地球化学成分、砾岩组成以及古水流研究表明,北秦岭是秦岭泥盆系的主要物源区,盆地基底隆起也是泥盆系重要物源区。砂岩碎屑组成、碎屑重矿物和砾岩组成表明,泥盆系物源区曾出露有岛弧火山岩、花岗岩、变质岩及少量沉积岩、超镁铁岩。砂岩地球化学成分和砂岩碎屑模式研究表明,秦岭造山带中泥盆系主要形成于活动大陆边缘,其碎屑沉积物来自多种构造环境中的岩石单元。  相似文献   

14.
Provenance and tectonic history of the Jurassic accretionary complex, Mino terrane, located in the Inner Zone of south‐west Japan, were studied using sandstone framework composition and mudrock geochemistry. Modal analysis of sandstones shows that the tectonic setting of the source area for the studied Mino terrane clastic rocks was uplifted basement, largely dominated by high‐grade metamorphic terrain composed of quartz and feldspar, especially plagioclase. The textural and mineralogical immaturity, extent of alkali and alkaline earth element leaching, low chemical index of alteration values and depleted rare earth element (REE) contents suggest rapid uplift and erosion within the source terrain and a relatively weak weathering intensity. Factor analysis revealed that grain‐size effects governed compositional heterogeneity in the studied sediments. Provenance of the sediments is interpreted as being plagioclase‐enriched felsic basement rock, such as granodiorite, within a continental margin and evolved arc tectonic setting rather than active volcanic arc. Lack of a contribution from active volcanic arcs may have resulted from the cessation of volcanism during the reorganization of the subducting plate system and/or erosion of arc volcanics and exposure of basement. Considering the previous studies on palaeogeography and palaeocurrent reconstruction, the north‐eastern part of the Yeongnam massif in the Korean Peninsula is interpreted as the most probable source area for the studied turbidites. The results of mixing calculation for Mino terrane sediments suggest that Precambrian leucocratic granite and the basement rock of the Cretaceous Gyeongsang Basin shed large amounts of sediments to the Mino trench, whilst Precambrian granitic gneiss and the Triassic pluton supplied lesser amounts. The results of this study reveal that, although active subduction–accretion processes were occurring, the Mino trench was bordered by continental basement rocks. This knowledge contributes to enhanced understanding of the Jurassic palaeogeography of the east Asia continental margin.  相似文献   

15.
陈蕾  胡修棉  黄志诚 《地质学报》2007,81(4):501-510
藏南古错地区早白垩世以出现一套火山岩屑砂岩为特征。通过系统的岩石学、地球化学及物源区综合分析表明,砂岩中的火山岩岩屑来源于同期的印度大陆北缘的板内火山作用。侏罗纪晚期,砂岩物源来自于稳定的被动大陆边缘,早白垩世Barremian期砂岩物源来自于被动大陆边缘和火山弧的双重供应,随地层变新火山物质的输入逐渐增加,至Albian早期达到顶峰。随后,火山物质输入终止,砂岩基本消失,取而代之的是一套黑色页岩。古错砂岩物源区的变化反映了印度大陆北缘在早白垩世存在一次强烈的板内火山作用,可能与印度大陆与澳大利亚大陆、南极大陆的裂解有关。  相似文献   

16.
Petrographic and geochemical characteristics of the Upper Triassic sandstones in the western Ordos Basin were studied to provide insight into weathering characteristics, provenance, and tectonic implications. Petrographic features show that the sandstones are characterized by low-medium compositional maturity and textural maturity. The CIA and CIW values reveal weak and moderate weathering history in the source area. The geochemical characteristics together with palaeocurrent data show that the northwestern sediments were mainly derived from the Alxa Block with a typical recycled nature, while the provenance of the western and southwestern sediments were mainly from the Qinling-Qilian Orogenic Belt. The tectonic setting discrimination diagrams signify that the parent rocks of sandstones in the western and southern Ordos Basin were mainly developed from continental island arc, which is closely related to the evolution of the Qinling-Qilian Orogenic Belt. However, the sandstones in the northwestern Ordos Basin show complex features, which may be resulted from a typical recycling process. Overall evidence from petrography, geochemistry and sedimentology, together with previous researches suggest the Kongtongshan and Helanshan areas were the southwestern and northwestern boundary of the Ordos Basin, respectively, and there was no clear boundary between the Hexi Corridor Belt and Ordos Basin, where a large, uniform sediment dispersal system developed during the Late Triassic.  相似文献   

17.
砂岩碎屑成分分析是进行沉积物源岩石类型、构造属性和盆山演化分析的重要途径。准噶尔盆地南缘侏罗系物源构造属性以“再旋回造山带”、“弧造山带”和部分“岩浆弧”物源为特征,物源岩石类型主要为中酸性岩浆岩、变质岩和沉积岩,岩石成分、重矿物含量及其组合显示东、西剖面在物源上存在一定差异。天山内部侏罗系物源构造属性以“再旋回造山带”、“混合造山带”为主,物源岩石类型主要为中酸性岩浆岩和变质岩,但各剖面的岩石成分、重矿物组合特征及相对含量差异较大。综合天山内部与准噶尔盆地南缘野外剖面沉积特征、岩屑成分及钻井岩心分析表明,天山地区早、中侏罗世盆山格局以盆地沉积范围大、天山正地形较小为特征,不存在地理分割明显的天山山脉,侏罗纪盆地南缘至少存在三个物源体系(西准噶尔山、克拉麦里山和(古)天山);晚侏罗世一早白垩世早期,岩石成分成熟度偏低,砾岩等粗碎屑沉积明显增多,同时不稳定重矿物及其组合稍有增加可能与晚侏罗世天山构造格局分异、构造活动相对活跃有关,天山山脉明显隆升并造就天山南北沉积环境的巨大差异。  相似文献   

18.
Geochemical studies of sandstones from the three lithostratigraphic successions in the southern Benue Trough of Nigeria were undertaken for a geochemical characterization of the sandstones, and to assess their strati-graphic and source evolution.Major and trace elements data were obtained from outcrop sandstone samples. The SIO2/Al2O2, Fe2O3/K2O ra-tios and CaO contents have been used to characterize the Cretaceous sandstones into Al-rich and high and low Fe2O3/K2O ratio sandstones. Results indicate that there are geochemical features that display stratigraphic trends across the succession from the Asu River Group, Eze-Aku Group to the proto-Niger Delta succession which may imply a discontinuous evolution from different source terrains of Precambrian and Mesozoic ages that supplied the sediments. The Asu River Group sandstones have lower SiO2, Al2O3, Fe2O3 and higher MgO; the Eze-Aku sand-stones have higher TiO2, CaO, alkalis and lower MgO while the proto-Niger Delta sandstones have higher SiO2, Al2O3, Fe2O3 and lower alkalis and CaO. These discontinuities signify the influence of tectonic impulses that af-fected the southern Benue Trough during the Cretaceous time. Changes in ratios of TiO2/Al2O3, Fe2O3, Cr and Zr suggest an increasingly mafic contribution to the depositional basin with time. The chemical index of alteration in-creases with time, possibly suggesting that a more intense weathering regime in the hinterland developed with time.  相似文献   

19.
The Lower Cretaceous series, in the Western Saharan Atlas, shows important detritic deposits, particularly continental to nearshore red sandstones. Lithologically, it is an alternation of red clay and sandstone intercalated with some carbonate levels at the lower part of the series. These series can be subdivided into three lithostratigraphic units corresponding to Valanginian-Hauterivian, Barremian, and Aptian-Lower Albian. The lithostratigraphic analysis used to reconstitute the important subsidence in the Lower Cretaceous period, particularly in the Lower Albian. The Lower Cretaceous series could be considered as a geodynamic model characterized by individualization of independent depocenter filled with different detritic material and separated by Jurassic structures. This new situation appeared in the beginning of Lower Cretaceous (Valanginian-Hauterivian), following the Neocimmeriean tectonic phase, and it is increasing in the Early Albian, where differences of thicknesses are more important and allow the distinction of the depocenter. The biostratigraphic analysis of the clay samples yielded some foraminifera and palynomorphs. Benthic and planktonic foraminifera confirmed the Hauterivian age of the basal formation, also, two dominant forms of palynomorphs were recognized; according to the large stratigraphic distribution of the identified forms, it can be attributed to the Lower Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号